
Hi everyone, I’m Michal and I’m here together with Peter-Pike and the title of our talk 
today is „Precomputed Lighting in Call Of Duty: Infinite Warfare” 
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Before i start i wanted to say that *a lot* of people contributed to the ideas we will 
present here and we wanted to thank them all for that 
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In the unlikely case you haven't heard about Call Of Duty, it’s a first person shooter 
with fast paced action, running 60 fps 
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The latest installment – Infinite Warfare – takes the player into space – we fight on 
Earth, but also on Moon, Mars, and in space! 
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And for all that we need some sort of rendering indirect lighting. It needs to look 
good and it needs to be fast – because, like i said, we’re running 60hz. So just to give 
you a quick overview of what we’re going to talk about – the indirect lighting in 
CoD:IW is a combination of lightmaps and probe lighting. Lightmaps are used fairly 
sparingly, on big, structural geometry only, and we’ll cover how we store them, how 
we bake and project to that representation.  
Everything else is lit with probe lighting – and we’ll cover how we decouple lighting 
from visibility signal, how we store and interpolate them and also talk about the light 
grid data structure that we use to query the indirect lighting at runtime. 
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This is an example scene rendered with just the indirect lighting 
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This is just the lightmapped objects – so as you can see only the big, base geometry 
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All those are static object that are lit with light probes 
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And those are the dynamic ones, also lit with probes 
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First the lightmaps – just briefly here, they’ve been around for a while, we like them. 
They are really simple and fast to look up – which is priceless for us. Also, their 
dimensionality matches the dimensionality of the surface. This way there’s a linear 
relationship between the area of the lightmapped geometry and the memory 
consumption.  
To encode the directional signal and allow for local normal variation, we use what we 
call AHD encoding – which stands for Ambient and Highlight Direction – so a 
combination of ambient and directional light for every pixel of the lightmap. We 
looked at other representations, Peter-Pike will talk about this more in a bit, but AHD 
simply gave us the biggest bang for a buck. We store the direction in tangent space, 
which lets us to use hemi-octahedral encoding for it. For the two colors we compress 
them using BC6h, and while we had some minor quality issues with that, artists had 
an option to disable the compression on per-map basis. 
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But we are aware that lightmaps are not a silver bullet – they work great in some 
cases, and totally don’t in others. Things like small geometry, bushes, things with 
more volumetric structure, lightmap poorly. In previous games we use either vertex 
lighting or probe lighting for them. The problem was that vertex lighting looked great 
but was pretty costly, as every instance had to had a second vertex stream with the 
directional lighting information. The probe lighting on the other had was pretty 
cheap, because we only had to store one lightprobe for such objects, but it didn’t 
really look good, and we wanted to get a solution that would look good and be 
cheap. 
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Now, this is what the typical probe lighting usually looks like. And by „typical” i mean 
that you sample lighting in one location and use it for the whole object, it’s usually 
encoded as 3rd order spherical harmonics, it’s looked up by the normal, you do the 
convolution with the cosine on the fly and voila. And this of course gives you some 
directional variation, but in general looks fairly flat and uninteresting 
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What we really want is something like that – so with spatial variation over the object, 
with proper account for occlusion – something that would be comparable in quality 
with baking lighting per vertex. 
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So how did we approach the problem? If you look at the rendering equation, in a 
version with a distant lighting and visibility only, so we’ll be ignoring bounces of the 
lighting off the object itself, there are two main term there – lighting and visibility. 
And they have very different characteristics – lighting is fairly well behaved, changes 
spatially in a smooth way, if we’re considering diffuse response only, like here, we can 
treat is as varying smoothly directionally too. And visibility is nothing like that, it 
changes very rapidly across the object, has a lot of discontinuities. So the idea was to 
decouple the two and think of them separately. 
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Because when we do this we can encode the two in a different way, we can 
interpolate them in a different way. And we can save a lot of memory, because the 
visibility is no longer unique for every instance – it can be shared between the copies 
of the object – and the lighting, even though it is unique, it changes at a low spatial 
rate so it can be stored in much lower resolution.  
In our particular case we store visibility at the vertices and the lighting in some 
number of points scattered around the object – and we’re gonna talk about those 
two components now. 
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First the visibility – we store it as a scaled cone – so for every vertex on a mesh we 
store its axis – the main unoccluded direction 
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Then, we store the cone angle – so the wider the unoccluded portion of the 
hemisphere is, the wider the cone 
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And then we store the scale – from 0 to 1, to have an extra degree of freedom, to be 
able to represent more stochastic visibility, which a single cone might not be a good 
representation of. So when a point is occluded from multiple directions, instead of 
compensating this with the smaller angle, we can use a wide angle and just scale it 
down.  
And like i mentioned, visibility is shared between instances and baked only once, 
during mesh import. 
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To get the visibility, we bake 4th order sh vector. We uniformly sample the mesh area, 
we validate each such sample – to check if it’s not buried etc – and then we derive 
the values at the vertices from the baked samples. We do a couple iterations of 
smoothing and averaging of the baked data, to make the visibility signal cleaner 
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This is a comparison what that inpainting and blurring process gives – those are 
meshes baked with no post processing – as you can see they are slightly too dark in 
certain areas and there are some artifacts visible. 
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And after all that post processing all those problems are gone 
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A bunch of other things to mention here – we use shorter rays for the interiors – like 
ship insides, elevations – generally things that the player can go into – to make sure 
they are not „all occluded”. For rigid elements that can move – landing gear, doors etc 
– we bake each of such components separately. We don't do anything for the skinned 
models, they are just baked in the bind pose, but we also use shorter rays, to 
generate less occlusion in crotch, armpits etc. 
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Now that we have the SH visibility for every vertex, we convert it to the cone 
representation i mentioned before. For the axis, we use the optimal linear direction 
from the SH. Fitting the scale and the angle requires a non linear fitting process, but it 
turns out the two things are actually fairly decoupled, and you can solve for the angle 
first – it’s still a non linear solve, but a really simple one, as it’s only 1d – and then 
calculate the scale as the ratio of the visibility integrated over the cone to the cone 
integrated over itself. 
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The math for all this is here, you can go though that later, but it’s actually pretty 
simple, just typical minimization of a quadratic error function 
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This is what the baked visibility looks like in debug visualization. As you can see the 
direction is fairly consistent with the normal – which of course makes sense – the 
main unoccluded direction will often be the normal direction – but in the occluded 
areas, like the robot armpits it deviates quite a bit. And the cosine of the angle looks 
fairly AO-ish – but that’s because it is a form of AO actually – if compute the AO 
without the cosine term, this is actually what you get 
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Now, let’s talk a bit about the lighting. One thing that we knew immediately was that 
a single lightprobe for the entire object is simply not enough – lighting can change 
pretty drastically across the objects, especially large ones. One option would be to 
use irradiance gradients, which do a form of 1st order Taylor expansion of the lighting 
spatially, but we weren’t quite happy with it’s quality to cost ratio – as in the end, it’s 
still just one probe.  
So for each object we actually use multiple sampling locations for the lighting – we 
scatter them around the object, with their number depending on object size – and we 
interpolate the lighting from those points across the whole object 
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We figure out those sampling positions automatically. We first figure out how many 
we need – and this is just a heuristic based on object size. Then we sample the object 
uniformly and perform a k-means clustering to group those sample to N clusters. 
After few iterations, the centers of the final clusters become sampling positions. 
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Given the set of sampling points we figure out the interpolation mode. For that we 
compute the covariance matrix of the set of sampling points and extract its 
eigenvalues and eigenvector. The structure of those determines how we perform the 
interpolation – the relative magnitude of the eigenvalues determines the 
interpolation mode and the eigenvectors form a local space in which the 
interpolation happens 
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And this is what we mean by that. If there’s only one probe for the whole object it’s 
simple – whole object just uses the probe. 
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If we have more, but the there’s only one large eigenvalue it means that the sampling 
locations form a line. Each point on the object can be projected to that line and use 
the two closest probes to get the lighting, by interpolating between them. Here, we 
have only two probes, but if there was more and they still formed a line, they would 
also use the 1d interpolation mode 
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If there are two large eigenvalues, the sampling points form a plane. So we project 
everything onto this plane, triangulate the sampling point set and each point on the 
object uses the three probes that are the vertices of the triangle it projects to. 
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If all three eigenvalues are large, the probes just form a 3d cloud – which we 
tetrahedralize, and each point on the object uses 4 probes – the vertices of the tet it’s 
in – to get the lighting. 
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So to summarize, we generally generate Delauney mesh of a given dimensionality and 
classify each vertex of a mesh to one of the generated simplexes. We do it offline, 
and for each vertex of a mesh, we store the indices of the probes that a given vertex 
uses together with the interpolation weights. This is stored as two time 4 bytes per 
vertex – and again, this data is shared between instances. 
Additionally, skinned objects can bypass all that and explicitly attach sampling 
positions to particular bones. 
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To show you the difference between using single probe and multiple probes – this is 
an object lit with a single probe. 
Even though it’s a single probe, if you look at those two thingines in the center of the 
robot’s body, they are lit differently – even though they are oriented the same way. 
This is what directional visibility gives you – those elements are mostly occluded in 
opposite directions, the light on that side gets removed with the visibility multiply 
and you still get different lighting 
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This is the same object lit with multiple probes – you get that color gradient going 
from left to right that wasn't there before. This might not really be that super 
important for that robot here, as it’s fairly small, but we use the same method to light 
much larger objects too, and this is where the technique shines 
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This is single probe again 
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The runtime part is mostly fairly straightforward – we gather the sampling points for 
the visible objects, determine lighting at those points – for static geometry we just 
have it baked, for dynamic ones we sample the volumetric structure that stores the 
lighting for the level. Now, the vertex shader grabs the indices of the probes that 
should be used at a given vertex, the weights, does the interpolation, combines the 
lighting with the self-visibility that we talked about before. The result is still a 
spherical function, but we need to pass it to the pixel shader, so we encode it as an 
AHD, and the pixel shader just does a + n.l 
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The only tricky part in all that is combining lighting with visibility. Because we want to 
mask parts of the lighting that are not visible – so we want to multiply the lighting by 
the visibility, just like in the rendering eequation earlier. 
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Both visibility and lighting end up as 3rd order SH, and the problem is that SH multiply 
is not a component-wise multiplication. It’s way more involved, coefficients get all 
intermingled. Initially we did however implement that – we took the lighting, we 
rotated it to the frame of the cone – where the projection of the cone is just a ZH, so 
the multiplication is way simpler, we converted the result of the multiply to AHD in 
that space, then rotated D back – and it all worked really well, we had it in that form 
for quite a while, but it could be cheaper 
Then we realized that we can do mixed order multiplies – for instance do second 
order visibility and 3rd order sh – where a lot of the math simplifies, or you can do 
full 3rd x 3rd order for the DC component – as it’s only a big dot product- and the 
remaining band as 2nd order x 3rd order 
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This is the comparison. 
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One thing to note here is that it all happens at the vertex shader level. And the GCN – 
the gpu architecture used in the current generation consoles – was tweaked for a 
very particular balance of workload between vertex and pixel shaders. Vertex shaders 
are generally expected to finish x number of cycles after being dispatched, where x 
depends on different factors, like vgpr usage, parameter cache usage and so on. But 
the bottom line is that if they are not back on time, they will stall the rasterizer. It 
might not be a big problem – it wasn't for us here – if there’s already enough of the 
PS work scheduled to cover that stall. But your mileage may vary – for instance on the 
next project we have different characteristics of the geometry that’s rendered, and 
we actually had to move parts of that math to the pixel shades to save perf – things 
are done a bit differently, we use Ambient Dice as the representation of the lighting 
which we talked about during EGSR  - but all this is a topic for another talk. 
This was also one of the motivations for using discrete sampling points for the 
lighting and interpolating the data by hand, instead of using 3d textures for instance 
and hardware interpolation. Because the vertex processing pipeline is so sensitive to 
latency, we use the scalar memory path as whenever possible, which has much lower 
latency of the lookup. Using texture wouldn’t allow us to take advantage of such 
optimizations and decrease the overall performance. 
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Now we know how to interpolate the lighting, how to combine it with the visibility, 
we just need to know what the lighting is. 
And there are two options here – for static objects we bake it – and Peter-Pike will 
talk about some details on that – but for dynamic objects, we sample a volumetric 
data structure that i’ll talk a bit now. 
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We call that structure light grid, it’s being used by the dynamic objects, but also 
volumetrics, visual effects, decals. It was designed to be accessed from the GPU, but 
in the order of tens of thousands times per frame, not really per-pixel. Our 
motivation was that as the lighting becomes more complex, the data becomes more 
complex too, and it’s more costly to perform the lookup – but the data, if you 
decouple the high frequency components – is fairly smooth – so there’s no need to 
pay the lookup cost for every pixel – and we should rather resample to simpler 
representations to mitigate that cost – like those discrete sampling points i was 
talking about earlier 
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We knew that we didn't want the artists to place the probes manually. The previous 
system that we had relied on manually places volumes that enclosed the regions of 
interest and we decided to re-use them 
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But we couldn't just uniformly place probes in them – we have those transitions into 
space, the volumes can be pretty large. So we settled on a non-uniform distribution 
of probes and a tetrahedrization of that set – much like solution that Robert talked 
about during GDC few years back. Tets are good, because you only have 4 values to 
interpolate between and the result is C0 continuous. 
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So we did this with some probes that we generated fairly randomly near geometry – 
and it didn't really work well. Delauney tetrahedrization is fairly finicky when it comes 
to such random point sets – you end up with long, skinny tets, that behave really bad 
at runtime, generating temporal artifacts. And we spend a fair amount of time trying 
to fix them in various ways, but the bottom line was that tets can do a decent job 
pretty much only when they are fairly regular. 
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So the idea was to start with tets that are good and not mess them up. 
We take the volumes that artists placed, we generate a very rough voxelization of 
that. Those are only boxes, so the tets end up nice and regular. Next we subdivide 
them, according to the scheme by Scott Schaefer – where a tet gets split into 4 tets 
and octahedron, and octahedron gets split into 6 octahedrons and 8 tetrahedrons – 
all of them fairly close to being half of the size of the initial cell. And during that 
subdivision, we ensure that two neighboring cells are at most 1 subdivision level 
apart – which ensures that are no badly formed cells. And we subdivide near 
geometry, navmesh, manually placed regions of interest. 
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This creates a lot of points at the very bottom, way too many for use. So we compute 
the lighting at the bottom of that subdivision hierarchy, then for each subdivision we 
compute the error – the squared difference between the lighting interpolated at a 
given level and the lighting computed using the data from one level lower. And then, 
starting from the top of the hierarchy, we subdivide again, this time with a heuristic 
that relies on that error – and things like distance to regions of interest, still 
conforming to that „neighbors being 1 level apart” rule. In the end, we get a set of 
points that’s really regular, and aligns with the geometry as well as with the lighting 
signal. The cells are not only tets however – as we generate those octahedrons too – 
but we just take the resulting probes and re-mesh them. 
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This is what it looks like – just a cut through the tet mesh, the edge of that cut is 
being shown – as you can see the density changes, but in a smooth fashion – and in 
the areas where the player moves the density is higher 
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This is the resulting set of probes 
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The only thing that’s left is the visibility – if we just interpolate the lighting between 
the probes the lighting will bleed through walls – you’ll lighting from the outside in 
the insides and vice versa. So our solution is to augment the probes with some 
visibility information to limit their influence. For each probe, we store a triangular 
depth map that stores the barycentrics of the first intersection on the ray to the 
opposite triangle 
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This is an graphical example, looking a the probe on the left, we shoot a ray towards 
opposite face of the tet, it doesnt hit anything so we store 1.0 
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We shoot another ray, it hits something, so at that location we store something like 
0.6 
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And we end up with that triangular depth map. We store 15 values, with 8 bits of 
precision, so total everything fits into 4DWORDs. And the precision, even though it 
might sound low, is actually more than enough – we get like 2 bits per unit on the 
finest subdivision level – and our unit is around 1inch. 
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This is the code to access that data from those 4 dwords based on the barycentrics, 
really simple, you can go through that after 
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The runtime part is fairly straightforward again – async running somewhere in the 
background early in the frame. We bootstrap the tetrahedron lookup with a tet index 
used in previous frame or if it’s not availble we have a fallback start tet in a data 
structure used for other purposes – we piggybacked on that. The search is a simple 
walk through the tests, evaluating the barycentrics until they are in 0-1 range – just 
like Robert described. Once we get to the proper tet, we grab the lighting, evaluate 
the visibility of the probes, interpolate and write out the result 
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Few notes: we ended up using some slight temporal filtering on the output lighting – 
fast moving objects can flicker in some cases without it.  
Target number of probes per level is around 100k, it all takes around 60 MB total – a 
lot of that data is actually visibility information, which could be compressed in some 
simple ways, but we never got to that. The lookups take on the order of 0.2-0.4ms, 
but it’s only a handful of wavefronts, so when run on async pipe, they just hide 
somewhere and are virtually free. 
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There are a lot of things we do in our baking pipeline that I am not going to talk about 
here. I will just focus on how we sample lighting for the new data Michal talked about 
(lightgrid and static models with decoupled visibility), how we “de-ring” spherical 
harmonics and discuss lightmap encodings and the algorithm we use to project into 
AHD. 
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There are a lot of potential basis functions that can be used to encode lightmaps. We 
have investigated several of them, but ended up using AHD. The one we considered 
the most carefully was the H-Basis, which is equivalent to least squares projecting 
quadratic spherical harmonics to linear spherical harmonics over the hemisphere. 
 
One new family of basis functions we looked at is a generalization of the H-basis. If 
you take any set of basis functions, say spherical harmonics, you can build the Gramm 
matrix over a domain (integral of pair of basis functions over the domain – 
hemisphere in our case, orthogonal basis have an identity Gramm matrix) and take 
it’s eigen vectors. The linear combination from the coefficients of each eigen vector 
represents a new basis function (some of quadratics for example), and using K of 
them you can do better than the H basis in general. 
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Here is quadratic spherical harmonics, impractical, but the input for all the other 
basis. This lighting environment has a mix of directions, which makes it a tough case 
for AHD. 
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AHD has high contrast, the strong shadow terminator is obvious on the bottom of this 
image. This makes normal maps have higher contrast, and is something our lighters 
like. Since it only has a single direction, it can struggle with color bleeding if they are 
from different directions. 
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Linear SH without any least squares projection can ring (the red coloring is ringing), 
and it is a lot flatter than AHD/SH3. 
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The Hbasis is flatter than  AHD, it can  ring (de-ringed in this example, which looses 
directional contrast.) 
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Here is  the hbasis without de-ringing, which has more contrast but also can go 
slightly negative. It might be you can window less aggressively (the windowing 
algorithm employed only changes the non local Z functions and guarantees that the 
function is strictly positive.) 
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Here it is with windowing again. 
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And AHD for comparison. 
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Here are the first 3 eigen basis vectors, this is less memory than H-basis (3 basis 
functions vs. 4), but you would need to implement a de-ringer. 
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First 4 eigen vectors, same memory as h-basis, but better directionality, and also 
would need a de-ringer. 
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We ended up going with AHD, while they can have interpolation issues, they are 
inexpensive, and have high contrast with normal maps. You still have to determine 
how to projection lighting in them. 
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During the bake we generate world space SH data (3rd order for lightmaps, 4th order 
for models), and project into AHD at two spots. In the vertex shaders when using 
decoupled visibility (after multiplying with self-vis) and during the bake with 
additional constraints that I will describe next. 
 
AHD can struggle if the hilite direction changes quickly. This mostly happens with 
lights that bake direct lighting into the lightmaps. There is an option to filter the 
optimal linear direction before AHD fitting that helps this, but was only used on a 
couple of maps. 
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This is the derivation in the unconstrained case, and is what we use going from vertex 
to pixel shaders. You can go through the math off-line, it’s just here for completeness. 
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AHD stands for Ambient Hilite Direction. It is a simple model – just a directional and 
ambient light at each texel. 
 
For our lightmaps the solver we used is a bit more sophisticated. If there is no normal 
map, we want to preserve scalar irradiance – so the fit is invariant to that. 
 
We also want to force the ambient and hilite colors to be non-negative. 
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If we look at the space of all ambient/hilite colors, we can build some intuition about 
how to solve using this constraint equation. 
 
On the left we have ambient hilite space, and the color is the squared error with 
respect to the constraint. The black vector is the constraint axis. 
 
The equation on the right is the constrain equation. It’s a simplematrix that when 
multiplied by ambient/hilite colors, determines what outgoing radiance is for local Z. 
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The white vector is the null-space – given any point in AH space, moving along the 
null-space of the constraint results in the same radiance when evaluated in the 
normal direction. 
 
The null space of the constraint is easily computed using SVD, and we can also solve 
the 1D unnderconstrained problem using the pseudo-inverse (multiply it by Cz.) The 
red point is this solution, which due to the minimum norm property of the SVD is 
always the point that satisfies the constraint and is closest to the origin. 

79 



So there is a 1D parameterization of the points that satisfy the constraint, shown on 
the right. We want to now solve for a “z” coefficient that minimizes some other error. 
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In our case, the other error we minimize is squared error integrated over the 
hemisphere of the lighting environment. 
 
We visualize the error for this example, where blue is low error and red is high error. 
 
This is just minimizing a 1D function, so is straighgtforward. You blow out f_z into SH, 
differentiate the error function with respect to z (the only DOF left) and solve for 
zero. 
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This is a plot of the error along the line segment defined by the null space, and you 
can see we have a nice minimum that is a reasonable point in ambient/hilite space. 
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So why would either color ever be negative? This isn’t that common, but where AHD 
struggles is when you have strong color bounce. Say you have a bright red-green light 
to the right, and a dim blue light to the left. 
 
The optimal linear direction will point to the right, which causes the fit for blue to 
want to have a negative hilite color, ie: the lobe direction we have to use is in the 
wrong direction. 
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In this case we would end up with the intersection of the white line and Y axis (where 
hilite color is zero.) 
 
Given a convex optimization problem, with simple non-negativity constraints, the 
solution will always be the global minimum, or a point on the boundary of the valid 
region. In our case we have a 1D space, so we only need to test the two boundary 
points (ambient zero or hilite zero), and the one closest to the unconstrained 
minimum will always be the best. 
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I am going to have a brief digression to talk about ringing in spherical harmonics, and 
what we did to get around it for this project. 
 
