Русский
Русский
English
Статистика
Реклама

Управляем звуком ПК от активности пользователя с помощью Python

Настройка программного обеспечения

Без промедления начнём. Нам нужно установить следующее ПО:

  • Windows 10

  • Anaconda 3 (Python 3.8)

  • Visual Studio 2019 (Community) - объясню позже, зачем она понадобится.

Открываем Anaconda Prompt (Anaconda3) и устанавливаем следующие пакеты:

pip install opencv-pythonpip install dlibpip install face_recognition

И уже на этом моменте начнутся проблемы с dlib.

Решаем проблему с dlib

Я перепробовал все решения, что нашёл в интернете и они оказались неактуальными - раз, два, три, официальное руководство и видео есть. Поэтому будем собирать пакет вручную.

Итак, первая же ошибка говорит о том, что у нас не установлен cmake.

ERROR: CMake must be installed to build dlib
ERROR: CMake must be installed to build dlibERROR: CMake must be installed to build dlib

Не закрывая консоль, вводим следующую команду:

pip install cmake
Проблем при установке быть не должно

Пробуем установить пакет той же командой (pip install dlib), но на этот раз получаем новую ошибку:

Отсутствуют элементы Visual Studio

Ошибка явно указывает, что у меня, скорее всего, стоит студия с элементами только для C# - и она оказывается права. Открываем Visual Studio Installer, выбираем "Изменить", в вкладке "Рабочие нагрузки" в разделе "Классические и мобильные приложения" выбираем пункт "Разработка классических приложений на С++":

Пошагово
"Изменить""Изменить"Разработка классических приложений на С++Разработка классических приложений на С++Ждем окончания установкиЖдем окончания установки

Почему важно оставить все галочки, которые предлагает Visual Studio. У меня с интернетом плоховато, поэтому я решил не скачивать пакет SDK для Windows, на что получил следующую ошибку:

Не нашли компилятор

Я начал искать решение этой ошибки, пробовать менять тип компилятора (cmake -G " Visual Studio 16 2019"), но только стоило установить SDK, как все проблемы ушли.

Я пробовал данный метод на двух ПК и отмечу ещё пару подводных камней. Самое главное - Visual Studio должна быть 2019 года. У меня под рукой был офлайн установщик только 2017 - я мигом его поставил, делаю команду на установку пакета и получаю ошибку, что нужна свежая Microsoft Visual C++ версии 14.0. Вторая проблема была связана с тем, что даже установленная студия не могла скомпилировать проект. Помогла дополнительная установка Visual C++ 2015 Build Tools и Microsoft Build Tools 2015.

Открываем вновь Anaconda Prompt, используем ту же самую команду и ждём, когда соберется проект (около 5 минут):

Сборка
Всё прошло успешноВсё прошло успешно

Управляем громкостью

Вариантов оказалось несколько (ссылка), но чем проще - тем лучше. На русском язычном StackOverflow предложили использовать простую библиотеку от Paradoxis - ей и воспользуемся. Чтобы установить её, нам нужно скачать архив, пройти по пути C:\ProgramData\Anaconda3\Lib и перенести файлы keyboard.py, sound.py из архива. Проблем с использованием не возникало, поэтому идём дальше

Собираем события мыши

Самым популярным модулем для автоматизации управления мышью/клавиатурой оказался pynput. Устанавливаем так же через (pip install dlib). У модуля в целом неплохое описание - https://pynput.readthedocs.io/en/latest/mouse.html . Но у меня возникли сложности при получении событий. Я написал простую функцию:

from pynput import mousedef func_mouse():        with mouse.Events() as events:            for event in events:                if event == mouse.Events.Scroll or mouse.Events.Click:                    #print('Переместил мышку/нажал кнопку/скролл колесиком: {}\n'.format(event))                    print('Делаю половину громкости: ', time.ctime())                    Sound.volume_set(volum_half)                    break

Самое интересное, что если раскомментировать самую первую строчку и посмотреть на событие, которое привело выходу из цикла, то там можно увидеть Move. Если вы заметили, в условии if про него не слово. Без разницы, делал я только скролл колесиком или только нажатие любой клавиши мыши - все равно просто движение мыши приводит к выходу из цикла. В целом, мне нужно все действия (Scroll, Click, Move), но такое поведение я объяснить не могу. Возможно я где-то ошибаюсь, поэтому можете поправить.

А что в итоге?

Adam Geitgey, автор библиотеки face recognition, в своём репозитории имеет очень хороший набор примеров, которые многие используют при написании статей: https://github.com/ageitgey/face_recognition/tree/master/examples

Воспользуемся одним из них и получим следующий код, который можно скачать по ссылке: Activity.ipynb, Activity.py

Код
# Подключаем нужные библиотекиimport cv2import face_recognition # Получаем данные с устройства (веб камера у меня всего одна, поэтому в аргументах 0)video_capture = cv2.VideoCapture(0) # Инициализируем переменныеface_locations = []from sound import SoundSound.volume_up() # увеличим громкость на 2 единицыcurrent = Sound.current_volume() # текущая громкость, если кому-то нужноvolum_half=50  # 50% громкостьvolum_full=100 # 100% громкостьSound.volume_max() # выставляем сразу по максимуму# Работа со временем# Подключаем модуль для работы со временемimport time# Подключаем потокиfrom threading import Threadimport threading# Функция для работы с активностью мышиfrom pynput import mousedef func_mouse():        with mouse.Events() as events:            for event in events:                if event == mouse.Events.Scroll or mouse.Events.Click:                    #print('Переместил мышку/нажал кнопку/скролл колесиком: {}\n'.format(event))                    print('Делаю половину громкости: ', time.ctime())                    Sound.volume_set(volum_half)                    break# Делаем отдельную функцию с напоминаниемdef not_find():    #print("Cкрипт на 15 секунд начинается ", time.ctime())    print('Делаю 100% громкости: ', time.ctime())    #Sound.volume_set(volum_full)    Sound.volume_max()        # Секунды на выполнение    #local_time = 15    # Ждём нужное количество секунд, цикл в это время ничего не делает    #time.sleep(local_time)        # Вызываю функцию поиска действий по мышке    func_mouse()    #print("Cкрипт на 15 сек прошел")# А тут уже основная часть кодаwhile True:    ret, frame = video_capture.read()        '''    # Resize frame of video to 1/2 size for faster face recognition processing    small_frame = cv2.resize(frame, (0, 0), fx=0.50, fy=0.50)    rgb_frame = small_frame[:, :, ::-1]    '''    rgb_frame = frame[:, :, ::-1]        face_locations = face_recognition.face_locations(rgb_frame)        number_of_face = len(face_locations)        '''    #print("Я нашел {} лицо(лица) в данном окне".format(number_of_face))    #print("Я нашел {} лицо(лица) в данном окне".format(len(face_locations)))    '''        if number_of_face < 1:        print("Я не нашел лицо/лица в данном окне, начинаю работу:", time.ctime())        '''        th = Thread(target=not_find, args=()) # Создаём новый поток        th.start() # И запускаем его        # Пока работает поток, выведем на экран через 10 секунд, что основной цикл в работе        '''        #time.sleep(5)        print("Поток мыши заработал в основном цикле: ", time.ctime())                #thread = threading.Timer(60, not_find)        #thread.start()                not_find()        '''        thread = threading.Timer(60, func_mouse)        thread.start()        print("Поток мыши заработал.\n")        # Пока работает поток, выведем на экран через 10 секунд, что основной цикл в работе        '''        #time.sleep(10)        print("Пока поток работает, основной цикл поиска лица в работе.\n")    else:        #все хорошо, за ПК кто-то есть        print("Я нашел лицо/лица в данном окне в", time.ctime())        Sound.volume_set(volum_half)            for top, right, bottom, left in face_locations:        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)        cv2.imshow('Video', frame)        if cv2.waitKey(1) & 0xFF == ord('q'):        breakvideo_capture.release()cv2.destroyAllWindows()

Суть кода предельно проста: бегаем в цикле, как только появилось хотя бы одно лицо (а точнее координаты), то звук делаем 50%. Если не нашёл никого поблизости, то запускаем цикл с мышкой.

Тестирование в бою

Ожидание и реальность

Если вы посмотрели видео, то поняли, что результат ещё далёк от реальной эксплуатации.

Признаю честно - до этого момента никогда не сталкивался с многопоточностью на Python, поэтому "с наскоку" тему взять не удалось и результат по видео понятен. Есть неплохая статья на Хабре, описывающая различные методы многопоточности, применяемые в языке. Пока у меня решения нету по этой теме нету - будет повод разобраться лучше и дописать код/статью с учетом этого.

Так же возникает закономерный вопрос - а если вместо живого человека поставить перед монитором картинку? Да, она распознает, что, скорее всего, не совсем верно. Мне попался очень хороший материал по поводу определения живого лица в реальном времени - https://www.machinelearningmastery.ru/real-time-face-liveness-detection-with-python-keras-and-opencv-c35dc70dafd3/ , но это уже немного другой уровень и думаю новичкам это будет посложнее. Но эксперименты с нейронными сетями я чуть позже повторю, чтобы тоже проверить верность и повторяемость данного руководства.

Немаловажным фактором на качество распознавания оказывает получаемое изображение с веб-камеры. Предложение использовать 1/4 изображения (сжатие его) приводит только к ухудшению - моё лицо алгоритм распознать так и не смог. Для повышения качества предлагают использовать MTCNN face detector (пример использования), либо что-нибудь посложнее из абзаца выше.

Другая интересная особенность - таймеры в Питоне. Я, опять же, признаю, что ни разу до этого не было нужды в них, но все статьях сводится к тому, чтобы ставить поток в sleep(кол-во секунд). А если мне нужно сделать так, чтобы основной поток был в работе, а по истечению n-ое количества секунд не было активности, то выполнялась моя функция? Использовать демонов (daemon)? Так это не совсем то, что нужно. Писать отдельную программу, которая взаимодействует с другой? Возможно, но единство программы пропадает.

Заключение

На своём примере могу точно сказать - не все руководства одинаково полезны и простая задача может перерасти в сложную. Я понимаю, что большинство материалов является переводом/простым копированием документации. Но если ты пишешь руководство, то проверь хотя бы на тестовой системе, что написанные тобой действия точно повторимы. Пробуйте, экспериментируйте - это хороший повод изучить и узнать новое.

P.S. Предлагаю вам, читатели, обсудить в комментариях статью - ваши идеи, замечания, уточнения.

Источник: habr.com
К списку статей
Опубликовано: 17.06.2021 14:15:17
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Ненормальное программирование

Python

Обработка изображений

Машинное обучение

Разработка под windows

Python3

Python 3

Cv

Computer vision

Dlib

Anaconda

Мониторинг активности пользователей

Face recognition

Face detection

Категории

Последние комментарии

  • Имя: Murshin
    13.06.2024 | 14:01
    Нейросеть-это мозг вселенной.Если к ней подключиться,то можно получить все знания,накопленные Вселенной,но этому препятствуют аннуннаки.Аннуннаки нас от неё отгородили,установив в головах барьер. Подр Подробнее..
  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru