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1 Executive Summary

As we build larger quantum computing devices capable of performing more complicated
algorithms, it is important to quantify their power. The origin of a quantum computer’s
power is already subtle, and a quantum computer’s performance depends on many factors
that can make assessing its power challenging. These factors include:

1. The number of physical qubits;
2. The number of gates that can be applied before errors make the device behave essen-

tially classically;
3. The connectivity of the device;
4. The number of operations that can be run in parallel.

Here we propose an architecture-neutral metric, the quantum volume, to summarize perfor-
mance against these factors. The quantum volume measures the useful amount of quantum
computing done by a device in space and time. Table 1 summarizes predicted quantum
volumes for potential near-term devices.

Table 1: Quantum volume for some near-term
devices

Device

Topology Error rate Quantum Volume

IBM QX 5Qa 5× 10−2 16
5Q 10−2 25
4× 4 10−2 36
4× 4 10−3 256
7× 7 10−3 256
7× 7 10−4 1296
10× 10 10−4 1296
10× 10 10−5 8100

a IBM Quantum Experience[1]
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2 Introduction

As the community continues down the path toward more capable quantum devices, it is
important to develop and apply metrics and tests that quantify capability. We propose
architecture-neutral metrics to summarize the capability of short-depth quantum circuits
in the non-fault-tolerant regime. It is challenging to compare devices with widely different
performance characteristics. For example, a recent comparison[2] between the IBM Quantum
Experience and an ion-based processor, pointed out that even with similar gate errors, the
ion processor’s greater connectivity allowed overall better performance for certain algorithms.

We emphasize that general metrics provide some overall sense of the quantum capabilities
of a device for high-level comparisons, similar to the LINPACK benchmarks[3] for classical
HPC. However, for a complete characterization and comparison of device capabilities against
a specific task, there will be no alternative but to make a detailed investigation, including all
relevant aspects and/or benchmarking the the target algorithms on the hardware in question.

Here we focus on hard-cutoff metrics such as ‘can this device run a given algorithm?’
rather than soft metrics such as ‘how long will it take?’ Thus, for example, we do not
incorporate the gate speed, except indirectly as it affects the errors, nor do we give any
credit for trivial parallelism by complete duplication of the quantum processor.

We propose an effective error rate εeff, specifying how well a device can implement ar-
bitrary pairwise interactions between qubits. We further propose the quantum volume VQ,
combining the number of qubits n with the effective error rate in a difficult-to-game overall
metric.

In Fig. 1, we show the requirements on n and on the 2-qubit gate error rate ε for a given
VQ, for differing qubit connectivities. This shows that the all-to-all connectivity has the least
stringent error requirements, that the square lattice connectivity and the square lattice with
diagonals have substantially tougher requirements, and a linear 1-d array of qubits is much
tougher still.

3 Definitions of the metrics

3.1 Effective error rate

We want to abstract away many details, such as:
• the hardware-provided gate set;
• the qubit connectivity graph;
• varying fidelities of different operations;
• possibilities for circuit-rewriting and optimization;
• available paralellization of operations;
• etc.
We do this by specifying a model algorithm: performing a depth-1 circuit, constructed by

random 2-qubit unitaries chosen uniformly over SU(4) on a random pairing of the qubits. We
then define εeff as the equivalent per-gate error rate that would lead to the same overall error
rate. Thus, if the hardware supports SU(4) operations directly, has an all-to-all connectivity
with unlimited gate paralellism, all gates having identical error rate ε, then εeff = ε.
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Figure 1: The required two-qubit gate error rate, ε, to acheive a given quantum volume,
VQ, in the limit where there are more than enough qubits available. Vertical lines indicate
maximum acheivable volume n2 for given number of qubits.

If the connectivity is limited, then it will be necessary to insert SWAP gates to permute
the qubits in order to allow the necessary gates. (It is not required to permute the qubits
back to their initial order).

If there is only a finite set of available gates, then it will be necessary to approximate the
desired unitaries in the manner of Solovay-Kitaev, trading off approximation error against
the added noise from long gate sequences.

For a system with only local connectivity but the ability to perform fast measurement
and feedback, it may prove preferable to use teleportation to couple distant parts of the
device rather than long chains of SWAP gates to directly implement the permutations.

Other special features and limitations of the hardware must be dealt with in similar
manner. Note that εeff depends not only on the gate error rates and connectivity, but also on
the sophistication of the scheduling algorithm responsible for mapping the model algorithm
to the hardware. We permit the scheduling to occur off-line. Both hardware and software
improvements will thus impact εeff.

The rationale for chosing the model algorithm to be built from pairwise interactions
rather than sampling over the full SU(2n) space of unitaries on the system, is that the space
of all unitaries, while it can always be constructed from sequences of pairwise interactions, is
exponentially large and would include, for example, unitaries that cannot be synthesized as
polynomial-sized quantum circuits. There may be specialized algorithms that do not require
long-range interactions but can be mapped directly to the connectivity of the underlying
device (for example physics calculations in in 2 dimensions may map nicely to a square
lattice of qubits), but random pairings are representative for general-purpose short-depth
algorithms.
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3.2 Quantum volume

For any given instance of a quantum algorithm, there is a lower bound on the number of
qubits, n, required to run the algorithm as well as the achievable circuit depth, d ' 1/(nεeff)
needed to execute the algorithm with reasonable fidelity to the correct answer.

If it is desired to have a single metric for comparing systems, then it seems reasonable
to take the product dn = 1/εeff. However, this has some undesirable properties in that it
can be gamed in various ways. For example, in many cases the best εeff will result from very
few qubits, even n = 2, since in this case there will be less connectivity and paralellization
overhead, and fewer issues with crosstalk between qubits. But clearly n = 2 is a completely
uninteresting limit, where all algorithms can be trivially simulated classically. Therefore, we
define VQ = min(n, d)2, and since εeff and d in general depend on n, we should maximize
over the number of active qubits, n′, choosing a subset of n on which to execute the model
algorithm (the remaining qubits may nevertheless participate as helpers, for example to
reduce the permutations needed to implement the model algorithm)

VQ = max
n′≤n

min
[
n′,

1

n′εeff(n′)

]2

. (1)

This metric quantifies the space-time volume occupied by a model circuit with random two-
qubit gates that can be reliably executed on a given device.

4 Estimation of metrics for different connectivities

We propose an heuristic algorithm for finding a good set of SWAPs to permute qubits in
order to implement an instance of the model algorithm for a given qubit connectivity. This
provides a lower-bound on on εeff and VQ that we expect should be fairly tight in most cases.

Specifically, we perform a greedy search for the lowest-depth circuit to permute the qubits
such that all qubit pairs (uj, vj) that interact for this instance are brought into adjacency.
At each step we implement the SWAPs that reduce the total distance

∑
j D(uj, vj) between

these qubits, for some distance function D

D(u, v) = (1 + |ξu,v|)D0(u, v)2, (2)

where D0 is the distance between u and v for a given connectivity graph, and ξu,v are
random variables drawn from N(0, 1/n). Since the algorithm is randomized, we repeat for
many realizations of ξu,v and choose the lowest computed depth, r.

Averaging r over many instances of the model algorithm gives the effective error rate as
εeff = ε(r̄+ 1), where we assume that all SWAP gates and the needed SU(4) interactions all
can be done with constant error ε.

The square lattice numbers in Fig. 1 somewhat underestimate the overhead r̄ for the
Boixo proposal [4] due to in that case there is restricted parallelism available, which we
expect to give an additional factor of approximately 2. The grid with diagonals calculation
somewhat underestimates the overhead for the IBM skew-square connectivity because it
assumes all diagonals are available whereas in current proposals diagonals are only available
on odd plaquettes [5].
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