Русский
Русский
English
Статистика
Реклама

Перевод Data Science умерла. Да здравствует Business Science

5 полезных уроков от скромного лосося



image

Три волны развития искусственного интеллекта согласно Evo Pricing, основано на исследованиях DHL.

Данные ненадежный друг, и с трудом что-то о них можно назвать научным. Что же делать с наукой о данных?

За последние 5 лет я провел собеседования с более чем 1000 кандидатами на должность аналитиков данных, желающих работать в Evo Pricing. В процессе я узнал, что то, как в СМИ изображают данную профессию, в корне неверно; мы не просто подставляем данные в уже готовые алгоритмы.

Назрела необходимость коренным образом переосмыслить наше представление о науке о данных.

70 лет истории в двух параграфах и одной картинке


В своей основе наука о данных это красивое название для широкого спектра сложных математических операций, которые, в большинстве своем, были изобретены в далеком прошлом, но обрели второе дыхание благодаря применению значительно усовершенствованных технических устройств: больше данных, больше вычислительной мощности, более разумные результаты по более низкой цене.

Поскольку стоимость хранения и обработки данных снизилась, объем данных вырос: здесь работает простой закон спроса и предложения, или, можно сказать, эластичность спроса по цене данных. Снижается цена растет объем. Соответственно, со всей этой информацией кто-то что-то должен делать. Так и появилась наука о данных.

Распространенные заблуждения о науке о данных


image

Что такое Data Science?

По мнению Калифорнийского университета Беркли, эта наука один из самых перспективных карьерных путей для квалифицированных специалистов.

По моему мнению, название Data Science предполагает особый подход к решению определенных проблем. Вот есть определенные данные; а что нам с ними делать, что угодно?
На самом деле, вложить огромную сумму денег в какие-то данные, из которых, может быть, однажды получится что-то полезное, звучит не очень оптимально как с точки зрения карьерного роста, так и с точки зрения бизнес-стратегии. К сожалению, промышленная революция XIX века оставила нам в наследство школы и университеты для обучения большого числа рабочих, способных только давать однообразные ответы на стандартные вопросы; и с тех пор мало что изменилось.

А что будет, если мы научим людей задавать правильные вопросы, а машины находить ответы?


Data Science может стать карьерным тупиком


Несмотря на то, что наука о данных в разных своих проявлениях набирает популярность, как, например, искусственный интеллект и все, что связано с этой темой, сама профессия хороша только для новичков.

Обещания зарплаты в размере более 80 тысяч долларов в год могут показаться заманчивыми, однако все не так просто, как кажется. Чтобы по-настоящему преуспеть в работе с данными, нужно преуспеть в решении конкретных, значимых и четко определенных проблем, а не становиться универсальным экспертом в области данных или, что еще хуже, в науке, которая, как показывает изображение в начале статьи, достаточно устарела с академической точки зрения.

Данные и алгоритмы мощные инструменты. Но, как и любой инструмент, их результативность зависит от того, как хорош тот, кто ими пользуется.

Желайте добиться успеха развивайте Business Science


Как стать успешным, работая с данными? Сосредоточьтесь на проблеме, которую надо решить, а не на данных как таковых.

Для тех, кто хочет использовать данные в коммерческих целях, наука о бизнесе предлагает прекрасные стратегии:

  • бизнес-проблема должна быть определена, изучена и решена;
  • исследование должно быть выполнено с научной точки зрения;
  • влияние на бизнес: измеримый, объективный результат;


Для некоммерческих вариантов работы с данными логика, тем не менее, аналогичная: начните с вопроса/гипотезы, придерживайтесь строгой методологии, потом вернитесь к изучаемому аспекту/вопросу и определите, было ли доказано влияние данных на бизнес или нет. И так по новой.

Возникает вопрос: как это все сделать? Это мы можем объяснить, используя довольно забавную аналогию.

Урок от лосося 1: начинайте с конца



image

Скромный лосось не только вкусный, но и за свои 5-10 лет жизни успевает сделать много правильных, логичных вещей: жизнь его начинается с конца (в устье реки), а потом возвращается к началу (истоку), где происходит нерест, после чего он покидает реку, уступая место новому поколению лососей.

Потомство лосося рождается у истока, затем плывет вниз по течению, познавая удивительный мир океана, после чего возвращается обратно к реке, где может претендовать на право произвести новое потомство.

Среднестатистическому аналитику данных есть чему поучиться у скромного лосося. Как бы ни было комфортно (и интеллектуально застойно) плыть по течению к новому объему данных, такая простая, детская стратегия не приведет к успеху в долгосрочной перспективе.

Зрелый лосось начнет двигаться вниз по течению, пристально высматривая ту цель (реку), которую он хочет достичь и на которую хочет повлиять, после чего решает медленно и мучительно двигаться вверх по течению, постепенно сужая объем данных (воды), через которую ему надо пробиться.

Урок от лосося 2: не подплывайте близко к водопаду


Я проработал консультантом по вопросам управления в McKinsey & Company 10 лет. За время пребывания в должности я строго следовал традиционной каскадной модели работы она же модель Водопад: всегда начинал работу с того, что инвестировал в проект огромное количество времени, сил и клиентского бюджета. Исследовал все максимально подробно. Грубо говоря, кипятил океан и, в процессе, убивал бедных лососей!

image

По сути, моя команда формулировала первоначальную гипотезу, а затем искала соответствующие данные, чтобы доказать или опровергнуть ее. Эдакое основанное на гипотезе мышление. В лучшем случае это можно назвать эффективным квазинаучным подходом к делу, в худшем дорогим примером предвзятости подтверждения, когда данные подбираются для обоснования того результата, к которому заранее было решено прийти.

Данная стратегия может подходить для высоко стратегических, долгосрочных планов, но при этом не дает никаких гарантий клиенту, что завтра, а потом и через год все так же будет идти по плану, особенно в мире, который развивается все быстрее, сложнее и хаотичнее. Мой начальник, Роберт Даймонд, любит говорить так: бизнес это фильм, а не статичная картинка.

Риск данного подхода заключается в том, что можно ответить на неверный вопрос, а также он не дает необходимой для развития обратной связи, которая влияет на успех, несмотря на постоянную дезорганизацию рынка. Сегодня данные являются нужной моделью!

В конце концов, именно для этого и появилась гибкая методология разработки. Чтобы допускать дополнительные корректировки.

Урок от лосося 3: принцип 80/20 поможет избежать медведей


На вершине водопада даже самый ловкий лосось может столкнуться со своим заклятым врагом большим мохнатым зверем.

image

Берегись медведя. Фото: Прыжок смерти, Питер Шталь.

Плывя вверх по течению, каждый лосось может столкнуться с неожиданными, порой непреодолимыми препятствиями, со страшными хищниками. Когда-то тихие воды внезапно становятся бурлящим водопадом, плыть становится очень тяжело.

В отчаянной попытке преодолеть преграду, лосось прыгает что есть сил и попадает в капкан большого волосатого медведя, ожидающего обед.

Перфекционизм главный враг Business Scientistа

Перфекционизм та черта, которая превращает жизнь в сплошной табель об успеваемости. Это может послужить причиной несчастного существования человека.


Вода (данные) может быстро стать укрытием для медведя, поджидающего свою добычу. Идеальная для плавания и жизни, она внезапно может стать и погибелью. Чтобы этого избежать, нам нужен другой, более прагматичный подход.

Наше спасение принцип 80/20 сосредоточивается на том, что действительно важно, и позволяет обойти препятствия, а не идти напролом. Поплавайте вокруг и поищите способы, которые могут помочь избежать медведей. Крайние, пограничные случаи практически не оказывают влияние на бизнес! Тогда зачем напрягаться?

Урок от лосося 4: чем меньше (данных), тем лучше (информация)


На подготовку основанных на данных результатах должно уходить больше времени, чем на их исследование. И под больше времени я не имею в виду собрать все в одну кучу в последний момент.

Лосось рождается в небольшом водоеме (объеме данных) где он ставит себе узкую задачу, формулирует вопрос; после этого он отправляется в огромный океан исследований, где он плавает в большом объеме воды и с большими данными; потом он возвращается обратно в свой маленький водоем. Ведь чтобы объяснить результат нужно досконально изучить полученные данные и сформировать то, что окажет влияние на бизнес.

Работа на основе данных должна осуществляться снизу вверх, но эффективная коммуникация сверху вниз.


В какой-то момент ученому нужно заканчивать вариться в океане данных и переходить к формулированию сообщения как с нуля донести идею до получателя? Для этого нужно перейти в режим сверху вниз.

Не нужно создавать навороченную визуализацию, которая настолько динамична и запутанна, что понятна только технарям. Наоборот, формулировку надо максимально упростить. Тратьте МЕНЬШЕ времени на данные и БОЛЬШЕ на планирование обсуждения.

Эффективное общение начинается с конца, после чего переходит к миллиону причин, почему был сделан именно такой вывод, и миллиону доказательств, подтверждающих этот вывод.
Я настоятельно рекомендую почитать Принцип Пирамиды Барбары Минто, которая подробно рассказывает о том, как лучше всего донести информацию с помощью фактов.

Урок от лосося 5: доказательство налицо


Начиная с конца, рассказывая об ощутимых воздействиях, которые могут оказать исследование, Вы завоюете одобрение и уверенность клиентов в Вашей работе, которую иначе можно было бы назвать некими неясными алгоритмическими трюками. Чтобы понять, работает ли черный ящик, его нужно сначала вскрыть.

Только читав о спутниковой навигации, Вы не научитесь ею пользоваться.


Мне очень нравится работать с приложениями по ценообразованию и цепочке поставок, и в обоих случаях, чаще всего, большой куш сорвать можно только двигаясь вверх по течению: планируя, проектируя. Но, всегда есть но. Вы никогда ничего не получите, если сначала не докажете эффективность Вашей работы.

Поэтому рекомендую начать с таких EOL-дел, как переупорядочение (для производственно-сбытовых цепочек) и уценки (в случае ценообразования). И я прекрасно понимаю, что лучшая уценка это та, которую Вы ВООБЩЕ не предлагаете, потому что все было с самого начала грамотно спланировано. Но насколько бы было проблемно нарушить планирование, предварительно не завоевав сердца и умы клиентов осязаемыми фактами?

Будь Business Scientistом, а деньги приложатся


Что скорее окупится: пойти, как и все остальные, изучить методы и техники науки о данных, или вложиться в изучение бизнес-приложений, где воздействие данных превосходит интуицию?
Сначала найдите свою нишу и забудьте о машинном обучении до тех пор, пока не появится захватывающая проблема, которую Вы захотите решить. После того, как я ушел из McKinsey, я за день выучил R, чтобы приступить к реализации своей идеи в сфере науки о бизнесе. Но хорошо ли я понимал, что я хотел делать?

Мне понадобилось около 10 лет, чтобы достичь того уровня, на котором я могу спокойно работать с той проблемой, которую я хотел разобрать.

Прежде чем идти получать докторскую степень, нужно сначала сформулировать задачу исследования в отличие от магистерской работы, тему которой Вам дает кто-то другой.
Прежде чем стать бизнесменом, нужно придумать оригинальную бизнес-идею в отличие от обычной профессии, где кто-то другой дает Вам все задачи.

Это философия жизни.

Осмельтесь плыть против течения, и вместо того, чтобы стать очередным аналитиком данных, попробуйте найти себя в сфере науки о бизнесе.

Хорошего плавания!

image

Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:



Читать еще


Источник: habr.com
К списку статей
Опубликовано: 27.06.2020 22:14:45
0

Сейчас читают

Комментариев (0)
Имя
Электронная почта

Блог компании skillfactory

Карьера в it-индустрии

Учебный процесс в it

Data science

Категории

Последние комментарии

© 2006-2020, personeltest.ru