Русский
Русский
English
Статистика
Реклама

Отладочный вывод на микроконтроллерах как Concepts и Ranges отправили мой printf на покой

Здравствуйте! Меня зовут Александр и я работаю программистом микроконтроллеров.

Начиная на работе новый проект, я привычно набрасывал в project tree исходники всяческих полезных утилит. И на хедере app_debug.h несколько подзавис.

Дело в том, что в декабре прошлого года у GNU Arm Embedded Toolchain вышел релиз 10-2020-q4-major, включающий все GCC 10.2 features, а значит и поддержку Concepts, Ranges, Coroutines вкупе с другими, менее "громкими" новинками С++20.

Воодушевленное новым стандартом воображение рисовало мой будущий С++ код ультрасовременным и лаконично-поэтичным. И старый, добрый printf("Debug message\n") в это благостное видение не очень-то вписывался.

Хотелось бескомпромиссной плюсовой функциональности и стандартных удобств!

float raw[] = {3.1416, 2.7183, 1.618};array<int, 3> arr{123, 456, 789};cout << int{2021}       << '\n'     << float{9.806}    << '\n'     << raw             << '\n'     << arr             << '\n'     << "Hello, Habr!"  << '\n'     << ("esreveR me!" | views::take(7) | views::reverse ) << '\n';

Ну а если хочется хорошего, зачем же себе отказывать?

Реализуем на С++20 интерфейс потока для отладочного вывода МК, поддерживающий любой подходящий протокол, предусмотренный вендром камня. Легковесный и быстрый, без бойлерплейта. Поддерживающий как блокирующий посимвольный вывод - для нечувствительных к времени выполнения участков кода, так и неблокирующий, для быстрых функций.

Зададим для комфортного чтения кода несколько удобных алиасов:

using base_t = std::uint32_t;using fast_t = std::uint_fast32_t;using index_t = std::size_t;

Как известно, в микроконтроллерах неблокирующие алгоритмы передачи данных реализуются на прерываниях и DMA. Для идентификации режимов вывода заведем enum:

enum class BusMode{BLOCKING,IT,DMA,};

Опишем базовый класс, реализующий логику протоколов, ответственных за отладочный вывод:

class BusInterface
template<typename T>class BusInterface{public:using derived_ptr = T*;    static constexpr BusMode mode = T::mode;void send (const char arr[], index_t num) noexcept {if constexpr (BusMode::BLOCKING == mode){derived()->send_block(arr, num);} else if (BusMode::IT == mode){derived()->send_it(arr, num);} else if (BusMode::DMA == mode){derived()->send_dma(arr, num);}}private:derived_ptr derived(void) noexcept{return static_cast<derived_ptr>(this);}void send_block (const char arr[], const index_t num) noexcept {}void send_it (const char arr[], const index_t num) noexcept {}void send_dma (const char arr[], const index_t num) noexcept {}};

Класс реализован по паттерну CRTP, что дает нам преимущества полиморфизма времени компиляции. Класс содержит единственный публичный метод send(), в котором на этапе компиляции, в зависимости от режима вывода, выбирается нужный метод. В качестве аргументов метод принимает указатель на буфер с данными и его полезный размер. На моей практике это самый распространенный формат аргументов в HAL-функциях вендоров МК.

И тогда например класс Uart, наследуемый от данного базового класса, будет выглядеть примерно так:

class Uart
template<BusMode Mode>class Uart final : public BusInterface<Uart<Mode>> {private:static constexpr BusMode mode = Mode;void send_block (const char arr[], const index_t num) noexcept{HAL_UART_Transmit(&huart,bit_cast<std::uint8_t*>(arr),std::uint16_t(num),base_t{5000});}    void send_it (const char arr[], const index_t num) noexcept {HAL_UART_Transmit_IT(&huart,bit_cast<std::uint8_t*>(arr),std::uint16_t(num));}void send_dma (const char arr[], const index_t num) noexcept {HAL_UART_Transmit_DMA(&huart,bit_cast<std::uint8_t*>(arr),std::uint16_t(num));}friend class BusInterface<Uart<BusMode::BLOCKING>>;friend class BusInterface<Uart<BusMode::IT>>;friend class BusInterface<Uart<BusMode::DMA>>;};

По аналогии можно реализовать классs и других протоколов, поддерживаемых микроконтроллером, заменив в методах send_block(), send_it() и send_dma() соответствующие функции HAL. Если протокол передачи данных поддерживает не все режимы, тогда соответствующий метод просто не определяем.

И в завершении этой части заведем короткие алиасы итогового класса Uart:

using UartBlocking = BusInterface<Uart<BusMode::BLOCKING>>;using UartIt = BusInterface<Uart<BusMode::IT>>;using UartDma = BusInterface<Uart<BusMode::DMA>>;

Отлично, теперь разработаем класс потока вывода:

class StreamBase
template <class Bus, char Delim>class StreamBase final: public StreamStorage{public:using bus_t = Bus;  using stream_t = StreamBase<Bus, Delim>;static constexpr BusMode mode = bus_t::mode;StreamBase() = default;~StreamBase(){ if constexpr (BusMode::BLOCKING != mode) flush(); }  StreamBase(const StreamBase&) = delete;StreamBase& operator= (const StreamBase&) = delete;stream_t& operator << (const char_type auto c){if constexpr (BusMode::BLOCKING == mode){bus.send(&c, 1);} else {*it = c;it = std::next(it);}return *this;}stream_t& operator << (const std::floating_point auto f){if constexpr (BusMode::BLOCKING == mode){auto [ptr, cnt] = NumConvert::to_string_float(f, buffer.data());bus.send(ptr, cnt);} else {auto [ptr, cnt] = NumConvert::to_string_float(f, buffer.data() + std::distance(buffer.begin(), it));it = std::next(it, cnt);}return *this;}stream_t& operator << (const num_type auto n){auto [ptr, cnt] = NumConvert::to_string_integer( n, &buffer.back() );if constexpr (BusMode::BLOCKING == mode){bus.send(ptr, cnt);} else {auto src = std::prev(buffer.end(), cnt + 1);it = std::copy(src, buffer.end(), it);}return *this;}stream_t& operator << (const std::ranges::range auto& r){        std::ranges::for_each(r, [this](const auto val) {                        if constexpr (char_type<decltype(val)>){                            *this << val;            } else if (num_type<decltype(val)> || std::floating_point<decltype(val)>){                *this << val << Delim;            }        });return *this;}private:void flush (void) {bus.send(buffer.data(), std::distance(buffer.begin(), it));it = buffer.begin();}std::span<char> buffer{storage};std::span<char>::iterator it{buffer.begin()};bus_t bus;}; 

Рассмотрим подробнее его значимые части.

Шаблон класса параметризуется классом протокола, значением Delim типа char и наследуется от класса StreamStorage. Единственная задача последнего - предоставить доступ к массиву char, в котором будут формироваться строки вывода в неблокирующем режиме. Имплементацию здесь не привожу, она вторична к рассматриваемой теме; оставляю на ваше усмотрение или утяните из моего примера в конце статьи. Для удобной и безопасной работы с этим массивом (в примере - storage) мы заведем два приватных члена класса:

std::span<char> buffer{storage};std::span<char>::iterator it{buffer.begin()};

Delim - разделитель между значениями чисел при выводе содержимого массивов/контейнеров.

Публичные методы класса - это четыре перегрузки operator<<. Три из них - для вывода базовых типов, с которыми наш интерфейс будет работать (char, float и integral type), а четвертая - для вывода содержимого массивов и стандартных контейнеров.

Вот здесь начинается самая вкуснота.

Каждая перегрузка оператора вывода - фактически шаблонная функция, в которой шаблонный параметр ограничен требованиями указанного концепта. Я использую собственные концепты char_type, num_type...

template <typename T>concept char_type = std::same_as<T, char>;template <typename T>concept num_type = std::integral<T> && !char_type<T>;

... и концепты из стандартной библиотеки - std::floating_point и std::ranges::range.

Концепты базовых типов защищают нас от неоднозначных перегрузок, и в комплексе с концептом range позволяет нам реализовать единый алгоритм вывода для любых стандартных контейнеров и массивов.

Логика внутри каждого оператора вывода базового типа проста. В зависимости от режима вывода (блокирующий / не блокирующий) мы или сразу отправляем символ на печать, либо формируем в буфере потока строку. И в момент выхода из функции объект нашего потока разрушается, вызывается деструктор, где приватный метод flush() отправляет заготовленную строку на печать в режиме IT или DMA.

При конвертации числового значения в массив char-ов я отказался от известной идиомы с snprintf() в пользу наработок neiver. Автор в своих публикациях показывает заметное превосходство предложенных им алгоритмов конвертации чисел в строку как в размере бинарника, так и в скорости преобразования. Позаимствованный у него код я инкапсулировал в классе NumConvert, содержащем методы to_string_integer() и to_string_float().

В перегрузке оператора вывода данных массива/контейнера мы с помощью стандартного алгоритма std::ranges::for_each() пробегаемся по содержимому рэйнджа и если элемент удовлетворяет концепту char_type, выводим строку слитно. Если же удовлетворяет концептам num_type или std::floating_point, разделяем значения с помощью заданного значения Delim.

Ну хорошо, мы тут наворотили шаблонов, концептов и прочей плюсовой тяжелой артиллерии. Это ж какой длины мы получим ассемблерную портянку на выходе? Посмотрим два примера:

int main() {    using StreamUartBlocking = StreamBase<UartBlocking, ' '>;    StreamUartBlocking cout;    cout << 'A'; // 1  cout << ("esreveR me!" | std::views::take(7) | std::views::reverse); // 2    return 0;}

Выставим флаги компилятора: -std=gnu++20 -Os -fno-exceptions -fno-rtti. Тогда на первом примере мы получим следующий ассемблерный листинг:

main:        push    {r3, lr}        movs    r0, #65        bl      putchar        movs    r0, #0        pop     {r3, pc}

На втором:

.LC0:        .ascii  "esreveR me!\000"main:        push    {r3, r4, r5, lr}        ldr     r5, .L4        movs    r4, #5.L3:        subs    r4, r4, #1        bcc     .L2        ldrb    r0, [r5, r4]    @ zero_extendqisi2        bl      putchar        b       .L3.L2:        movs    r0, #0        pop     {r3, r4, r5, pc}.L4:        .word   .LC0

На мой взгляд, весьма неплохо. Мы получили привычный плюсовой интерфейс потока, удобный вывод числовых значений, контейнеров/массивов, обработку рэнджей прямо в сигнатуре вывода и все это с фактически нулевым оверхедом.

Конечно же, при выводе числовых значений, добавится еще код конвертации числа в строку.

Потестировать онлайн можно здесь (hardware dependent код заменил для наглядности на putchar() ).

Рабочий код проекта смотрите/забирайте отсюда. Там реализован пример из начала статьи.

Это стартовый вариант, для уверенного использования еще требуются некоторые доработки и тесты. Например, нужно предусмотреть механизм синхронизации при неблокирующем выводе - когда, скажем, вывод данных предыдущей функции еще не завершен, а мы в следующей функции уже переписываем буфер новой информацией. Также нужно еще внимательно поэкспериментровать с алгоритмами std::views. Например std::views::drop() при применении ее к строковому литералу или массиву char-ов, взрывается ошибкой "inconsistent directions for distance and bound". Ну что ж, стандарт новый, со временем освоим.

Как это работает можно посмотреть здесь. Проект поднят на двухядерном STM32H745; с одного ядра (480МГц) вывод идет в блокирующем режиме через отладочный интерфейс SWO, код примера выстреливается за 9,2 мкс, со второго(240МГц) - через Uart в режиме DMA, примерно за 20 мкс.

Как-то так.

Спасибо за внимание, буду рад отзывам и замечаниям, а также идеям и примерам, как это безобразие можно улучшить.

Источник: habr.com
К списку статей
Опубликовано: 09.05.2021 22:19:11
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

C++

Программирование микроконтроллеров

С++

Stm32

C++20

Ranges

Concepts

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru