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Abstract 

    Data persistence for time series is an old and in many 
cases traditional task for databases. In general, the time 
series is just a sequence of data elements. The typical 
use case is a set of measurements made over a time 
interval. Much of the data generated by sensors, in a 
machine to machine communication, in Internet of 
Things area could be collected as time series. Time 
series are used in statistics, mathematical and finance. In 
this paper, we provide a survey of data persistence 
solutions for time series data. The paper covers the 
traditional relational databases, as well as NoSQL-based 
solutions for time series data.  

1 Introduction 
According to the classical definition, a time series is 

simply a sequence of numbers collected at regular 
intervals over a period of time. More generally, a time 
series is a sequence of data points (not necessarily 
numbers). And typically, time series consisting of 
successive measurements made over a time interval.  

So, time series exist in any domain of applied 
science and engineering which involves temporal 
measurements. By this reason, data persistence 
mechanisms for time series are among oldest tasks for 
databases.  

Let us start from the relational databases. At the first 
hand, the table design looks simple. We can create a 
table with a timestamp as a key column. Each new 
measurement will simply add a new row. And columns 
will describe our measurements (attributes).  For the 
different time series we can add series ID column too: 

CREATE TABLE TS AS  
(
  ts_time TIMESTAMP  

     NOT NULL      PRIMARY KEY, 
  ts_id INT, 

  ts_value FLOAT 
)
In the real machine to machine (M2M) or Internet of 

Things (IoT) application, we will have more than one 
sensor. So, more likely, our application should support 
many time series simultaneously. Of course, in any 
practical system the whole set of attributes is limited. 
But for the each individual measurement we could have 
(potentially) any subset from this limited list. It is the 
typical use case for Machine to Machine (M2M) or 
Internet of Things (IoT) applications. Devices in our 
system will provide data asynchronously (it is the most 
practical use case). So, each row in our table will have 
many empty (null-value) columns. This decision (one 
row per measurement) leads to the very inefficient use 
of disk space. Also, it complicates the future processing. 

Now let us discuss the possible operations. For time 
series (for measurements) the main operation in data 
space is adding new data (INSERT statement in SQL). 
Updating or deleting data is completely uncommon for 
time series (measurements). And reading has got some 
special moments too. Obviously, the reading of data is 
closely related to processing methods. The challenge in 
a database of evolving time series is to provide efficient 
algorithms and access methods for query processing, 
taking into consideration the fact that the database 
changes continuously as new data become available [1]. 

Many (most of) algorithms for time series data 
mining actually always work with only part of the data. 
And for the streamed data the sliding window is the 
most natural choice.  Let us discuss some well-known 
techniques. Random Sampling lets us sampling the 
stream at periodic intervals. In this approach, we 
maintain a sample called the “reservoir,” from which a 
random sample can be generated. As the data stream 
flows, every new element has a certain probability of 
replacing an old element in the reservoir [2]. Instead of 
sampling the data stream randomly, we can use the 
sliding window model to analyze stream data [3]. The 
basic idea is that rather than running computations on 
all of the data seen so far, or on some sample (as the 
above-mentioned random sampling), we can make 
decisions based only on recent data. So, any element for 
analysis, arrived at some time t will be declared as 
expired at time t+w, where w is the window “size”. In
many practical use cases, we can assume (e.g. sensing in 
IoT applications) that the only recent events may be 
important. 
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 A histogram approach partitions the data into a set 
of contiguous buckets.  

In a titled frame model, we use different 
granularities for time frames. The most recent time is 
registered at the finest granularity; the most distant time 
is registered at a coarser granularity. And so on.  

We present this short survey for highlighting the fact 
that time series data mining algorithms actually almost 
always work with only part of the data. It is a common 
use case for time series processing. In terms of SQL, 
SELECT statement with some complex condition is 
uncommon for time series processing. What we need to 
read for most of the algorithms is some limited portion 
(window) of recent constantly updated (added) data. In 
the same time, we need the full log of data (e.g., for the 
verification, audit, billing, etc.). Probably, it is the 
perfect example of so-called lambda architecture [4].  It 
is illustrated in Figure 1. 

Fig, 1. Lambda architecture [5] 
On this picture we have data source with constantly 

updated data. Most of the data should be processed in 
the real time. It is especially true for Internet of Things 
and M2M systems, where time series processing is the 
main source behind control actions and conclusions 
(alerts). In the same time, we could still have some 
processing without the strong limitations for time-to-
decision. And database could save processed data for 
queries from users and applications. It would be 
convenient to have such a processing as a part of a 
database system. 

The rest of the paper is organized as follows. The 
section 2 is devoted to time series support in relational 
databases. In section 3 we describe NoSQL solutions for 
time series. 

2 Time Series and relational databases 
    In this section, we would like to discuss time series 
persistence (and processing, of course) and “traditional” 
databases.  As the first example, we have tested 
TokuDB as an engine for time series data [6]. This 
engine uses a Fractal Tree index (instead of more 
known B-tree). A Fractal Tree index is a tree data 
structure. Any node can have more than two sub-nodes 
(children) [7]. Like a B-tree, it that keeps data always 
sorted and allows fast searches and sequential access. 
But unlike a B-tree, a Fractal Tree index has buffers at 
each node. Buffers allow changes to be stored in 

intermediate locations. Buffers lets schedule disk writes 
so that each writing operations deals with a large block 
of data [8]. The simple database related analogue is a 
transactions monitor.  This optimization lets perform 
fast data writing (INSERT operations we are mostly 
interested for time series). Also, these “local” buffers 
can be used during replications.  Figure 2 illustrates the 
benchmark for INSERT operations (provided by 
TokuDB). 
.

Fig. 2 TokuDB vs. InnoDB [9] 

Of course, the “traditional” relation systems are easy 
to maintain, they could be cheaper to host and it could 
be easier (cheaper) to find developers. So, the 
maintenance is the biggest advantage. 

 As the second position in this section we would like 
to mention time series-related SQL extension in Vertica 
database [10]. Vertica provides so-called time series 
analytics as an extension for SQL. As we have 
mentioned above, input records for time series data 
usually appear at non-uniform intervals. It means they 
might have gaps (missed values). Vertica provides so-
called gap-filling functionality. This option fills in 
missing data points using an interpolation scheme. 
Secondly, Vertica allows developers to use event-based 
windows to break time series data into windows that 
border on significant events within the data. SQL 
extension proposed by Vertica could be used as a useful 
example of language-based support for time series in 
SQL databases. Here is a typical example: 

SELECT item, slice_time, ts_first_value(price, 
'const') price FROM ts_test WHERE price_time 
BETWEEN timestamp '2015-04-14 09:00' AND 
timestamp '2015-04-14 09:25' TIMESERIES slice_time 
AS '1 minute' OVER (PARTITION BY item ORDER 
BY price_time)  ORDER BY item, slice_time, price; 

This request should fill missed data from 09:00 till 
09:25 with 1 minute step in the returned snapshot. 

Vertica provides additional support for time series 
analytics with the following SQL extensions: 

    The SELECT … TIMESERIES clause supports 
gap-filling and interpolation  computation. 

    TS_FIRST_VALUE and TS_LAST_VALUE are 
time series aggregate functions that return the value at 
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the start or end of a time slice, respectively, which is 
determined by the interpolation scheme. 

TIME_SLICE is a (SQL extension) date/time 
function that aggregates data by different fixed-time 
intervals and returns a rounded-up input TIMESTAMP 
value to a value that corresponds to the start or end of 
the time slice interval. 

The similar examples are so-called window-
functions in PostgreSQL [11].  A window function 
performs a calculation across a set of table rows that are 
somehow related to the current row. This is comparable 
to the type of calculation that can be done with an 
aggregate function. But unlike regular aggregate 
functions, use of a window function does not cause rows 
to become grouped into a single output row — the rows 
retain their separate identities. Behind the scenes, the 
window function is able to access more than just the 
current row of the query result.  The typical example (a 
moving average for three rows) is illustrated below: 

SELECT id_sensor, name_sensor, temperature,      
               avg(temperature) OVER (ORDER BY 

id_sensor  ROWS BETWEEN 1 PRECEDING AND 1 
FOLLOWING) 

        FROM temperature_table; 

3 Time Series in NoSQL systems 
NoSQL as one of the basic principles proclaimed 

rejection of a universal model of data. The data model 
must meet the required processing methods. The second 
basic principle is the lack of the dedicated programming 
access tools (layers). Data access API is a part of 
NoSQL systems, and it presents one of the important 
elements for the final selection of a data model. 

By our opinion, NoSQL solutions for time series 
could be described as “best practices” in using NoSQL 
stores for time series. Let us see, for example, the 
architecture for OpenTSDB [12]. It is one of the popular 
NoSQL solutions for time series. 

Fig. 3. OpenTSDB architecture [13] 

OpenTSDB is a set of so-called Time Series 
Daemon (TSD) and command line utilities. Each TSD 

(and they are independent) is just a wrapper for access 
to HBase database [14]. Each TSD is independent. Each 
TSD uses the HBase to store and retrieve time series 
data. TSD itself supports a set of protocols for access to 
data.

The second dimension of this architecture solution is 
the optimized schema for data. In this case, the schema 
is highly optimized for fast aggregations of similar time 
series.  This schema is actually almost a de-facto 
standard for presenting time-series in a so-called 
BigTable data model. In OpenTSDB, a time series data 
point consists of a metric name, a timestamp, a value 
and a set of tags (key-value pairs). So, for example, 
suppose we have a metric (name) data.test, a key name 
is host, a key value is host1. In this case, each row in 
master table looks so: 

data.test Time Value host host1 

here Time is a timestamp, Value is a measured 
value.  And all APIs will use the similar format for data 
writing – there is no schema definition. Set of keys lets 
present so-called multivariate time series. 

OpenTSDB handles things a bit differently by 
introducing the idea of 'tags'. Each time series still has a 
'metric' name, but it's much more generic, something 
that can be shared by many unique time series. Instead, 
the uniqueness comes from a combination of tag 
key/value pairs that allows for flexible queries with very 
fast aggregations. Every time series in OpenTSDB must 
have at least one tag. The underlying data schema will 
store all of the tag’s time series next to each other so 
that aggregating the individual values is very fast and 
efficient. OpenTSDB was designed to make these 
aggregate queries as fast as possible. 

OpenTSDB follows to one of the commonly used 
patterns for time series data persistence in column-
oriented databases like HBase. The basic data storage 
unit in HBase is a cell. Each cell is identified by the 
Row ID, column-family name, column name and the 
version. Each cell can have multiple versions of data. At 
the physical level, each column family is stored 
continuously on disk and the data are physically sorted 
by Row ID, column name and version [15]. The version 
dimension is used by HBase for time-to-live (TTL) 
calculations. Column families may be associated with a 
TTL value (length). So, HBase will automatically delete 
rows once the expiration time is reached. For time series 
data, this feature lets automatically delete old (obsolete) 
measurements, for example.  The possible schemes for 
time series data are: 

a) The row key is constructed as a combination of a 
timestamp and sensor ID. Each column is the offset of 
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the time for the timestamp in the row. E.g., the 
timestamp is one hour, the column offset is two 
minutes. Each cell contains the values for all sensor’s 
(defined by Sensor ID) measurements at the moment 
timestamp + offset. As the format for cell’s data, we can 
use JSON or even commas separated values. As a 
variation, we can combine all data in a row into a binary 
object (blob).  

b) The row key is constructed as a combination of a 
timestamp and sensor ID. Each column corresponds to 
one measurement (metric) and contains values for all 
time offsets. 

KairosDB [16] is a rewrite of the original 
OpenTSDB and uses Cassandra as a data store. 

There are several patterns for storing time series data 
in Cassandra. When writing data to Cassandra, data is 
sorted and written sequentially to disk. When retrieving 
data by row key and then by range, you get a fast and 
efficient access pattern due to minimal disk seeks.  

The simplest model for storing time series data is 
creating a wide row of data for each measurement. E.g.: 

SensorID, {timestamp1, value1}, {timestamp2, 
value2} … {timestampN, valueN}

Cassandra can store up to 2 billion columns per row. 
For high frequency measured data, we can add a shard 
interval to a row key.  The solution is to use a pattern 
called row partitioning by adding data to the row key to 
limit the amount of columns you get per device. E.g., 
instead of some generic name like smart_meter1 we can 
use smart_meter1_day (e.g. smart_meter_20150414). 

Another common pattern for time series data is so-
called rolling storage. Imagine we are using this data for 
a dashboard application, and we only want to show the 
last 10 temperature readings. Older data is no longer 
useful, so they can be purged eventually. With many 
other databases, we would have to setup a background 
job to clean out older data. With Cassandra, we can take 
advantage of a feature called expiring columns to have 
our data quietly disappear after a set amount of seconds 
[17]. 

What is really interesting and new for NoSQL 
solutions is the growing support for SenML [18].  
SenML is defined by a data model for measurements 
and simple meta-data about measurements and devices.  
The data in SenML is structured as a single object with 
attributes. The object contains an array of entries 
(measurements). Each entry is an object that has 
attributes such as a unique identifier for the sensor, the 
time the measurement was made, and the current value 
(Figure 4). Serializations for this data model are defined 
for JSON and XML. 

Geras DB [19] uses SenML as data format. Another 
important feature for any time series database is MQTT 
support. MQTT is a popular connectivity protocol for 
Machine-to-Machine and Internet of Things 
communications [20]. It was designed as an extremely 
lightweight publish/subscribe messaging transport. 
Sensors as data sources may use MQTT, so a time series 
database should be able to acquire data right from 
MQTT [21, 22]. 

Fig. 4 SenML example 

Druid is an open-source analytics data store 
designed for OLAP queries on time series data (trillions 
of events, petabytes of data). Druid provides cost-
effective and always-on real-time data ingestion, 
arbitrary data exploration, and fast data aggregation 
[23]. Druid is a system built to allow fast ("real-time") 
access to large sets of seldom-changing data. It 
provides: 

the column-based storage format for partially nested 
data structures; 

the hierarchical query distribution with intermediate 
pruning; 

 indexing for quick filtering; 
 realtime ingestion (ingested data is immediately 

available for querying); 
the fault-tolerant distributed architecture that doesn’t 

lose data. 
Data is ingested by Druid directly through its real-

time nodes, or batch-loaded into historical nodes from a 
deep storage facility. Real-time nodes accept JSON-
formatted data from a streaming datasource. Batch-
loaded data formats can be JSON, CSV, or TSV. Real-
time nodes temporarily store and serve data in real time, 
but eventually push the data to the deep storage facility, 
from which it is loaded into historical nodes. Historical 
nodes hold the bulk of data in the cluster. 

Real-time nodes chunk data into segments, and they 
are designed to frequently move these segments out to 
deep storage. To maintain cluster awareness of the 
location of data, these nodes must interact with Mysql to 
update metadata about the segments, and with Apache 
ZooKeeper to monitor their transfer. 

Figure 5 illustrates Druid architecture.  
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Fig.5 Druid Architecture [24] 

SciDB’s [25] native multi-dimensional array data 
model is designed for ordered, highly dimensional, 
multifaceted data. SciDB’s data is never overwritten, 
allowing you to record and access data corrections and 
updates over time. SciDB is designed to efficiently 
handle both dense and sparse arrays providing dramatic 
storage efficiencies as the number of dimensions and 
attributes grows. Math operations run directly on the 
native data format. Partitioning data in each coordinate 
of an array facilitates fast joins and access along any 
dimension, thereby speeding up clustering, array 
operations and population selection. 

BlinkDB [26] supports a slightly constrained set of 
SQL-style declarative queries and provides approximate 
results for standard SQL aggregate queries, specifically 
queries involving COUNT, AVG, SUM and 
PERCENTILE and is being extended to support any 
User-Defined Functions (UDFs). Queries involving 
these operations can be annotated with either an error 
bound or a time constraint, based on which the system 
selects an appropriate sample to operate on. For 
example: 

SELECT  avg(Temperature) from Table where 
SensorID=1  WITHIN 2 seconds 

SAP HANA’s [27] column-oriented in-memory 
structures have been extended to provide efficient 
processing of series data. SAP HANA provides: 

series property aspect of tables;  
built-in Special SQL functions for working with 

series data; 
analytic functions: special SQL functions for 

analyzing series data; 
storage support: advanced techniques for storing 

equidistant data using dictionary encoding 
By adding Series Data descriptors to column tables, 

users can identify which columns contain series data, 
period information, hints on how to handle missing 

timestamps, and so on.  By explicitly telling HANA 
about time series data, it can more efficiently store and 
manage this data to increase performance and decrease 
the memory footprint through improved compression.  

TABLESAMPLE allows ad-hoc random samples 
over column tables so it is easy, for example, to 
calculate a result from a defined percentage of the data 
in a table. 

There are examples for built-in functions:   
SERIES_GENERATE  – generate a complete series 
SERIES_DISAGGREGATE  – move from coarse 

units (e.g., day) to finer (e.g., hour)  
SERIES_ROUND  – convert a single value to a 

coarser resolution 
SERIES_PERIOD_TO_ELEMENT  – convert a 

timestamp in a series to its offset from the start 
SERIES_ELEMENT_TO_PERIOD  – convert an 

integer to the associated period . 
Analytical functions are: 

CORR – Pearson product-moment correlation 
coefficient 

CORR_SPEARMAN - Spearman rank correlation 
LINEAR_APPROX - Replace NULL values by 

interpolating adjacent non-NULL values 
MEDIAN - Compute median value 
InfluxDB [28] is open-source, distributed, time 

series database with no external dependencies. 
InfluxDB is targeted at use cases for DevOps, metrics, 
sensor data, and real-time analytics. The key moments 
behind InfluxDB are: 

� SQL like query language. 
� HTTP based API. 
� Database managed retention policies for data. 
� Built-in management interface. 
� On the fly aggregation. 

SQL-like query with aggregation by time looks so: 

SELACT mean (value) FROM T GROUP BY 
time(5m). 

The lack of external dependencies makes Influx very 
attractive from the practical point of view.  The opposite 
approach is the above-mentioned Druid with almost full 
of Apache stack (Zookeeper, etc.) 

From cloud-based solutions for time series data, we 
can mention Blueflood  [29]. Blueflood uses Cassandra 
as the data store.  

As per the classical definition, Big Data could be 
described via so-called 3V: Variety, Velocity and 
Volume. By our opinion, for time series databases the 
key factor is Velocity. NoSQL solution for time series 
should be selected in case of high frequency 

136



measurements. And in case of NoSQL solutions for 
time series, Cassandra is the preferred choice. 
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