Русский
Русский
English
Статистика
Реклама

Отношения. Часть II



Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические объекты и процессы их функционирования. Эта публикация является продолжением предшествующей, прочтение которой желательно, так как многие понятия и термины, используемые здесь, описываются там.
Предлагается изложение не в традиционном (стрелочном) стиле, а так, как мне самому пришлось всю эту кухню представлять и осваивать и по учебникам/пособиям, и по журнальным статьям. Особенно полезной вещью считаю созданный мной каталог, он позволяет выделить практически любое пространство и представить его элементы в удобном виде: матрицей, графом и др. Сразу видишь с чем имеешь дело и свойства (они уже выписаны) проверять часто не требуется.


Понятие отношения


Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров не приводили. Некоторые комментаторы статьи отнесли замечания на свой счет и насыпали минусов. Но шила в мешке не утаишь. Серьезных публикаций как не было, так и нет. Задайте себе вопрос, работали ли Вы с каким-либо пространством отношений? И честно себе ответьте. Что об этом пространстве можете миру поведать, для начала хотя-бы перечислить его элементы и указать свойства. Даже на СУБД Вы смотрите глазами их создателей, а они ведь тоже не все видят, или не все показывают, как, например, в микросхемах.

Здесь сделаю небольшой повтор. Начинать следует с абстрактного множества А ={a1,a2,a3,..., an}. О нем почитать можно здесь. Для лучшего понимания сократим множество до 3 элементов, т.е. А ={a1, a2, a3}. Теперь выполним декартово умножение АА =А2 и явно перечислим все элементы декартова квадрата
АА={(a1, a1),(a1, а2),(a1, a3),(a2, а1),(a2, a2),(a2, a3),(a3, a1),(a3, a2),(a3, a3)}.
Получили 9 упорядоченных пар элементов из АА, в паре первый элемент из первого сомножителя, второй из второго. Теперь попробуем получить все подмножества из декартова квадрата АА. Подмножества будут содержать разное количество пар: одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество . Сколько же получилось подмножеств? Много, а именно 29 = 512 элементов.

Определение. Подмножество декартова квадрата множества называется бинарным отношением. Если декартов квадрат из двух сомножителей отношение бинарное, если из 3-х -тернарное, из 4-х тетрарное, из n n-арное. Арность число мест в элементе отношения.
Определение. Множество всех подмножеств множества А называется булеаном. Булеан состоит из 2|A| элементов, здесь |A| мощность множества.
Отношения можно задавать в разном представлении:
перечислением элементов; R1 ={(a2,a2),(a2,a3),(a3,a1)}; R2 ={(a3,a3)}
двоичным вектором; <000011100>; <000000001>
матрицей;
графом и др. способами.
Далее переходим к рассмотрению пространств отношений, считая, что понятие, свойства отношений и операции с ними, читателю знакомы хотя бы в объеме нашей публикации в ссылке.

Пространства бинарных отношений


Предварительно уточним, что отношения могут быть строгими (это все антирефлексивные отношения) или нестрогими (все остальные). Внимание сосредоточим на отношениях безразличия и предпочтения, последние подразделяются на слабые предпочтения и строгие предпочтения (почему-то не сильные). Вообще в науке с терминологией нет порядка и скорее всего не будет. В криптографии, например, снятие шифра с криптограммы при наличии ключа -расшифрование, а без ключа дешифрование. Казалось бы, дешифратор дешифрует, но нет.

Пространством бинарных отношений с множеством-носителем называется произвольное подмножество множества бинарных отношений заданных на. Рассмотрим основные пространства для отношений предпочтений (рис. 2.15).
Р пространство всех отношений слабого предпочтения, удовлетворяют условию рефлексивности и полноты.
QT слабые предпочтения, удовлетворяющие условию квазитранзитивности.
QO пространство линейных квазипорядков, т. е. отношения из QT, которые являются транзитивными.
ТО пространство всех совершенных порядков, т. е. отношения из QO, которые являются антисимметричными.
SP пространство всех отношений строгого предпочтения, удовлетворяют свойствам антирефлексивности и антисимметричности.
РО отношения строгого частичного порядка, или транзитивные строгие предпочтения. Так как отношения строгого частичного порядка транзитивны, естественно пользоваться, для их представления сокращенными графами, то есть такими, в которых опущены дуги, реализующие транзитивность. Такие сокращенные графы называются диаграммами Хассе.
QS пространство квазисерий, т. е. строгие частичные порядки, для которых отношение I=(PUP-1) эквивалентность.
TSO пространство строгих линейных порядков, т. е. тех частичных порядков, для которых выполняется свойство полноты.
Необходимо отметить, всего таких отношений n!.. Например, для n = 3, число совершенных отношений равно 6 и все они приведены на рис. 2.13.
Т пространство всех отношений толерантности (безразличия), они обладают свойствами симметричности и рефлексивности.
ТОТ пространство транзитивно ориентируемых отношений толерантности, т. е. такие отношения, что дополнение к I представляется в виде объединения взаимно обратных транзитивных отношений, т. е. I =RR-1.
I пространство всех отношений эквивалентности, т. е. симметричных, рефлексивных и транзитивных отношений.
Е пространство отношений равенства, состоит из одного отношения представленного диагональной матрицей. Между пространствами R, P и I имеется взаимно-однозначная связь, определяемая отображением отношений предпочтения.




Рисунок 2.15 Схема пространств бинарных отношений

Выявленные связи между пространствами используются для переноса задач принятия решений (ЗПР) из одних пространств в другие, где они могут быть решены более простым путем, а затем полученное решение возвращают в исходное пространство, где была сформулирована ЗПР.
Эти отношения представлены диаграммой на рис. 2.14. Пространства бинарных отношений (типы отношений) представлены рис. 2.15.

Отношения эквивалентности


Определение. Бинарное отношение АА, обладающее тремя свойствами рефлексивности, симметричности, транзитивности, называется, бинарным отношением эквивалентности (БОЭ). Обозначается отношение эквивалентности (х, у), (х, у), ху, ху. Удобно использовать матричное (табличное) представление отношения. Ниже на рис 2.24 приведено как раз матричное представление. Над множеством из 4-х элементов существует 15 БОЭ, которые все изображены.

Представление и анализ структуры отношений эквивалентности (n = 4)
Эквивалентность из бинарных отношений, пожалуй, самое распространенное БО. Редкая наука обходится без этого понятия, но даже тогда, когда эквивалентности используются в изложении каких-либо вопросов, бывает трудно понять, что в виду имел автор. Даже при корректном определении и перечислении свойств, присущих этому бинарному отношению трудности восприятия остаются.
Начнем с примера об эквивалентностях, который иллюстрирует ограниченность их количества.

Пример 1. Пусть имеется три кубика. Составим список свойств, которыми наделены кубики и практическое использование которых (свойств кубиков) делает их как бы взаимозаменяемыми. Кубикам присвоим номера, а их свойства представим таблицей 1.



По каждому из свойств возникает БОЭ и классы эквивалентности. Продолжая список свойств, мы новых отношений эквивалентности не получим. Будут только повторы уже построенных, но для других признаков. Покажем связь БОЭ с множествами.
Рассмотрим множество из трех элементов А ={1,2,3} и получим для него все возможные разбиения на все части. 1|2|3; 12|3; 13|2; 1|23; 123. Последнее разбиения на одну часть. Номера разбиений и БО в кружках.

Определение. Разбиением множества А называют семейство Аi, i = 1(1)I, непустых попарно непересекающихся подмножеств из А, объединение которых образует все исходное множество А = U Аi, АiАj =, i j. Под-множества Аi называют классами эквивалентности разбиения исходного множества.

Это все разбиения множества (5 штук). Анализ БО показывает, что различных отношений эквивалентности тоже только 5 штук. Случайно ли это совпадение? Мы можем каждому разбиению сопоставить матрицу из девяти ячеек (33 = 9), в каждой из которых либо размещается упорядоченная пара элементов из множества А, либо ячейка остается пустой, если для соответствующей пары нет объекта. Строки и столбцы матрицы размечаются элементами множества А, а пересечению строка столбец соответствует упорядоченная пара (i, j). В ячейку матрицы вписывается не пара, а просто единица или нуль, впрочем, нуль часто не пишут совсем.

Нет, совпадение не случайное. Оказывается, каждому разбиению множества взаимно однозначно соответствует БОЭ, при этом мощность множества может быть любой |A| = n.

Это отношение едва ли не самое частое по использованию в научном обороте, но совокупность свойств, реализуемых в этом отношении, сильно ограничивает его распространенность.
Так среди всех абстрактных бинарных отношений над множеством из трех элементов (всего их 29 = 512 отношений) только пять являются эквивалентностями носителями требуемых свойств, менее одного процента.

Для |A| = 4 отношений существует 216 = 65536, но эквивалентностей лишь 15 штук. Это весьма редкий тип отношений. С другой стороны, отношения эквивалентности широко распространены в прикладных задачах. Везде, где имеются и рассматриваются множества самых различных объектов и различные разбиения таких множеств (не чисел) на части возникают отношения эквивалентности. Их можно назвать математическими (алгебраическими) моделями таких разбиений, классифицирующими множества объектов по различным признакам.

Минимальное разбиение множества А, образованное из одноэлементных подмножеств А= U{a} и разбиение А, состоящее из самого множества {А}, называются тривиальными (несобственными) разбиениями.

Решетка Р(4): все разбиения множества А = {a1,a2,a3,a4} = {1,2,3,4}


Минимальному разбиению соответствует отношение эквивалентности П15, которое называется равенством или единичным отношением. В каждом классе эквивалентности единственный элемент. Разбиению множества А, включающему лишь само множество А, соответствует отношение эквивалентности, содержащее все элементы декартова квадрата АА.



Ближайший тип к отношениям эквивалентности отношения толерантности. Множество отношений толерантности содержит в себе все отношения эквивалентности. Для носителя А из трех элементов толерантностей 8. Все они обладают свойствами рефлексивности и симметричности.
При выполнении свойства транзитивности пять из восьми толерантностей преобразует в эквивалентности (рис. 2.24 и 2.25).

Определение. Совокупность классов [a] эквивалентности элементов множества А называется фактор-множеством (обозначается А/) множества А по эквивалентности .

Определение. Естественным (каноническим) отображением f: A А/ называется такое отображение f, при котором f(а) = [a].

Отношения толерантности и их анализ



Об этих БО ранее уже упоминалось, а здесь рассмотрим их подробнее. Всем известны понятия сходство, похожесть, одинаковость, неразличимость, взаимозаменяемость объектов. Они кажутся близкими по содержанию, но при этом не одно и то же. Когда для объектов указано только сходство, то невозможно разбить их на четкие классы так, что внутри класса объекты похожи, а между объектами разных классов сходства нет. В случае сходства возникает размытая ситуация без четких границ. С другой стороны, накапливание несущественных различий у сходных объектов может привести к совершенно непохожим объектам.
В предыдущей части мы обсудили содержательный смысл отношения одинаковости (эквивалентности) объектов. Не менее важной является ситуация, когда приходится устанавливать сходство объектов.

Пусть изучается форма геометрических тел. Если одинаковость формы объектов, например, кубиков, означает их полную взаимозаменяемость в определенной ситуации обучения, то сходство это частичная взаимозаменяемость, (когда среди кубиков встречаются очень похожие на них параллелепипеды) т. е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями.
Наибольшая мера для сходства неразличимость, а вовсе не одинаковость, как может показаться на первый взгляд. Одинаковость свойство качественно иное. Одинаковость можно рассматривать только как частный случай неразличимости и сходства.
Все дело в том, что неразличимые объекты (так же, как и сходные, похожие) не удается разбить на классы так, чтобы в каждом классе элементы не различались, а элементы разных классов заведомо различались.

В самом деле, будем рассматривать множество точек (х, у) на плоскости. Пусть величина d имеет значение меньшее порога разрешимости глаза, т. е. d такое расстояние, при котором две точки, находящиеся на этом расстоянии, сливаются в одну, т.е. визуально неразличимы (при выбранном удалении плоскости от наблюдателя). Рассмотрим теперь n точек, лежащих на одной прямой и отстоящих (каждая от соседних) на расстоянии d. Каждая пара
соседних точек неразличима, но, если n достаточно велико, первая и последняя точки будут отстоять друг от друга на большое расстояние и заведомо будут различимы.
Традиционный подход к изучению сходства или неразличимости состоит в том, чтобы сначала определить меру сходства, а затем исследовать взаимное расположение сходных объектов. Английский математик Зиман, изучая модели зрительного аппарата, предложил аксиоматическое определение сходства. Тем самым свойства сходства стало возможным изучать независимо от того, как конкретно оно задано в той или иной ситуации: расстоянием между объектами, совпадением каких-то признаков или субъективным мнением наблюдателя.
Введем экспликацию понятия сходства или неразличимости.

Определение. Отношение Т на множестве M называется отношением толерантности или толерантностью, если оно рефлексивно и симметрично.
Корректность такого определения видна из того, что объект заведомо неразличим сам с собой и, конечно, похож на себя (это задает рефлексивность отношения). Порядок рассмотрения двух объектов не влияет на окончательный вывод об их сходстве или несходстве (симметричность).
Из примера со зрительной неразличимостью точек плоскости видим, что транзитивность толерантности выполняется не для всех пар объектов.

Ясно также, что поскольку одинаковость есть частный случай сходства, то эквивалентность должна быть частным случаем толерантности. Сравнивая определения эквивалентности и толерантности, убеждаемся, что так оно и есть. Философский принцип: частное богаче общего наглядно подтверждается. Дополнительное свойство транзитивности делает часть отношений толерантности эквивалентностями. Двое близнецов бывают настолько одинаковыми, что без риска могут сдавать экзамены друг за друга. Однако если два студента только похожи, то такая проделка, хотя и осуществима, но рискованна.
Каждый элемент множества несет определенную информацию о похожих на него элементах. Но не всю информацию, как в случае одинаковых элементов. Здесь возможны разные степени информации, которую один элемент содержит относительно другого.
Рассмотрим примеры, где толерантность задается разными способами.

Пример 2. Множество M состоит из четырехбуквенных русских слов нарицательных существительных в именительном падеже. Будем называть такие слова сходными, если они отличаются не более чем на одну букву. Известная задача Превращение мухи в слона в точных терминах формулируется так. Найти последовательность слов, начинающуюся словом муха и кончающуюся словом слон, любые два соседних слова в которой сходны в смысле только что данного определения. Решение этой задачи:
муха мура тура тара кара каре кафе кафр каюр каюк крюк крок срок сток стон слон.

Пример 3. Пусть p натуральное число. Обозначим через Sp совокупность всех непустых подмножеств множества М = {1, 2, ..., p}. Отношение иметь хотя бы один общий элемент на множестве Sp это отношение толерантности. Тогда два таких подмножества назовем толерантными, если у них есть хотя бы один общий элемент. Легко видеть, что рефлексивность и симметричность отношения выполнены.
Множество Sp называется (p 1) -мерным симплексом. Это понятие обобщает понятие отрезка, треугольника и тетраэдра на многомерный случай. Числа 1, 2, 3, ..., p интерпретируются как вершины симплекса. Двухэлементные подмножества как ребра, трехэлементные как плоские (двумерные) грани, прочие k-элементные подмножества как (k 1)-мерные грани. Число всех элементов (подмножеств) из Sp равно 2р 1.
Толерантность подмножеств (граней) означает наличие у них общих вершин.
Определение. Множество M с заданным на нем отношением толерантности называется пространством толерантности. Таким образом, пространство толерантности есть пара (M, ).

Пример 4. Пространство толерантности Sp допускает обобщение на бесконечный случай. Пусть H произвольное множество. Если SH совокупность всех непустых подмножеств множества H, то отношение толерантности Т на SH задается условием: X Т Y, если XY . Симметричность и рефлексивность этого отношения очевидны. Пространство SH обозначается <Н, Т> и называется универсальным пространством толерантности.

Пример 5. Пусть p натуральное число. Обозначим Bp множество всех точек p-мерного пространства, координаты которых равны 0 или 1. Толерантность в Bp задается правилом: xy, если x и y содержат хотя бы одну совпадающую компоненту (координату). Общее количество элементов в Bp равно 2р. Для каждого элемента x = (a1, a2, ...,ap) из множества Bp существует только один не толерантный ему элемент y = (1a1, 1a2, ..., 1ap ).
Очевидно, что Bp состоит из всех вершин p-мерного куба.

Пример 6. Рассмотрим пространство толерантности, компоненты которого принимают любые действительные значения.
В частности, это множество всех точек x = (a1, a2) декартовой плоскости. Толерантность двух точек означает совпадение у них хотя бы одной координаты. Значит, две толерантные точки находятся либо на общей вертикали, либо на общей горизонтали.
При других значениях p пространство можно интерпретировать как множество точек p-мерного пространства. В частности, каждый элемент x можно считать числовой функцией, заданной на множестве натуральных чисел {1, 2, 3, ...}, которая каждому натуральному числу i: 1 i p сопоставляет действительное число ai (конечная числовая последовательность). Тогда толерантность двух функций x и y означает, что они хотя бы в одной точке равны.

Отношения частичного порядка и их анализ


Упорядоченные множества это множества с введенным на нем отношением порядка. Определение. Множество А и бинарное отношение порядка R на нем () называется частично упорядоченным, если для отношения выполнены (как и в БОЭ) три условия (одно условие другое):
1) рефлексивность х А (хRx); (антирефлексивность х А (хRx));
2) антисимметричность х, y А (хRy yRxx = y);
3) транзитивность х, у, z А (хRy& yRz xRz).
При антирефлексивном отношении возникает строгий частичный порядок. Множество В(А) всех подмножеств множества А, упорядоченное по включению элементов является частично упорядоченным множеством (ЧУМ). Частично упорядоченное множество (В(А), ) часто называют булеаном.
Элемент хА ЧУМ А покрывает элемент уА, если х > y и не существует zА такого, что х > z > y. Пара элементов х, уА называется сравнимой, если х у или х у.

Если в ЧУМ А всякая пара его элементов является сравнимой, то А называют линейно упорядоченным множеством или цепью.
Если же некоторое ЧУМ В состоит лишь из несравнимых друг с другом элементов, то множество В называют антицепью. Цепь в ЧУМ А называется насыщенной, если она не может быть вложена ни в какую другую цепь, отличную от себя.

Аналогично определяется насыщенная антицепь. Максимальной цепью (антицепью) называется цепь (антицепь), содержащая максимальное количество элементов.
Элемент m ЧУМ А называется минимальным, если в А нет элемента хА, отличного от m и такого, что х m. Элемент M ЧУМ А называется максимальным, если в А нет элемента х большего, чем M, отличного от M и такого, что х M.

Элемент уА ЧУМ А называется наибольшим, если х А х у. Элемент у А ЧУМ А называется наименьшим, если хА х у. Для наибольшего и наименьшего элементов принято использовать обозначения 1 и 0 соответственно. Их называют универсальными границами. Всякое ЧУМ А имеет не более одного наименьшего и не более одного наибольшего элементов. В ЧУМ А допустимо несколько минимальных и несколько максимальных элементов
Изображать конечное ЧУМ А удобно диаграммой Хассе, которая представляет собой ориентированный граф, его вершины распределены по уровням диаграммы и соответствуют элементам из А, а каждая дуга направляется вниз и рисуется тогда и только тогда, когда элемент хА покрывает элемент уА.

Транзитивные дуги не изображаются. Уровни диаграммы Хассе содержат элементы одинакового ранга, т.е. связанные с минимальными элементами ЧУМ путями равной длины (по числу дуг).
Пусть В непустое подмножество ЧУМ А, тогда элемент хА называется точной верхней гранью (обозначается supAB) множества В, если х у для всех уВ и, если из истинности соотношения z у для всех уВ вытекает, что z х.
Точной нижней гранью (обозначается infAB) множества В называется элемент хА, если х у для всех уВ и, если из условия z у для всех у В вытекает, что z х.

Пример 7. Заданы два конечных числовых множества
А = {0,1,2,,21} и B = {6,7,10,11}.
ЧУМ (А, ) представлено рис. 2.26.
Совокупность В всех верхних граней для В называется верхним конусом для множества В. Совокупность В всех нижних граней для В называется нижним конусом для В.




Всякое подмножество ЧУМ также является ЧУМ относительно наследованного порядка. Если в множестве существуют наибольший и/или наименьший элементы, то они являются максимальным (минимальным соответственно). Обратное неверно. Булеан обладает единственным наименьшим () и единственным наибольшим элементами.
В приведенном множестве наименьший элемент нуль (0) и он совпадает с единственным минимальным элементом, а наибольшего элемента не существует. Максимальными элементами являются {19, 20, 21}. Точная верхняя грань для B = {6,7,10,11} есть элемент 21 (это наименьший элемент в верхнем конусе).
Общая ситуация. Пусть задано множество, мощность которого*******. Из всех бинарных отношений, возможных на этом множестве, выделим бинарные отношения предпочтения и связанные с ними отношения строгих частичных порядков.
Частичные порядки отличаются от строгих частичных порядков только тем, что содержат в своем составе дополнительные элементы (в матричном представлении диагональные) (аi, ai ) = 1, i = 1(1)n, а число тех и других порядков в полном множестве отношений одинаково. До настоящего времени не найдены зависимости (формула, алгоритм), которые позволяли бы подсчитывать и перечислять при любом n число частичных порядков.
Разными авторами непосредственным подсчетом определены и опубликованы следующие результаты (табл. 2.12).
Вычислительные эксперименты автора позволили получить не только число, но и вид (представление) частичных порядков при разных мощностях множителя-носителя отношений. Принтер задыхался печатая такие огромные списки, но не только красота требует жертв, наука тоже не отказывается от них.



В таблице 2.12 показаны: n = |A| мощность множества-носителя; вторая строка количество всех бинарных отношений на множестве А; и далее
|Ин(n)| количество классов неизоморфных отношений;
|Г(n)| количество отношений частичного порядка;
|Гн(n)| количество классов неизоморфны отношений частичного порядка;
|Гл(n)| = n! количество отношений линейного порядка.
Как видим, в таблице для небольших n, например, Г(n=4) имеется всего 219, приводятся данные, значения которых с увеличением n очень быстро растут, что существенно усложняет их количественный (и качественный) непосредственный анализ даже с помощью ЭВМ.

Таблица ниже иллюстрирует возможность порождения Г(n=4) всех частичных порядков из пересечения каждого с каждым линейных частичных порядков. Но в этой ситуации возникают избыточные (повторяющиеся), которые при малых n можно отсечь вручную (пересчитать). Получаются 300 матриц, но ЧУМ среди них лишь 219. Общие формулы так и не были получены. На мировом уровне ситуация аналогичная, хотя мне не довелось видеть публикаций о перечислениях ЧУМ западных авторов. Наши алгоритмы вполне оригинальны и пионерские.

Приведу возможную схему решения задачи перечисления элементов пространства частичных порядков (n = 4).



Множество строгих частичных порядков при лексикографическом упорядочении линейных порядков (n = 4) порождается при их взаимном пересечении.




Несколько важных определений математики, для встречающихся часто в текстах понятий.

Определение. Замкнутый интервал это множество вида {x: a x b}; открытый интервал не замкнут, и полуоткрытый интервал, т. е. множество вида {x: a < x b}, где а < b, или вида {x: a x < b} не открыт и не замкнут.

Определение. Граница произвольного интервала вещественной прямой в обычной топологии вещественных чисел состоит лишь из концов этого интервала, независимо от того, открыт этот интервал, замкнут или полуоткрыт. Границей множества рациональных чисел, так же, как и границей множества всех иррациональных чисел, служит все множество вещественных чисел.

Определение. Каждое линейно упорядоченное множество, в любом непустом подмножестве которого есть наименьший элемент, называется вполне упорядоченным.

Определение. Семейство R называется цепью (иногда башней, гнездом) тогда и только тогда, когда для любых его элементов А и В либо А В, либо В А. Это условие равносильно утверждению, что семейство R линейно упорядочено по включению или в принятой терминологии что семейство R вместе с отношением включения является цепью.

Пр и н ц и п м а к с и м а л ь н о с т и Х а у с д о р ф а. Для любого семейства множеств A и любого гнезда R, образованного элементами семейства A существует максимальное гнездо M в A, содержащее R.

Важная теорема о множествах и их семействах (Дж.Л.Kелли Общая топология стр.55).
Теорема. (а) П р и н ц и п м а к с и м а л ь н о г о э л е м е н т а. Максимальный элемент в семействе A множества существует, если для каждого гнезда, лежащего в A, в A найдется элемент, который содержит произвольный элемент этого гнезда.

(б) П р и н ц и п м и н и м а л ь н о г о э л е м е н т а. Минимальный элемент в семействе A существует, если для каждого гнезда, лежащего в A, в A найдется элемент, содержащийся в каждом элементе этого гнезда.

(в) Л е м м а Т ь ю к и. В каждом семействе множеств конечного характера есть максимальный элемент.

(г) Л е м м а К у р а т о в с к о г о. Каждая цепь в (частично) упорядоченном множестве содержится в некоторой максимальной цепи.

(д) Л е м м а Ц о р н а. Если каждая цепь некоторого частично упорядоченного множества ограничена сверху, то в этом множестве есть максимальный элемент.

(е) А к с и о м а в ы б о р а. Пусть Х непустое множество для каждого элемента а из множества индексов А. Тогда на А существует функция с такая, что с(а) Х для каждого а из А.

(ж) П о с т у л а т Ц е р м е л о. Для любого семейства A непересекающихся непустых множеств существует такое множество С, что АUС для каждого А из A состоит ровно из одной точки.

(з) П р и н ц и п в п о л н е у п о р я д о ч е н и я. Каждое множество можно вполне упорядочить.
Источник: habr.com
К списку статей
Опубликовано: 21.08.2020 14:20:51
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Информационная безопасность

Криптография

Алгоритмы

Математика

Отношение

Арность

Булеан

Категории

Последние комментарии

  • Имя: Макс
    24.08.2022 | 11:28
    Я разраб в IT компании, работаю на арбитражную команду. Мы работаем с приламы и сайтами, при работе замечаются постоянные баны и лаги. Пацаны посоветовали сервис по анализу исходного кода,https://app Подробнее..
  • Имя: 9055410337
    20.08.2022 | 17:41
    поможем пишите в телеграм Подробнее..
  • Имя: sabbat
    17.08.2022 | 20:42
    Охренеть.. это просто шикарная статья, феноменально круто. Большое спасибо за разбор! Надеюсь как-нибудь с тобой связаться для обсуждений чего-либо) Подробнее..
  • Имя: Мария
    09.08.2022 | 14:44
    Добрый день. Если обладаете такой информацией, то подскажите, пожалуйста, где можно найти много-много материала по Yggdrasil и его уязвимостях для написания диплома? Благодарю. Подробнее..
© 2006-2024, personeltest.ru