It turns out that having visibility multiplies at run-time makes ringing a larger problem 
then when just considering irradiance. 
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The lower index of a basis function represents the band, the upper index a basis 
function in a band. 
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Each band has 2l+1 basis functions and the SH through order N consists of all the 
bands through N-1 and consists of N^2 functions. 
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The basis functions can be represented in spherical coordinates (shown here.)  This is 
the most common definition shown in text books/the web, and is extremely useful 
when doing symbolic computations, but not so useful when writing code/shaders. 
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In Cartesian coordinates the basis functions are simply polynomials.  Shader and CPU 
evaluation code tends to use this representation. 

89 



We’re going to make use of a subset of the spherical harmonics called “zonal 
harmonics”, shown here in the center column.   
Zonal harmonics have only 1 basis function per band, and represent polynomials in Z. 
Any function that has circular symmetry around the Z axis when projected into SH 
only has non-zero coefficients corresponding to the zonal harmonics. 
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Here is an example of color artifacts that can happen.  You have a white ambient light 
and a bright yellow directional light. 
 
The negative lobes pull out red and green, leaving the blue color artifacts.  
Windowing can get rid of these artifacts. 
 
You also have the positive lobes (order 3) and negative lobes (order 6). 
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There are a bunch of ways to combat ringing, the most straightforward ones are to 
window the high frequency coefficients. If this is just done globally though, it will over 
smooth lighting environments that actually aren’t having any problems. So we want 
to window as little as possible to get eliminate the artifacts, in our case make sure 
that when convolved with a normalized cosine, the function is strictly positive. 
 
One not on windowing is we want to apply a window that is the same for all 3 color 
channels, so that we don’t get any funky coloring artifacts. To do this we compute the 
window on the color channels independently, and simply take the most conservative 
one. 
 
For our solution, we want to quickly find the smallest value of the SH on the sphere, 
and use that routine inside a search over windowing values to guarantee a non-
negative result. 
 
In general this is minimizing a quadratic function over the sphere, and there will be 
lots of local minima, so instead we wanted a simple conservative bound. 
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Here we show an earlier algorithm, that overly blurs the lighting. 
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While the new one is strictly positive and has more angular detail. 
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All linear functions have a coordinate system where the SH are just a ZH. The gradient 
of a linear function in R3 has a direction, and if we make that Z, it will zero out the x/y 
SH basis functions, going from 2 to 3. 
 
ZH have circular symmetry, which means they are a function of just Z, so to find the 
minimum you have a univariate polynomial, which is easy to solve. Given the 
coefficients of the quadratic polynomial (ax^2 + bx + c), the minimum is –b/(2a) only 
if a > 0 (otherwise that’s a maximum) *or* one of the boundary points (z = +/- 1). 
 
We can simply do a binary search over windowing parameters, but still need to 
account for the non ZH part (4 coefficients in this case.) 
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So we have 4 basis functions left, and there is a special property of those that we can 
exploit as well. 
 
If |M| is a non-zero constant, the basis functions are simply rotations in Z of each 
other (the angle I believe is 90/L). This means that if we can reason about the shape 
of these functions, there is always a phi that has the worst case. So we simply need to 
turn that into a function of Z. 
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This property is illustrated for |m| = 1 and |m| = 2 here, where any blend is clearly a 
rotation of one shape. 
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So given the two basis functions for a band, say |m| = 2, we simply use a coefficient 
sqrt(b0^2 + b1^2), and can analyze the worst case for that. 
 
When |m| = 2, the worst case happens when x==y, so you simply replace the 
variable, and then make it a function of Z, and you get the blue curve above (1-z^2), 
you take the negative lumped energy and can minimize this with the ZH function. 
 
When |m| = 1, it is a non polynomial. So for this, we simply use newtons method 
with a good starting point, and we quickly get the minimum. We use a positive sign, 
since this function is negative in the lower hemisphere (opposite the optimal linear 
direction), which is where the most negative point tends to be. 
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So now that we have determined how to quickly determine if a SH has a negative, we 
need to come up with a family of windows. There are two extremes: 
 
1) No windowing, which is simply a delta function.  
2) A window function that forces any lighting environment to be strictly positive. For 

this we take a delta function (the peakiest function in SH), and window it so the 
tail (visualized in the graph above – from Pi/2 to Pi) is strictly positive. This is a 
windowed lancosz filter + a small attenuation of the linear SH to make the tail stay 
positive. 
 

 
The intermediate points are just other less aggressive window functions from the 
same family. 
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So this only deals with the negative lobes, there can be rings from positive lobes as 
well (like the anit-podal location from a point light source), we do a small amount of 
extra windowing for direct lights before their radiance is added to SH to minimize 
this. 
 
The only remaining approximation is that the |m| = 1 and |m| = 2 are perfectly in 
phase, so have maximal destructive interference. It is unclear if addressing this really 
helps, since the lower bound can still have slight positive rings, but it might be 
possible to down weight them based on the relative phase that exists. 
 
Finally, this is focused on quadratic SH, for higher orders we simply use the same 
windowing coefficients just evaluated at higher bands, but minimize using quadratic 
only. We use cubics internally as well sometimes. 
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Here is a comparison again, old technique crushes directionality a bit too much. 
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New technique maintains it. 
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Here we see an area where the old technique over penalizes some lights, and makes 
other (black ring on the middle right) actually negative. 
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The new algorithm preserved directionality better,  and is strictly positive. 
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Now we are going to talk about how we bake for static models with decoupled 
lighting. 
 
We do this by sampling over the surface of the model, and then solving for lighting 
coefficients that when interpolated, multiplied by self-vis and evaluated at the 
sample locations mimize squared error. 
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We have two phases. First for every model we generate lists of sample candidates in 
object space. These are done by importance sampling by self-vis over the model 
(areas that are very occluded are not visible to the player, so have less weight.) 
 
The second phase is per-instance, where we shoot a bunch of “feeler” rays out,  to 
determine if a sample is buried, underground, etc. Lights can optionally place brushed 
in regions that should never be visible to help invalidate samples, though that’s only 
occasionally done in practice. 
 
Here the red points are valid, and the blue are invalid. 
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When we draw more of the models near this truck, you can see that the points were 
invalidated because they were underneath the container things on the truck. If we 
included them, the lighting would be much darker and not match the surrounding 
areas as well. 
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For the solve, we want to know what coefficients for the lighting, when interpolated 
to each sample and multiplied by self-vis, would describe the lighting data gathered 
at that sample. 
 
Each point is then a 9x9 block matrix, where we multiply by self-vis (and convert to 
irradiance.) 
 
Adding regularization to this solve is important, if you only have points on a plane, 
the “bottom hemisphere” could have any lighting values, but we don’t want it to do 
anything crazy, since a titled normal could sample it, etc. 
 
We use exponential search and a simple oracle to find the minimum amount of 
angular regularization (squared Laplacian over the sphere penalty term) that makes 
the lighting reasonable. Where reasonable has two criteria: 1) DC must be non-
negative (negative DC can’t happen from real light intensities) 2) the ratio of linear to 
DC energy must be less than a delta function ( the peakiest light possible with SH). 
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Similarly for the light grid, we super-sample the tets spatially, and solve for the 
lighting at the vertices that when interpolated explains the lighting at these sub-
samples, but only the vertices that are directly visible. 
 
We also add a spatial regularizer with a fixed weight – we want to make sure that the 
resulting lighting is smooth and doesn’t have a lot of oscilations. 
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To conclude, splitting the rendering equation into different parts (as others have 
done) is generally a good idea. Splitting visibility from incident radiance helped 
improve quality significantly in our case. 
 
Having different representations – heavy weight ones that are sparsely evaluated, 
combined with light weights ones that are densely evaluated, can be a good thing. 
 
We use least squares a lot, but you almost always need to combine it with some form 
of regularization. 
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Before i start i wanted to say that *a lot* of people contributed to the ideas we will 
present here and we wanted to thank them all for that 
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