Русский
Русский
English
Статистика
Реклама

Распознаем номера автомобилей. Разработка multihead-модели в Catalyst

Фиксация различных нарушений, контроль доступа, розыск и отслеживание автомобилей лишь часть задач, для которых требуется по фотографии определить номер автомобиля (государственный регистрационный знак или ГРЗ).

В этой статье мы рассмотрим создание модели для распознавания с помощью Catalyst одного из самых популярных высокоуровневых фреймворков для Pytorch. Он позволяет избавиться от большого количества повторяющегося из проекта в проект кода цикла обучения, расчёта метрик, создания чек-поинтов моделей и другого и сосредоточиться непосредственно на эксперименте.

Сделать модель для распознавания можно с помощью разных подходов, например, путем поиска и определения отдельных символов, или в виде задачи image-to-text. Мы рассмотрим модель с несколькими выходами (multihead-модель). В качестве датасета возьмём датасет с российскими номерами от проекта Nomeroff Net. Примеры изображений из датасета представлены на рис. 1.

Рис. 1. Примеры изображений из датасета

Общий подход к решению задачи

Необходимо разработать модель, которая на входе будет принимать изображение ГРЗ, а на выходе отдавать строку распознанных символов. Модель будет состоять из экстрактора фичей и нескольких классификационных голов. В датасете представлены ГРЗ из 8 и 9 символов, поэтому голов будет девять. Каждая голова будет предсказывать один символ из алфавита 1234567890ABEKMHOPCTYX, плюс специальный символ - (дефис) для обозначения отсутствия девятого символа в восьмизначных ГРЗ. Архитектура схематично представлена на рис. 2.

Рис. 2. Архитектура модели

В качестве loss-функции возьмём стандартную кросс-энтропию. Будем применять её к каждой голове в отдельности, а затем просуммируем полученные значения для получения общего лосса модели. Оптимизатор Adam. Используем также OneCycleLRWithWarmup как планировщик leraning rate. Размер батча 128. Длительность обучения установим в 10 эпох.

В качестве предобработки входных изображений будем выполнять нормализацию и преобразование к единому размеру.

Кодирование

Далее рассмотрим основные моменты кода. Класс датасета (листинг 1) в общем обычный для CV-задач на Pytorch. Обратить внимание стоит лишь на то, как мы возвращаем список кодов символов в качестве таргета. В параметре label_encoder передаётся служебный класс, который умеет преобразовывать символы алфавита в их коды и обратно.

class NpOcrDataset(Dataset):   def __init__(self, data_path, transform, label_encoder):       super().__init__()       self.data_path = data_path       self.image_fnames = glob.glob(os.path.join(data_path, "img", "*.png"))       self.transform = transform       self.label_encoder = label_encoder    def __len__(self):       return len(self.image_fnames)    def __getitem__(self, idx):       img_fname = self.image_fnames[idx]       img = cv2.imread(img_fname)       if self.transform:           transformed = self.transform(image=img)           img = transformed["image"]       img = img.transpose(2, 0, 1)             label_fname = os.path.join(self.data_path, "ann",                                  os.path.basename(img_fname).replace(".png", ".json"))       with open(label_fname, "rt") as label_file:           label_struct = json.load(label_file)           label = label_struct["description"]       label = self.label_encoder.encode(label)        return img, [c for c in label]

Листинг 1. Класс датасета

В классе модели (листинг 2) мы используем библиотеку PyTorch Image Models для создания экстрактора фичей. Каждую из классификационных голов модели мы добавляем в ModuleList, чтобы их параметры были доступны оптимизатору. Логиты с выхода каждой из голов возвращаются списком.

class MultiheadClassifier(nn.Module):   def __init__(self, backbone_name, backbone_pretrained, input_size, num_heads, num_classes):       super().__init__()        self.backbone = timm.create_model(backbone_name, backbone_pretrained, num_classes=0)       backbone_out_features_num = self.backbone(torch.randn(1, 3, input_size[1], input_size[0])).size(1)        self.heads = nn.ModuleList([           nn.Linear(backbone_out_features_num, num_classes) for _ in range(num_heads)       ])     def forward(self, x):       features = self.backbone(x)       logits = [head(features) for head in self.heads]       return logits

Листинг 2. Класс модели

Центральным звеном, связывающим все компоненты и обеспечивающим обучение модели, является Runner. Он представляет абстракцию над циклом обучения-валидации модели и отдельными его компонентами. В случае обучения multihead-модели нас будет интересовать реализация метода handle_batch и набор колбэков.

Метод handle_batch, как следует из названия, отвечает за обработку батча данных. Мы в нём будем только вызывать модель с данными батча, а обработку полученных результатов расчёт лосса, метрик и т.д. мы реализуем с помощью колбэков. Код метода представлен в листинге 3.

class MultiheadClassificationRunner(dl.Runner):   def __init__(self, num_heads, *args, **kwargs):       super().__init__(*args, **kwargs)       self.num_heads = num_heads    def handle_batch(self, batch):       x, targets = batch       logits = self.model(x)             batch_dict = { "features": x }       for i in range(self.num_heads):           batch_dict[f"targets{i}"] = targets[i]       for i in range(self.num_heads):           batch_dict[f"logits{i}"] = logits[i]             self.batch = batch_dict

Листинг 3. Реализация runnerа

Колбэки мы будем использовать следующие:

  • CriterionCallback для расчёта лосса. Нам потребуется по отдельному экземпляру для каждой из голов модели.

  • MetricAggregationCallback для агрегации лоссов отдельных голов в единый лосс модели.

  • OptimizerCallback чтобы запускать оптимизатор и обновлять веса модели.

  • SchedulerCallback для запуска LR Schedulerа.

  • AccuracyCallback чтобы иметь представление о точности классификации каждой из голов в ходе обучения модели.

  • CheckpointCallback чтобы сохранять лучшие веса модели.

Код, формирующий список колбэков, представлен в листинге 4.

def get_runner_callbacks(num_heads, num_classes_per_head, class_names, logdir):   cbs = [       *[           dl.CriterionCallback(               metric_key=f"loss{i}",               input_key=f"logits{i}",               target_key=f"targets{i}"           )           for i in range(num_heads)       ],       dl.MetricAggregationCallback(           metric_key="loss",           metrics=[f"loss{i}" for i in range(num_heads)],           mode="mean"       ),       dl.OptimizerCallback(metric_key="loss"),       dl.SchedulerCallback(),       *[           dl.AccuracyCallback(               input_key=f"logits{i}",               target_key=f"targets{i}",               num_classes=num_classes_per_head,               suffix=f"{i}"           )           for i in range(num_heads)       ],       dl.CheckpointCallback(           logdir=os.path.join(logdir, "checkpoints"),           loader_key="valid",           metric_key="loss",           minimize=True,           save_n_best=1       )   ]     return cbs

Листинг 4. Код получения колбэков

Остальные части кода являются тривиальными для Pytorch и Catalyst, поэтому мы не станем приводить их здесь. Полный код к статье доступен на GitHub.

Результаты эксперимента

Рис. 3. График лосс-функции модели в процессе обучения. Оранжевая линия train loss, синяя valid loss

В списке ниже перечислены некоторые ошибки, которые модель допустила на тест-сете:

  • Incorrect prediction: T970XT23- instead of T970XO123

  • Incorrect prediction: X399KT161 instead of X359KT163

  • Incorrect prediction: E166EP133 instead of E166EP123

  • Incorrect prediction: X225YY96- instead of X222BY96-

  • Incorrect prediction: X125KX11- instead of X125KX14-

  • Incorrect prediction: X365PC17- instead of X365PC178

Здесь присутствуют все возможные типы: некорректно распознанные буквы и цифры основной части ГРЗ, некорректно распознанные цифры кода региона, лишняя цифра в коде региона, а также неверно предсказанное отсутствие последней цифры.

Заключение

В статье мы рассмотрели способ реализации multihead-модели для распознавания ГРЗ автомобилей с помощью фреймворка Catalyst. Основными компонентами явились собственно модель, а также раннер и набор колбэков для него. Модель успешно обучилась и показала высокую точность на тестовой выборке.

Спасибо за внимание! Надеемся, что наш опыт был вам полезен.

Больше наших статей по машинному обучению и обработке изображений:

Источник: habr.com
К списку статей
Опубликовано: 11.06.2021 08:06:47
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Блог компании simbirsoft

Python

Алгоритмы

Обработка изображений

Машинное обучение

Компьютерное зрение

Image processing

Распознавание изображений

Ocr

Распознавание номеров

Cnn

Pytorch

Категории

Последние комментарии

  • Имя: Murshin
    13.06.2024 | 14:01
    Нейросеть-это мозг вселенной.Если к ней подключиться,то можно получить все знания,накопленные Вселенной,но этому препятствуют аннуннаки.Аннуннаки нас от неё отгородили,установив в головах барьер. Подр Подробнее..
  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru