Advanced Policy Gradient Methods

Joshua Achiam

UC Berkeley, OpenAl

October 11, 2017

Image: A math a math

Theory:

- Problems with Policy Gradient Methods
- Policy Performance Bounds
- Monotonic Improvement Theory

Algorithms:

- Natural Policy Gradients
- Irust Region Policy Optimization
- **9** Proximal Policy Optimization

(日)

The Problems with Policy Gradients

(日)

Policy gradient algorithms try to solve the optimization problem

$$\max_{\theta} J(\pi_{\theta}) \doteq \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

by taking stochastic gradient ascent on the policy parameters θ , using the *policy gradient*

$$g =
abla_ heta J(\pi_ heta) = \mathop{\mathrm{E}}_{ au \sim \pi_ heta} \left[\sum_{t=0}^\infty \gamma^t
abla_ heta \log \pi_ heta(a_t|s_t) A^{\pi_ heta}(s_t, a_t)
ight].$$

Limitations of policy gradients:

- Sample efficiency is poor
 - · Because recycling old data to estimate policy gradients is hard
- Distance in parameter space \neq distance in policy space!
 - What is policy space? For tabular case, set of matrices

$$\Pi = \left\{ \pi \ : \ \pi \in \mathbb{R}^{|S| \times |A|}, \ \sum_{a} \pi_{sa} = 1, \ \pi_{sa} \ge 0 \right\}$$

- Policy gradients take steps in parameter space
- Step size is hard to get right as a result

< □ > < 同 > < 回 >

- Sample efficiency for policy gradient methods is pretty poor
- We throw out each batch of data immediately after just one gradient step
- Why? PG is an on-policy expectation. There are two main ways of estimating it:1
 - Run policy in environment and collect sample trajectories, then form sample estimate. (More stable)
 - Use trajectories from other policies with importance sampling. (Less stable)

Image: Image:

¹In an unbiased way.

Importance sampling is a technique for estimating expectations using samples drawn from a different distribution.

$$\mathop{\mathrm{E}}_{x \sim P}[f(x)] = \mathop{\mathrm{E}}_{x \sim Q} \left[\frac{P(x)}{Q(x)} f(x) \right] \approx \frac{1}{|D|} \sum_{x \in D} \frac{P(x)}{Q(x)} f(x), \quad D \sim Q$$

The ratio P(x)/Q(x) is the **importance sampling weight** for x.

What is the variance of an importance sampling estimator?

$$\operatorname{var}(\hat{\mu}_Q) = \frac{1}{N} \operatorname{var}\left(\frac{P(x)}{Q(x)}f(x)\right)$$
$$= \frac{1}{N} \left(\sum_{x \sim Q} \left[\left(\frac{P(x)}{Q(x)}f(x)\right)^2 \right] - \sum_{x \sim Q} \left[\frac{P(x)}{Q(x)}f(x)\right]^2 \right)$$
$$= \frac{1}{N} \left(\sum_{x \sim P} \left[\frac{P(x)}{Q(x)}f(x)^2 \right] - \sum_{x \sim P} \left[f(x)\right]^2 \right)$$

The term in red is problematic—if P(x)/Q(x) is large in the wrong places, the variance of the estimator explodes.

<ロ> <問> <問> < 回> < 回>

Here, we compress the notation π_{θ} down to θ in some places for compactness.

$$egin{aligned} g &=
abla_ heta J(heta) = \mathop{\mathrm{E}}\limits_{ au \sim heta} \left[\sum_{t=0}^\infty \gamma^t
abla_ heta \log \pi_ heta(a_t|s_t) A^ heta(s_t,a_t)
ight] \ &= \mathop{\mathrm{E}}\limits_{ au \sim heta'} \left[\sum_{t=0}^\infty rac{P(au_t| heta)}{P(au_t| heta')} \gamma^t
abla_ heta \log \pi_ heta(a_t|s_t) A^ heta(s_t,a_t)
ight] \end{aligned}$$

Looks useful-what's the issue? Exploding or vanishing importance sampling weights.

$$\frac{P(\tau_t|\theta)}{P(\tau_t|\theta')} = \frac{\mu(s_0) \prod_{t'=0}^t P(s_{t'+1}|s_{t'}, a_{t'}) \pi_{\theta}(a_{t'}|s_{t'})}{\mu(s_0) \prod_{t'=0}^t P(s_{t'+1}|s_{t'}, a_{t'}) \pi_{\theta'}(a_{t'}|s_{t'})} = \prod_{t'=0}^t \frac{\pi_{\theta}(a_{t'}|s_{t'})}{\pi_{\theta'}(a_{t'}|s_{t'})}$$

Even for policies only slightly different from each other, many small differences multiply to become a big difference.

Big question: how can we make efficient use of the data we already have from the old policy, while avoiding the challenges posed by importance sampling?

< □ > < 同 > < 回 >

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

with step $\Delta_k = \alpha_k \hat{g}_k$.

- If the step is too large, performance collapse is possible
- If the step is too small, progress is unacceptably slow
- "Right" step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style optimizers, can help. But does this solve the problem?

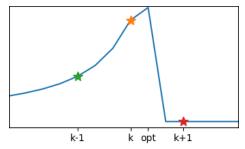


Figure: Policy parameters on x-axis and performance on y-axis. A bad step can lead to performance collapse, which may be hard to recover from.

The Problem is More Than Step Size

Consider a family of policies with parametrization:

$$\pi_{\theta}(a) = \begin{cases} \sigma(\theta) & a = 1\\ 1 - \sigma(\theta) & a = 2 \end{cases}$$

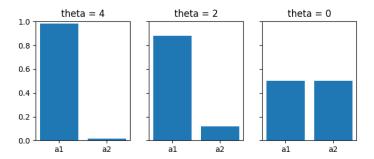


Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn't ever change the policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI)

Advanced Policy Gradient Methods

Policy Performance Bounds

(日)

In a policy optimization algorithm, we want an update step that

- uses rollouts collected from the most recent policy as efficiently as possible,
- and takes steps that respect **distance in policy space** as opposed to distance in parameter space.

To figure out the right update rule, we need to exploit relationships between the performance of two policies.

Relative policy performance identity: for any policies π, π'

$$J(\pi') - J(\pi) = \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$
(1)

Image: A mathematical states and a mathem

$$J(\pi') - J(\pi) = \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$

$$= \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t \left(R(s_t, a_t, s_{t+1}) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right) \right]$$

$$= J(\pi') + \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^{t+1} V^{\pi}(s_{t+1}) - \sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) \right]$$

$$= J(\pi') + \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=1}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) \right]$$

$$= J(\pi') - \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[V^{\pi}(s_0) \right]$$

$$= J(\pi') - J(\pi)$$

Image: A math a math

Can we use this for policy improvement, where π' represents the new policy and π represents the old one?

$$\max_{\pi'} J(\pi') = \max_{\pi'} J(\pi') - J(\pi)$$
$$= \max_{\pi'} \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π' in terms of the advantages from $\pi!$

But, problematic feature: still requires trajectories sampled from π' ...

Image: A math a math

In terms of the **discounted future state distribution** d^{π} , defined by

$$d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$(\pi') - J(\pi) = \mathop{\mathrm{E}}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]$$
$$= \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{a \sim \pi' \\ a \sim \pi'}} [A^{\pi}(s, a)]$$
$$= \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim d^{\pi'} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s, a) \right]$$

...almost there! Only problem is $s \sim d^{\pi'}$.

・ロト ・ 戸 ・ ・ ヨ ・ ・

What if we just said $d^{\pi'} pprox d^{\pi}$ and didn't worry about it?

$$egin{aligned} J(\pi') - J(\pi) &pprox rac{1}{1 - \gamma} \mathop{\mathrm{E}}\limits_{\substack{s \sim \pi \ a \sim \pi}} \left[rac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s,a)
ight] \ &\doteq \mathcal{L}_{\pi}(\pi') \end{aligned}$$

Turns out: this approximation is pretty good when π' and π are close! But why, and how close do they have to be?

Relative policy performance bounds: ²

$$\left|J(\pi') - \left(J(\pi) + \mathcal{L}_{\pi}(\pi')\right)\right| \le C_{\sqrt{\sum_{s \sim d^{\pi}} \left[D_{\mathsf{KL}}(\pi'||\pi)[s]\right]}}$$
(2)

< □ > < 同 >

If policies are close in KL-divergence-the approximation is good!

²Achiam, Held, Tamar, Abbeel, 2017

For probability distributions P and Q over a discrete random variable,

$$D_{\mathcal{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Properties:

- $D_{KL}(P||P) = 0$
- $D_{\mathit{KL}}(P||Q) \geq 0$
- $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ Non-symmetric!

What is KL-divergence between policies?

$$D_{ extsf{KL}}(\pi'||\pi)[s] = \sum_{a \in \mathcal{A}} \pi'(a|s) \log rac{\pi'(a|s)}{\pi(a|s)}$$

< □ > < 同 > < 回 >

A Useful Approximation

What did we gain from making that approximation?

$$\begin{aligned} \mathcal{L}(\pi') - J(\pi) &\approx \mathcal{L}_{\pi}(\pi') \\ \mathcal{L}_{\pi}(\pi') &= \frac{1}{1 - \gamma} \mathop{\mathrm{E}}_{\substack{s \sim d^{\pi} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} \mathcal{A}^{\pi}(s, a) \right] \\ &= \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \frac{\pi'(a_{t}|s_{t})}{\pi(a_{t}|s_{t})} \mathcal{A}^{\pi}(s_{t}, a_{t}) \right] \end{aligned}$$

- This is something we can optimize using trajectories sampled from the old policy π !
- Similar to using importance sampling, but because weights only depend on current timestep (and not preceding history), they don't vanish or explode.

Something else cool—the approximation matches $J(\pi_{\theta}) - J(\pi_{\theta_k})$ to first order in policy parameters! That is, $\nabla_{\theta} \mathcal{L}_{\theta_k}(\theta)|_{\theta_k}$ is equal to policy gradient:

$$\begin{split} \nabla_{\theta} \mathcal{L}_{\theta_{k}}(\theta)|_{\theta_{k}} &= \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta_{k}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \frac{\nabla_{\theta} \pi_{\theta}(a_{t}|s_{t})|_{\theta_{k}}}{\pi_{\theta_{k}}(a_{t}|s_{t})} A^{\pi_{\theta_{k}}}(s_{t}, a_{t}) \right] \\ &= \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta_{k}}} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})|_{\theta_{k}} A^{\pi_{\theta_{k}}}(s_{t}, a_{t}) \right] \end{split}$$

- $\bullet\,$ "Approximately Optimal Approximate Reinforcement Learning," Kakade and Langford, 2002 3
- "Trust Region Policy Optimization," Schulman et al. 2015 ⁴
- "Constrained Policy Optimization," Achiam et al. 2017 ⁵

³https://people.eecs.berkeley.edu/ pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf ⁴https://arxiv.org/pdf/1502.05477.pdf ⁵https://arxiv.org/pdf/1705.10528.pdf

Joshua Achiam (UC Berkeley, OpenAI)

Monotonic Improvement Theory

Image: A math a math

From the bound on the previous slide, we get

$$J(\pi') - J(\pi) \geq \mathcal{L}_{\pi}(\pi') - C \sqrt{\mathop{\mathrm{E}}_{oldsymbol{s} \sim d^{\pi}} \left[\mathcal{D}_{\mathit{KL}}(\pi' || \pi) [oldsymbol{s}]
ight]}.$$

- Cool: If we maximize the RHS with respect to π' , we are guaranteed to improve over π .
 - This is a majorize-maximize algorithm w.r.t. the true objective, the LHS.
- Cooler: $\mathcal{L}_{\pi}(\pi')$ and the KL-divergence term *can both be estimated with samples from* $\pi!$

Image: A matrix and a matrix

Proof of improvement guarantee: Suppose π_{k+1} and π_k are related by

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi') - C_{\sqrt{\sum_{s \sim d^{\pi_k}} \left[\mathcal{D}_{\mathsf{KL}}(\pi' || \pi_k)[s] \right]}}$$

• π_k is a feasible point, and the objective at π_k is equal to 0.

- $\mathcal{L}_{\pi_k}(\pi_k) \propto \mathop{\mathbb{E}}_{\substack{s,a \sim d^{\pi_k}, \pi_k \\ 0 \leq k \leq n}} [A^{\pi_k}(s,a)] = 0$
- $D_{KL}(\pi_k || \pi_k)[s] = 0$
- $\bullet \implies \mathsf{optimal value} \ge 0$
- \Longrightarrow by the performance bound, $J(\pi_{k+1}) J(\pi_k) \ge 0$

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi') - C_{\sqrt{\sum_{s \sim d^{\pi_k}} [D_{\mathcal{K}L}(\pi' || \pi_k)[s]]}}.$$
 (3)

Problem:

- C provided by theory is quite high when γ is near 1
- \implies steps from (3) are too small.

Solution:

- Instead of KL penalty, use KL constraint (called trust region).
- Can control worst-case error through constraint upper limit!

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi')$$
s.t. $\mathop{\mathrm{E}}_{s \sim d^{\pi_k}} \left[D_{\mathsf{KL}}(\pi' || \pi_k) [s] \right] \leq \delta$
(4)

< □ > < 同 > < 三

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi')$$

s.t. $\mathop{\mathrm{E}}_{s \sim d^{\pi_k}} \left[D_{\mathcal{K}L}(\pi' || \pi_k) [s] \right] \le \delta$ (4)

This policy optimization step satisfies the two conditions we wanted:

- The objective and constraint can be estimated using rollouts from the most recent policy—efficient!
- From the constraint, **steps respect (a notion of) distance in policy space!** Update is parametrization-invariant.

As a result: the basis of many algorithms!

< □ > < 同 > < 回 >

Algorithms

Natural Policy Gradient

So we have this nice optimization problem:

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi')$$

s.t. $\bar{D}_{\mathcal{K}L}(\pi'||\pi_k) \le \delta$ (4)

but how do we solve it? Solution: approximately!

$$\mathcal{L}_{ heta_k}(heta) pprox \mathcal{L}_{ heta_k}(heta_k) + g^T (heta - heta_k) \qquad g \doteq
abla_ heta \mathcal{L}_{ heta_k}(heta) \mid_{ heta_k} \ ar{D}_{ extsf{KL}}(heta) \mid_{ heta_k} pprox ar{D}_{ extsf{KL}}(heta) \mid_{ heta_k} ar{D}_{ extsf{KL}}(heta) \mid_{ heta_k} H \doteq
abla_ heta^2 ar{D}_{ extsf{KL}}(heta) \mid_{ heta_k} \mid_{ heta_k}$$

Note: zeroth and first-order terms for \overline{D}_{KL} are zero at θ_k .

$$egin{aligned} & heta_{k+1} = rg\max_{ heta} \ g^{ op}(heta - heta_k) \ & ext{s.t.} \ rac{1}{2}(heta - heta_k)^{ op} extsf{H}(heta - heta_k) \leq \delta \end{aligned}$$

Solution to approximate problem:

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g^{\,\mathsf{T}}H^{-1}g}}H^{-1}g$$

Image: A math a math

- Recall that ∇_θL_{θ_k}(θ)|_{θ_k} is equal to the policy gradient—so this update gives a policy gradient algorithm where we pre-multiply by H⁻¹.
- The KL-divergence Hessian *H* is equal to a special matrix called the **Fisher information matrix**, which comes up in a few other places:

$$H = \mathop{\mathrm{E}}_{s, a \sim \theta^k} \left[\left. \nabla_\theta \log \pi_\theta(a|s) \right|_{\theta_k} \left. \nabla_\theta \log \pi_\theta(a|s) \right|_{\theta_k}^{\mathsf{T}} \right]$$

• The NPG direction $H^{-1}g$ is covariant—that is, it points in the same direction regardless of the parametrization used to compute it.

< □ > < 同 > < 回 >

Covariance of the Natural Policy Gradient (Can Skip)

What does it mean for something to be covariant?

• In a Reimannian space, the distance between points v and $v + \delta v$ is given by

$$\mathsf{dist}^2(\boldsymbol{v},\boldsymbol{v}+\delta\boldsymbol{v})=\delta\boldsymbol{v}^{\mathsf{T}}\boldsymbol{G}(\boldsymbol{v})\delta\boldsymbol{v}$$

where G is the **metric tensor**. (Note: G depends on where in the space you are!)

- A (true, mathematical) tensor is **more than just a matrix**. It has components (like a matrix) but they depend on the coordinates in which you express the space.
- Example:
 - Euclidean 2-space \mathbb{R}^2 can be expressed in Cartesian (x, y), or polar coordinates (r, θ) .
 - For Cartesian coordinates, the metric tensor is just the identity.
 - For polar coordinates, the metric tensor is diag $(1, r^2)$:

$$\begin{aligned} x &= r \cos \theta \Longrightarrow \delta x = \cos \theta \delta r - r \sin \theta \delta \theta \\ y &= r \sin \theta \Longrightarrow \delta y = \sin \theta \delta r + r \cos \theta \delta \theta \\ \text{dist}^2(v, v + \delta v) &= \delta x^2 + \delta y^2 \\ &= \left(\cos^2 \theta \delta r^2 + r^2 \sin^2 \theta \delta \theta^2 - 2r \sin \theta \cos \theta \delta r \delta \theta\right) \\ &+ \left(\sin^2 \theta \delta r^2 + r^2 \cos^2 \theta \delta \theta^2 + 2r \sin \theta \cos \theta \delta r \delta \theta\right) \\ &= \delta r^2 + r^2 \delta \theta^2 \\ &= \left(\delta r, \delta \theta\right)^T \text{diag} \left(1, r^2\right) \left(\delta r, \delta \theta\right) \end{aligned}$$

Covariance of the Natural Policy Gradient (Can Skip)

Consider the same vector and vector difference in two coordinate systems:

- In system 1 (v), we write $(v, \delta v)$, and the metric tensor is written as G_v
- In system 2 (w), we write $(w, \delta w)$, and the metric tensor is written as G_w

Note: $\mathbf{v} = \mathbf{w}$, but we are just writing the same vector with different parametrization. Because the deltas are also equal ($\delta \mathbf{v} = \delta \mathbf{w}$), their components are related by:

$$\delta \mathbf{v}_i = \sum_j \frac{\partial \mathbf{v}_i}{\partial w_j} \delta w_j \implies \delta \mathbf{v} = \mathbf{A}^T \delta \mathbf{w}, \text{ where } \mathbf{A}_{ji} = \frac{\partial \mathbf{v}_i}{\partial w_j}$$

The distances must be the same in both, so metrics are related as follows:

$$dist^{2}(v, v + \delta v) = dist^{2}(w, w + \delta w)$$
$$dist^{2}(v, v + \delta v) = \delta v^{T} G_{v} \delta v = \delta w^{T} A G_{v} A^{T} \delta w$$
$$dist^{2}(w, w + \delta w) = \delta w^{T} G_{w} \delta w$$
$$\Longrightarrow G_{w} = A G_{v} A^{T}$$

Gradients are related by chain rule:

$$[g_w]_j = \frac{\partial f}{\partial w_j} = \sum_i \frac{\partial v_i}{\partial w_j} \frac{\partial f}{\partial v_i} \implies g_w = Ag_w$$

Image: A mathematical states and a mathem

Consider $\Delta_v = G_v^{-1}g_v$, and $\Delta_w = G_w^{-1}g_w$. Are these the same vector in different coordinates?

If they are, from $A^T \delta w = \delta v$, they will satisfy $A^T \Delta_w = \Delta_v$.

· · .

$$\Delta_w = G_w^{-1} g_w$$

= $(A G_v A^T)^{-1} A g_v$
= $(A^T)^{-1} G_v^{-1} A^{-1} A g_v$
= $(A^T)^{-1} G_v^{-1} g_v$
 $A^T \Delta_w = \Delta_v$

They are indeed the same vector!

The punchline: the FIM, H, in the natural policy gradient, is the metric tensor for policy space.⁶

Thus the natural policy gradient $H^{-1}g$ is **invariant to parametrization**, as shown above.

Image: A math a math

⁶Peters, Vijayakumar, Schaal, 2005.

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ_0 for k = 0, 1, 2, ... do Collect set of trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Form sample estimates for

- policy gradient \hat{g}_k (using advantage estimates)
- and KL-divergence Hessian / Fisher Information Matrix \hat{H}_k

Compute Natural Policy Gradient update:

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{\hat{g}_k^T \hat{H}_k^{-1} \hat{g}_k}} \hat{H}_k^{-1} \hat{g}_k$$

end for

Image: A mathematical states and a mathem

Problem: for neural networks, number of parameters N is large—thousands or millions. Hessian has size N^2 (expensive to store) and matrix inversion complexity is $\mathcal{O}(N^3)$

Solution: use the **conjugate gradient (CG) algorithm** to compute $H^{-1}g$ without inverting H.

- With *j* iterations, CG solves systems of linear equations Hx = g for x by finding projection onto Krylov subspace, span $\{g, Hg, H^2g, ..., H^{j-1}g\}$
- For CG, only matrix-vector product function f(v) = Hv is necessary—and this, we can do:⁷

```
kl = ... # define KL divergence as function of vars theta
v = tf.placeholder(dtype=tf.float32, shape=[N])
kl_gradient = tf.gradients(kl, theta)
kl_gradient_vector_product = tf.sum( kl_gradient * v )
kl_hessian_vector_product = tf.gradients(kl_gradient_vector_product, theta)
```

Natural Policy Gradient with fixed-iteration CG as inner loop is called **Truncated Natural Policy Gradient** (TNPG)

See Wu et al. 2017 (ACKTR algorithm) for an alternate solution to this problem

< ロ > < 同 > < 回 > < 回 >

⁷Wright and Nocedal, Numerical Optimization, 1999

Trust Region Policy Optimization

Small problems with NPG update:

- Might not be robust to trust region size $\delta;$ at some iterations δ may be too large and performance can degrade
- Because of quadratic approximation, KL-divergence constraint may be violated

Solution:

- Require improvement in surrogate (make sure that $\mathcal{L}_{\theta_k}(\theta_{k+1}) \geq 0$)
- Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coeff $\alpha \in (0, 1)$, budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step
$$\Delta_k = \sqrt{\frac{2\delta}{\hat{g}_k^T \hat{H}_k^{-1} \hat{g}_k}} \hat{H}_k^{-1} \hat{g}_k$$

for $j = 0, 1, 2, ..., L$ do
Compute proposed update $\theta = \theta_k + \alpha^j \Delta_k$
if $\mathcal{L}_{\theta_k}(\theta) \ge 0$ and $\bar{D}_{KL}(\theta || \theta_k) \le \delta$ then
accept the update and set $\theta_{k+1} = \theta_k + \alpha^j \Delta_k$
break
end if
end for

(日)

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters θ_0 for k = 0, 1, 2, ... do Collect set of trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Form sample estimates for

- policy gradient \hat{g}_k (using advantage estimates)
- and KL-divergence Hessian-vector product function $f(v) = \hat{H}_k v$ Use CG with n_{cg} iterations to obtain $x_k \approx \hat{H}_k^{-1} \hat{g}_k$ Estimate proposed step $\Delta_k \approx \sqrt{\frac{2\delta}{x_k^T \hat{H}_k x_k}} x_k$ Perform backtracking line search with exponential decay to obtain final update

$$\theta_{k+1} = \theta_k + \alpha^j \Delta_k$$

end for

Empirical Performance for TNPG / TRPO

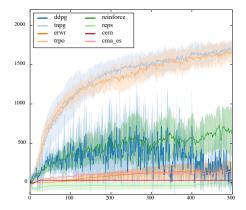


Figure: Comparison between various methods for deep RL including TNPG and TRPO on Walker-2d task. Showing average scores over 5 seeds for each method. $^{\rm 8}$

⁸Duan, Chen, Houthooft, Schulman, Abbeel, 2016

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce KL constraint **without computing natural gradients**. Two variants:

- Adaptive KL Penalty
 - Policy update solves unconstrained optimization problem

$$heta_{k+1} = rg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{D}_{ extsf{KL}}(heta|| heta_k)$$

- • Penalty coefficient β_k changes between iterations to approximately enforce KL-divergence constraint
- Clipped Objective
 - New objective function: let $r_t(heta) = \pi_{ heta}(a_t|s_t)/\pi_{ heta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{ heta_k}^{CLIP}(heta) = \mathop{\mathbb{E}}_{ au \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(heta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(heta), 1-\epsilon, 1+\epsilon\right) \hat{A}_t^{\pi_k})
ight]
ight]$$

where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)

• Policy update is $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$

(日)

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ for k = 0, 1, 2, ... do

Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$heta_{k+1} = \arg\max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{D}_{ extsf{KL}}(heta|| heta_k)$$

by taking K steps of minibatch SGD (via Adam) if $\bar{D}_{KL}(\theta_{k+1}||\theta_k) \ge 1.5\delta$ then $\beta_{k+1} = 2\beta_k$ else if $\bar{D}_{KL}(\theta_{k+1}||\theta_k) \le \delta/1.5$ then $\beta_{k+1} = \beta_k/2$ end if end for

- Initial KL penalty not that important-it adapts quickly
- Some iterations may violate KL constraint, but most don't

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$heta_{k+1} = \arg \max_{ heta} \mathcal{L}^{\textit{CLIP}}_{ heta_k}(heta)$$

by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}^{\textit{CLIP}}_{\theta_k}(\theta) = \mathop{\mathbb{E}}_{\tau \sim \pi_k} \left[\sum_{t=0}^{T} \left[\min(r_t(\theta) \hat{A}^{\pi_k}_t, \mathsf{clip}\left(r_t(\theta), 1-\epsilon, 1+\epsilon\right) \hat{A}^{\pi_k}_t) \right] \right]$$

end for

- Clipping prevents policy from having incentive to go far away from θ_{k+1}
- Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement

(日)

But *how* does clipping keep policy close? By making objective as pessimistic as possible about performance far away from θ_k :

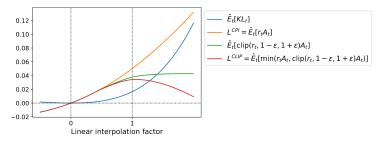


Figure: Various objectives as a function of interpolation factor α between θ_{k+1} and θ_k after one update of PPO-Clip 9

< 口 > < 同 >

⁹Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Empirical Performance of PPO

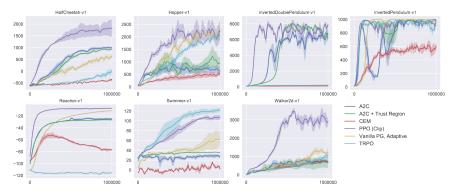


Figure: Performance comparison between PPO with clipped objective and various other deep RL methods on a slate of MuJoCo tasks. $^{10}\,$

< 口 > < 同

¹⁰Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Natural Gradients / Natural Policy Gradients

- "Why Natural Gradient?" S. Amari and S. C. Douglas, 1998 ¹¹
- "A Natural Policy Gradient," Sham Kakade, 2001 ¹²
- $\bullet\,$ "Reinforcement Learning of Motor Skills with Policy Gradients," Jan Peters and Stefan Schaal, 2008 13

¹¹http://www.yaroslavvb.com/papers/amari-why.pdf

¹²https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf

TRPO / PPO

- "Trust Region Policy Optimization," Schulman et al. 2015¹⁴
- "Benchmarking Deep Reinforcement Learning for Continuous control," Duan et al. 2016 $^{\rm 15}$
- "Proximal Policy Optimization Algorithms," Schulman et al. 2017¹⁶
- $\bullet\,$ OpenAI blog post on PPO, 2017 17
- "Emergence of Locomotion Behaviours in Rich Environments," Heess et al. 2017 ¹⁸
- "Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation," Wu et al. 2017¹⁹

< □ > < 同 >

¹⁴https://arxiv.org/pdf/1502.05477.pdf

¹⁵https://arxiv.org/pdf/1604.06778.pdf

¹⁶https://arxiv.org/pdf/1707.06347.pdf

¹⁷https://blog.openai.com/openai-baselines-ppo/

¹⁸https://arxiv.org/pdf/1707.02286.pdf

¹⁹https://arxiv.org/pdf/1708.05144.pdf