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Summary. In this paper we describe a general passivity based framework for the
control of flexible joint robots. Herein the recent DLR results on torque-, position-
, as well as impedance control of flexible joint robots are summarized, and the
relations between the individual contributions are highlighted. It is shown that an
inner torque feedback loop can be incorporated into a passivity based analysis by
interpreting torque feedback in terms of shaping of the motor inertia. This result,
which implicitly was already included in our earlier works on torque- and position
control, can also be seized for the design of impedance controllers. For impedance
control, furthermore, potential shaping is of special interest. It is shown how, based
only on the motor angles, a potential function can be designed which simultaneously
incorporates gravity compensation and a desired Cartesian stiffness relation for the
link angles.

All the presented controllers were experimentally evaluated on the DLR light-weight
robots and proved their performance and robustness with respect to uncertain model
parameters. Herein, an impact experiment is presented briefly, and an overview of
several applications is given in which the controllers have been applied.

1 Introduction

The currently growing research interest in application fields such as service
robotics, health care, space robotics, or force feedback systems has led to an
increasing demand for light robot arms with a load to weight ratio comparable
to that of human arms. These manipulators should be able to perform compli-
ant manipulation in contact with an unknown environment and guarantee the
safety of humans interacting with them. A major problem which is specific to
the implementation of light-weight robot concepts is the inherent flexibility
introduced into the robot joints. Consequently, the success in the above men-
tioned robotics fields is strongly dependent on the design and implementation
of adequate control strategies which can:
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e compensate for the weakly damped elasticity in the robot joints in order
to achieve high performance motion control,
provide a desired Cartesian compliant behaviour of the manipulator,
enable robust and fast manipulation in contact with unknown, passive
environments,

e provide safety and dependability in interaction with humans.

It is commonly recognized that these control goals require measurement capa-
bilities which clearly exceed the classical position sensing of industrial robots.
The solution chosen in the case of the DLR light-weight robots (Fig. 1) was
to provide the joints with torque sensors in addition to motor position sensors
[12]. Additionally, a 6 dof force-torque sensor was mounted on the robot wrist.
The position control problem for flexible joint robots was extensively treated

Fig. 1. The DLR light-weight robot III

in the robot control literature [17, 19, 8, 10, 14]. However, the problem of com-
pliant motion control for interaction with unknown environments and with
humans is addressed only recently under consideration of robot flexibility.
The relevance of the topics becomes clear by looking at latest hardware devel-
opments, where elasticity is deliberately introduced into the joints in order to
increase the interaction performance and the safety of robots [18, 21, 7]. Due
to the fact that the model structure is slightly more complex than for rigid
robots, there was still a gap between theoretical solutions (which often require
very accurate models and the measurement or estimation of high derivatives
of the joint position) and the practical solutions commonly chosen, which are
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not always based on firm theoretical background.

In this paper we give an overview of the controller structures for the DLR
robots, sketch the passivity based theoretical framework on which the actual
controllers are based, go into some detail with the Cartesian impedance con-
troller, and shortly describe some typical applications.

2 Controller overview

The first stage in the controller development was a joint state feedback con-
troller with compensation of gravity and friction [2, 1]. The state vector con-
tains the motor positions, the joint torques, as well as their first derivatives. By
an appropriate parameterization of the feedback gains, the controller structure
can be used to implement position, torque or impedance control. Based on this

Slow Cartesian
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Fast Cartesian
Task (1ms)

| 1ms bus |

Joint A4
task
0.33ms

k=max

Fig. 2. Controller architecture for DLR/’s light-weight robots

joint control structure, three different strategies for implementing Cartesian
compliant motion have been realized: admittance control, which accesses the
joint position interface through the inverse kinematics; Cartesian impedance
control, which is based on the joint torque interface; and Cartesian stiffness
control, which accesses the joint impedance controller (Fig.2).
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The latest developments focused on strategies for impedance control based on
a passivity approach under consideration of the joint flexibilities [16, 5, 4]. A
physical interpretation of the joint torque feedback loop has been given as the
shaping of the motor inertia, while the implementation of the desired stiff-
ness can be regarded as shaping of potential energy. Therefore, the Cartesian
impedance controller can be designed and analyzed within a passivity based
framework in the same manner as the previously mentioned state feedback
controller.

The following model structure based on [17] is assumed for the flexible joint
robot:

M(q)g+C(q,q)qg+9(q) =T+ DK ' + Tex

(1)
B0+t +DK '+ =1, (2)
T=K(0-q) 3)

The vectors g € R" and 6 € R" contain the link and motor side positions
respectively. M(q) € ®**" , C(q,q)q, and g(q) € R" are the components of
the rigid body dynamics: inertia matrix, centripetal and Coriolis vector, and
gravity vector. The vector 7 € R™ represents the joint torques, Texy € R™
the external torques acting on the robot, and 7, € R™ the motor torques.
K = diag(K;) € ®"*" and B = diag(B;) € R"*" are the diagonal, positive
definite joint stiffness, and motor inertia matrices, respectively, and D =
diag(D;) € R™*™ is the diagonal positive semi-definite joint damping matrix.

3 Passivity based framework for torque, position and
impedance control

In the following we summarize the approaches finally adopted for the DLR
robots for torque, position, and impedance control and give a unified, passiv-
ity based view to these problems. Of course, the control literature for flex-
ible joint robots contains various different other possible approaches to the
problem. The best performance is theoretically given by decoupling based ap-
proaches, which provide a partially or even fully linearized closed loop system
and ensure asymptotic stability also for the tracking case [17, 8, 14, 11, 15].
These controllers, however, require as a state vector the link side positions up
to their third derivative and a very accurate robot model. For the DLR robots
these approaches resulted in only moderate performance and robustness. The
situation with back-stepping based controllers is similar to that of decoupling
based approaches. On the other hand, singular perturbation based controllers
are easy to implement, but their performance is theoretically and practically
limited to the case of relatively high joint stiffness.

For the DLR light-weight robots, we preferred the passivity based approach
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described below, because it is based only on the available motor position and
joint torque signals, as well as their first order derivatives and it provides a
high degree of robustness to unmodeled robot dynamics and in contact with
unknown environments. It provides a framework which is both theoretically
sound and also practically feasible, as demonstrated by the various applica-
tions realized so far using these controllers.

3.1 Passivity based joint position control

The starting point in the control development was a joint state feedback con-
troller given by

Tm = —Kpé - KDQ
+Kr1(9(q,) —7) — Ks7 +g(q,) (4)

with Kp, Kp, K7, and Kg being positive definite diagonal matrices and
with a gravity compensation g(q,) based on the desired position. This con-
stitutes an extension of the PD controllers from [19] to a full state feedback.
Under some conditions related to the minimal eigenvalues of Kp and Kp
[2, 1], the controller together with the motor side dynamics (2) can be shown
to provide a passive subsystem, what in turn leads to passivity of the entire
closed loop system!, as sketched in Fig.3. In [1] it was exemplified that by ad-

passive
K, ;
controller > D_m environment
Tm
D7 _Text
K .
1 110,0
controller >
T tuator 7 _
S 7 Nk
T,T . T,
0.0 P rigid robot
passive controlled actuator 1~ dynamics

Fig. 3. Representation of the robot as a connection of passive blocks

! Passivity is given in this case, e.g. with respect to the variables {7.,q}, with
To=T+DK 7.
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equately designing the controller gains Kp, Kp, K, and K g, the structure
can be used to implement a torque, position or impedance controller on joint
level.

3.2 Joint torque control: shaping the actuator kinetic energy

In order to be able to generalize the joint level approach also to Cartesian
coordinates, the idea of interpreting the joint torque feedback as the shaping
of the motor inertia plays a central role [16]. It enables to directly use the
torque feedback within the passivity framework and conceptually divides the
controller design into two steps, one related to the torque feedback and the
other to the position feedback. However, in contrast to singular perturbation
approaches, the analysis does not require the two loops to have different time
scales, which would imply very high bandwidth for the torque controller.
Consider a torque feedback of the form

Tm = BB;'u+ (I - BB;')(t + DK™'%). (5)

Herein uw € R™ is an intermediate control input. In [5] a more general form
of this torque controller was presented, in which the feedback gain of 7 is an
additional independent design parameter, giving the possibility to optimize
the performance and the vibration damping effect of the controller. Due to
lack of space, the presentation will be restricted here to the simpler case given
by (5). The torque controller leads together with (2) to

By0+71+DK v =u (6)

Comparing (2) with (6) it is clear that the effect of the torque controller is
that of changing the motor inertia to By for the new subsystem with input
u.

3.3 Motor position based feedback: shaping the potential energy
First notice that for the joint control case, a controller of the form
u=—Ky0—Dy0+g(0,) (7)

with @ = @ — 0, is passive with respect to the variables (@, u). Taking into
consideration the passivity of all other subsystems, this enables the conclu-
sion of passivity for the entire closed loop system. Actually, the controller
can be shown to be equivalent to the formulation (4), with Kp = BB, ' Ky,
Kp=BB;'Dy, Ky = BB;' — I, and Ks = (BB;' —I)DK~". While
the structure can be effectively used for position control, it has two major
drawbacks when used for impedance control. First, as mentioned before, in
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order to prove the asymptotic stability, some minimal values for Ky (or Kp)
have to be ensured. This is related o the fact that the gravity compensation
is done based on the desired position. For impedance control, however, the
desired stiffness may be arbitrary close to zero, making gravity compensation
based on desired position not meaningful. Second, the desired stiffness relation
is satisfied only locally by controllers of the type give by (7), due to additional
variation of the gravity term and, in the Cartesian version, of the Jacobian.
In the next subsection an approach is presented, which overcomes the men-
tioned shortcomings. The main idea is to design the outer loop by introducing
a new control variable g, which is a function of the collocated (motor) posi-
tion @ only, but is equal to the noncollocated position ¢ (link side) in every
static configuration. An iterative computation method based on the contrac-
tion mapping theorem is used to calculate this variable. A passive outer loop
controller can be designed in this way, while exactly fulfilling all the steady
state requirements for the system. These include not only the desired equilib-
rium position, but also the exact stiffness relationship between the tip position
and the external force. The approach can be interpreted as a shaping of the
potential energy of the robot.

3.4 The Cartesian case: Implementing exact desired stiffness

In this section, the more general case of Cartesian impedance control is
treated. The joint level impedance controller can be easily derived from it.
In analogy to rigid robot impedance control [13], a first choice for the outer
loop controller would be:

u=-J(q)"(K,%(q) + D;&(q)) +g(q) , (8)
z(q) = f(q) — . 9)

Herein, x is the desired tip configuration and x(q) = f(q) is the tip con-
figuration computed by the direct kinematics map f. J(q) = %E;’) is the
manipulator Jacobian. K, and D, are positive definite matrices of desired
stiffness and damping. The equilibrium conditions? are then given by

K (60 — qo) = 9(qy) — J (o) " Fext (10)
K (80 — qo) + J(q0)" K.&(qo) = 9(qy), (11)

where the relation 7oy = J (qO)TFex'c between the external torque and the
external tip force Feyy was used. Obviously, this leads to the desired stiffness
relation Feyy = K,& in any equilibrium position as long as J(q,) is invert-
ible (what means that also f is locally invertible). The following analysis is
restricted to configurations in which this assumption is fulfilled.

2obtained for a constant Texs from (1),(3),(6),(8) by setting all derivatives to zero .
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It is well known that the system (1) is passive with respect to the input-
output pair {7, + Text,q}. This can be shown with the storage function
Sq = %QTM(q)q + V,(q), where V,(q) is a potential function for g(g). In
order to ensure the passivity of the complete system, we are now looking for a
control law for 4 which determines (6) to be passive in {g, —7,}. Obviously,
(8) does not satisfy the required passivity condition. It can be observed from
[19, 2, 22, 16, 5] that it is possible to ensure the passivity in {q, —7,} if u is a
function of @ and its derivative only. The basic idea for the solution proposed
in this paper uses the fact that, at equilibrium points, there is a one to one
mapping Bg = h(q,) (in our case through (11)) between 8¢ and g,:

6o = h(qy) = qo + K~ '1(qy), (12)
with? 1(q) = —J(q0) K2 (q0) + 9(a0) - (13)

Furthermore, the inverse mapping h™" can be solved iteratively with arbitrary
accuracy (see Remark 1).

The proposed solution consists in replacing g in (8) with g(@) = h™"(6) and
obtaining the following controller, which is statically equivalent to (8):

u=-J(@)" (K,%(q) + D,J(2)6) + 9(q) (14)
z(q) = f(q) — zs. (15)

Since q(6y) = g, holds at rest, it follows that the equilibrium (10),(11) and
thus the desired static relation Feyy = K,&(qg) is still valid for this new
controller. This basic idea was introduced in [16, 5] for the case of gravity
compensation only and was generalized in [4] in order to provide an exact
link side Cartesian stiffness. The closed loop dynamics of the system results
from (1), (6), and (14):

M(q)Gd+C(q,9)q +9(q) = Ta+ Text (16)

By0 —1(q) +J(@) " D J(@)8 + 7o =0 (17)

Remark 1. While in general the inverse function @ = h™"(0) can not be com-
puted analytically, it is possible to approximate it with arbitrary accuracy by

iteration in case that the mapping T(q) := @ — K~ '1(q) is a contraction. The
mapping T'(q) has then an unique fized-point ¢* = T'(q*) = q. The iteration

converges thus for every starting point (e.g. 4, = 0) to this fized-point, as
follows from the contraction mapping theorem (see e.g. [20]):

lim ¢,=q"=q. (19)

n—oo

In order for T'(q) to be a contraction, it is sufficient to show that there exists
an o € R satisfying:

3 In [16, 5], l(q,) is simply U(q,) = g(q,)-
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Vg € R". (20)
R
This implies the following two inequalities:
llt(gy) —Uao)ll < allgy — gsll, Vg, g, € R® (21)
[Vi(g1) — Vi(gs) — (a1 — CI2)Tl(Q2)| (22)

<allg; — g5, Vgy,q, € R"

with Vi(q) being a potential function for l(q). As a consequence of (21) it
follows that

IT1(q,) — T1(gs)|| = [|K|[[E(q1) — Ugo)l|
<|lg; — 5|

The condition (20) can always be fulfilled for o sufficiently small || K,||. A
physical interpretation can be given as follows: ignoring gravity, the condition
states that the desired Cartesian stiffness, transformed to joint space [9, 3] may
not exceed the joint stiffness. On the other hand, in absence of external forces,
the condition states that the joint stiffness should be high enough to sustain
the robot in the gravity field. In the following it is therefore assumed that q
is known exactly. In practice, good results are obtained already by the first or
second iteration step. In particular notice that by a first order approximation
with g, = q, one would obtain the second version of the controller from [22].

4 Passivity analysis

The passivity of (17) with respect to {¢, —7,} can be shown using the follow-
ing storage function:

Sp = —0 By + - (0 a)"K(0 - q) - Vi(0), (23)
where V() is a potential function for 1(8) = 1(g(@)). It should be mentioned

that a potential function for 1(g(0)) with € as an argument is required in (23),
satisfying BVI(B) =1(0)T = 1(q(8))T. A potential function V;(q) in g, (with

6?;5"’ l(q)T) can easily be found:
V@ = - 15" @ K.E(@) + V(@) (24)

In [4] it is then shown that the required potential function V() is related to
V1(g) through

Vi(0) = Vi(g(8)) + %lT(é(e))K’ll(fl(e))- (25)
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For robots with rotational joints, —V,(q) is lower bounded. By substituting
(25) and (24) into (23), it follows that Sy is bounded from below since all other
terms are positive (quadratic). Thus Sy represents an appropriate storage
function.

The time derivative of (23) along the solutions of (17) is:

$5=—0"JT(@D,J@)0— (6 -a)" DO -4
—qtr,.

The last term represents the exchanged power of the subsystem and the other
terms are negative definite dissipation terms. This shows that the subsystem
is indeed passive with respect to {q, —7,}. If the robot is contacting an envi-
ronment which is also passive (with respect to {q, —Text }), then the passivity
of the entire system is given as a parallel and feedback interconnection of pas-
sive subsystems (Fig. 4).

As already mentioned before, the results of the passivity analysis have im-
portant implications for the robot interaction with the environment. Without
going into details it should be mentioned that the storage functions from the
passivity analysis can be used also as a Lyapunov function for the proof of
asymptotic stability in the case of free motion [4].

Xd | impedance i passive
_ law environment
A 'Text
JO| [¢@ || v
kinematics
dynamics L) forque
X((_]) A control
F_."'B,D
5 «— |t €
oI — =
0 e rigid robot
passive subsystem dynamics

Fig. 4. Representation of the closed loop system as parallel and feedback intercon-
nection of passive systems.

5 Experimental Evaluation

A typical impact experiment with the seven-dof DLR-light-weight-robot-1I is
shortly described in this section, in order to illustrate the controller perfor-
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mance. For the experiment a diagonal form of the Cartesian stiffness matrix
K, with the values of Table 1, was chosen. In the experiment a desired trajec-

Table 1. Chosen values for the diagonal Cartesian stiffness matrix.

x |y z |roll|pitch|yaw
4000{4000{4000(|300| 300 |300
N | N | N |Nm| Nm | Nm
m m m rad | rad | rad

tory z4(t) along the vertical z-axis of the end-effector frame was commanded
such that the robot hit a wooden surface. During this impact, the Cartesian
contact force was measured by a six-dof force-torque-sensor®. The measure-
ment of the external forces was done here only for the evaluation, but is not
needed for the implementation of the controller. Furthermore, the end-effector
coordinate z(q) was computed from the link side angles ¢ = +K ' 7. The re-
sulting motion z(q) and the contact force F, of the end-effector in z-direction
are shown in Fig. 5. In order to evaluate the resulting impedance relationship,

360 T T T

— — commanded Position
= —— measured Position

0.05 0.1 0.15 0.2 0.25
time [s]

50 T T T T T

-50
-100

Force [N]

-150

—-200

1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
time [s]

-250

Fig. 5. The upper plot shows the desired and measured end-effector motion in
z-direction during the impact experiment. In the lower plot the contact force in
z-direction is displayed.

4 A JR3-sensor was used for this.
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the ratio = F S Was computed as an estimation of the stiffness®. This estima-

tion is of course only valid in the steady state. The result is shown in Fig. 6.
At the steady state the estimated stiffness reaches nearly the desired value of

9000 -
8000 .
7000 _
6000 -
5000 : : : -
4000} v : : E

3000} W _

2000 1

Estimated Stiffness [N/m]

1000 1

1 1 1
0 0.05 0.1 0.15 0.2 0.25
time [s]

Fig. 6. Stiffness Estimation during the impact experiment.

4000N/m. The remaining difference lies in the range of known stiction effects
for this robot.

6 Applications

In this section, some applications based on the presented controllers are
shortly presented.

Piston insertion

Teaching by demonstration is a typical application for the impedance con-
troller structure. A practical example was given with the task of teaching and
automatic insertion of a piston into a motor block. Teaching is realized by
guiding the robot with the human hand (Fig.7). It was initially known that
the axes of the holes in the motor block were vertically oriented. In the teach-
ing phase, high stiffness components for the orientations were commanded,

5 beginning at time 0.5s, when the robot movement started
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while the translational stiffness was set to zero. This allowed only transla-
tional movements to be demonstrated by the human operator. In the second
phase, the taught trajectory has been automatically reproduced by the robot.
In this phase, high values were assigned for the translational stiffness, while
the stiffness for the rotations was low. This enabled the robot to compen-
sate for the remaining position errors. In this experiment, the assembly was
executed automatically four times faster than by the human operator in the
teaching phase. For two pistons, the total time for the assembly was 6s. The
insertion task has been implemented before by using an industrial robot and a
compliant force-torque sensor. Despite a well tuned Cartesian force controller,
the insertion process had to be performed much slower, because of the well
known control problems which occur in the case of hard contacts with conven-
tional robots. Thus, the advantage of a compliant manipulator with stiffness
control in assembly tasks became obvious.

Fig. 7. Teaching phase for the automatic piston insertion using the light-weight
robot II.

Wiping the table

Here the demand for a compliant behaviour of the robot also arise from reasons
of safety for humans interacting with it, while the contact to the environment
(table) was quite soft due to the cloth and hence not as challenging as in the
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case of piston insertion. The whole task was split up into similar guiding and
impedance control phases as in the piston insertion application. Fig. 8 shows
a demo at the Hanover fair where the robot’s elbow is deflected within its null
space, while the robot continues wiping the table and applying a constant
force in vertical direction.

Fig. 8. Table wiping with null space movement.

Opening a Door

In another service robotics application we used the Cartesian impedance con-
trol of the DLR light-weight robot II in order to open a door. Here the arm
was used in combination with a mobile platform and the DLR-hand-II, Fig.
9.

In this application, first, the door handle was manipulated by a sequence
of impedance controlled movements in order to open the door. During these
motions the measurements of the joint torques provided an estimate of the
contact force and thus of the current contact state.

When the mobile platform finally moved through the door hinge, the door
was kept at a distance by impedance control of the arm. Therefore, instead of
using the stiffness term from Section 3.4, in this stage the desired impedance
was based on an appropriate potential function which has its minimum all
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Fig. 9. DLR light-weight robot II while opening a door.

along a circularly shaped path with respect to a platform fixed frame. Ad-
ditionally, the rotational stiffness was set to zero such that the end-effector
orientation automatically adjusted.

7 Conclusions

In this paper, a unified, passivity based perspective was given to the prob-
lem of position, torque and impedance control of flexible joint robots, both
on joint and Cartesian level. These methods are especially relevant for light-
weight, compliant robots designed for service applications or for human-robot
interaction. A physical interpretation was given for the torque controller and
an energy shaping method was designed, which is based only on motor position
(collocated controller), but which satisfies the static requirements formulated
in terms of the robot tip. Without going into details, it is worth noting that
the proposed energy shaping method can be generalized to a broader class of
underactuated Euler-Lagrange systems [6], namely to such systems which can
be stabilized by shaping of the potential energy only. An important advantage
of these passivity-based controllers is the robustness with respect to uncer-
tainties of the robot or load parameters, as well as to contact situations with
unknown but passive environments. These properties were validated during
numerous applications with the DLR light-weight robots.



16

Alin Albu-Schéffer, Christian Ott, and Gerd Hirzinger

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Albu-Schiffer. Regelung von Robotern mit elastischen Gelenken am Beispiel
der DLR-Leichtbauarme. PhD thesis, Technical University Munich, april 2002.
A. Albu-Schiffer and G. Hirzinger. A globally stable state-feedback controller
for flexible joint robots. Journal of Advanced Robotics, Special Issue: Selected
Papers from IROS 2000, 15(8):799-814, 2001.

A. Albu-Schiffer and G. Hirzinger. Cartesian impedance control techniques
for torque controlled light-weight robots. IEEE International Conference of
Robotics and Automation, pages 657—-663, 2002.

. A. Albu-Schiffer, C. Ott, and G. Hirzinger. Passivity based cartesian impedance

control for flexible joint manipulators. