Русский
Русский
English
Статистика
Реклама

Я не понял проблему Гольдбаха

Сегодня я хочу рассказать вам о том как я попытался решить проблему Гольдбаха
Проблема Гольдбаха утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел. То есть 6=3+3; 8=5+3 Как я понял, решение проблемы это доказательство или опровержение этого утверждения.

Первое что нам потребуется это реализовать метод для проверки является ли число простым. Простым называется число, которое делится только на самого себя и на единицу.
public static bool IsPrimeNumber(ulong n){    var result = true;    if (n > 1)    {        for (ulong i = 2; i < n; i++)        {           if (n % i == 0)           {                result = false;                break;            }        }    }    else    {        result = false;    }    return result;}

Теперь нам необходимо получить коллекцию всех простых чисел до ulong.MaxValue = 18446744073709551615 (2^64-1)
public static IEnumerable<ulong> GetAllPrimeNumbers(ulong maxNumber){    List<ulong> primeNumbers = new List<ulong>();    for (ulong i=0; i < maxNumber; i++ )    {        if (IsPrimeNumber(i))        {            primeNumbers.Add(i);        }    }    return primeNumbers;}

Интуиция подсказывает что вычислять он их будет очень долго так что уменьшим их количество до 300000
static void Main(string[] args){    Stopwatch stopwatch = new Stopwatch();    stopwatch.Start();    IEnumerable<ulong> primeNumbers = GetAllPrimeNumbers();    checkGoldbach(primeNumbers);     stopwatch.Stop();    Console.WriteLine("Потрачено времени " + stopwatch.Elapsed.TotalSeconds + " секунд");    foreach(var number in primeNumbers)    {        Console.Write(number + " ");    }    Console.ReadKey();}

image
Потом мне захотелось найти все простые число до 2^64 (Как мне казалось, пару часов вычислений мне будет достаточно)
После двух минут работы программы решил поставить точку останова и проверить какое число сейчас проверяется на простату:
image
411780 итераций после двух минут вычислений. Решил немного оптимизировать метод проверки простоты числа, так как нет необходимости продолжать итерацию после половины числа
image
Таким образом уменьшается в двое количество итераций необходимых для проверки простоты. Мне показалось что за 2 минуты количество итераций должна увеличиться в двое
image
Но и тут я ошибался. Производительность увеличилось не на 100%, а на 22%. Как я потом понял происходит это из-за того, что половина проверок, как и раньше отсеиваются делением на 2, треть всех чисел, не отсеянных делением на 2, отсеиваются делением на 3 и т.д. Из 500154 проверок на простоту было найдено 41549 простых чисел. То есть, итерация for
for (ulong i = 2; i <= n/2; i++){    if (n % i == 0)    {        result = false;        break;    }}

исполнялось до конца (без break) всего 41549 раз. В остальных случаях он прерывался раньше
500154 и близко не 2^64, нужно вычислить сколько времени потребуется для проверки простоты всех чисел до 2^64
Для начало уменьшим количество итераций с 2^64 до 30000 и вычислим время работы метода stopwatch-ом
image
на перебор чисел до 30000 было потрачено 1 секунда
теперь составим таблицу с другими значениями количества итераций
image
Запишем полученный результат в Excel, и построим график точечный для координат Количество итераций на время и Количество простых чисел на диапазон


Теперь мы сможем узнать примерное количество простых чисел до 2^64, и сколько примерно уйдет времени, чтобы их всех найти
Если добавить линию тренда Линейный на график количество простых чисел на диапазон Excel выдаст формулу y=0,074x+3004 (Я не владею информацией насколько формула точна). Это значит что приблизительное количество простых чисел до ulong.MaxValue = 0,074*2^64+3004;
Точно так же добавив линию тренда Полиномиальная на график Количество итераций на время получим формулу y = 7E-10x2 + 6E-05x. Подставив вместо x наше число 2^64 можно выяснить что для нахождения всех простых чисел до 2^64 нам понадобится приблизительно 2,38E+29 секунд, или же 7553198149564240000000 лет. Ок, столько ожидать я не смогу.
Давайте попытаемся доказать, что гипотеза Гольдбаха верна для всех четных чисел до 300000.
public static void checkGoldbach(IEnumerable<ulong> primeNumbers){    ulong numbersCount = 300000;    for (ulong number = 4; number<numbersCount; number+=2)    {        bool isGoldbachResult = false;        foreach(ulong primeNumber1 in primeNumbers)        {            foreach(ulong primeNumber2 in primeNumbers)            {                if(primeNumber1+primeNumber2==number)                {                    Console.WriteLine("{0} = {1} + {2}", number, primeNumber1, primeNumber2);                    isGoldbachResult = true;                    break;                }                if(primeNumber1+primeNumber2>number)                {                    break;                }            }            if(isGoldbachResult|| primeNumber1>number)            {                break;            }        }        if(!isGoldbachResult)        {            Console.WriteLine("Число " + number + " не удалось представить в виде суммы двух простых чисел");            break;        }    }}

Если утверждение Гольдбаха не справедлива для какого-то числа, метод остановит вычисления на этом числе.

После 9 минут вычислений мы можем утверждать, что гипотеза Гольдбаха справедлива для чисел, не превышающих 300000.

Итого


Все оказалось не так просто, как показалось мне в начале, и я понимаю, что я нисколько не приблизился к решению проблемы.
Скорее всего, мне так кажется, что существует более оптимальные варианты проверки числа на простоту. Возможно, что метод проверяющий четные числа на верность утверждения Гольдбаха можно реализовать рациональнее чем простым перебором простых чисел, но мне уже не так сильно хочется тратить на это время
Решение проблемы Гольдбаха ничего не даст человечеству. На данный момент было доказано, что гипотеза верна для чисел до 4*10^18, но какой смысл доказывать его для всех чисел? С какой целью математики пишут книги на эту тему и вообще тратят на решение таких проблем время?
Мне очень хочется спросить у знающих людей, имеет ли право на существование моя формула для вычисления количества простых чисел на диапазон?
Источник: habr.com
К списку статей
Опубликовано: 03.08.2020 10:14:39
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Net

Математика

C

Категории

Последние комментарии

  • Имя: Murshin
    13.06.2024 | 14:01
    Нейросеть-это мозг вселенной.Если к ней подключиться,то можно получить все знания,накопленные Вселенной,но этому препятствуют аннуннаки.Аннуннаки нас от неё отгородили,установив в головах барьер. Подр Подробнее..
  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru