Русский
Русский
English
Статистика
Реклама

Из песочницы Машинный анализатор. Часть 1. Волновые нейроны


Вступление


В этой и последующих статьях я объясню работу волновых частиц, которые могут переходить из неактивных состояний в активные.Также я опишу их состояния и память, которую можно организовать на основе считывания переходов данных частиц. Поскольку частицы могут активироваться при некотором воздействии извне и распространяются в виде волны, то я назвал их волновыми нейронами.


Для начала рассмотрим модель нейрона мозга человека, и разберем его на ряд понятных компонентов.


Нейрон состоит из тела, дендритов и аксона. Дендриты подают входные сигналы в тело нейрона, аксон подает выход для сигналов нейрона. Само тело(ядро) нейрона накапливает входящие с дендритов(входов) сигналы, и в случае накопления какого-либо критического значения подает сигнал на аксон(выход).


Предположение


Предположим, что у нас есть холст, на котором, мы может отмечать пиксели только трех типов. К примеру это могут быть пиксели черного, белого и красного цветов. Предположим, что пиксели черного цвета представляют собой нейроны, бывшие активными, на данный момент неактивные. Красные пиксели представляют собой пиксели, которые на данный момент активны(активные нейроны). И черные пиксели нейроны неактивные.


Мы сканируем весь холст в целях поиска активных нейронов(красных пикселов).Нужно написать условие активации этих нейронов. Предположим, что вокруг неактивных(белых) нейронов имеется 8 клеток(нейронов), к которым подключены дендриты- входные сигналы.
Если вокруг белой клетки образуется какое либо количество черных нейронов, и это количество черных нейронов больше установленного нами порогового значения, того мы окрашивает белую клетку в красный цвет.


Нужно выбрать условие окрашивания клетки в красный цвет. Поскольку вокруг белой клетки 8 нейронов, то и выбирать мы может также от 0 до 7.Если выберем 0 ничего не произойдет. Нужно выбирать от 1 до 7.Если выбрать 1, то вокруг черного изображения возникнет красный сплошной контур. Если выбрать 2 или 3 то также будет получаться контур, однако не сплошной, эти значения активации не интeресны. Если выбрать значение 4, то получим интересный результат. Программа будет любые вогнутые изображения превращать в выпуклые.


Результаты


Нейроны активируются, если рядом один или более неактивных нейронов


Изображение


Нейроны активируются, если рядом четыре или более неактивных нейронов


Изображение


Разрушение изображения


Предположим, что у нас есть сложное изображение с большим количеством цветов. Мы будем преобразовывать RGB значение цвета в целочисленное значение и находить максимальное значение этого цвета. Потом мы сделаем фрагмент этого изображения прозрачным и снова найдем максимальное значение RGB цвета на картинке, не включая прозрачные пиксели и найденным цветом заполним прозрачную область изображение.


То есть мы удаляем некую область цвета и заменяем ее другим цветом. Тем самым, на изображение мы удаляем цвета один за другим, разрушая изображение. Также мы можем сохранить изобрaжение, которое мы заменяем в черно белом представлении.


Результаты


Людям с эпилепсией не смотреть


Уничтожение изображения


Создание черно-белого изображения


Зачем я рассказал про уничтожение изображения? При описании изображения можно описать цветное изображение последовательностью черно-белых(бинарных) изображения, и их позже подробно описать.


Спасибо за чтение публикации

Источник: habr.com
К списку статей
Опубликовано: 12.08.2020 14:11:32
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Алгоритмы

Машинное обучение

Машинныйанализатор

Ии

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru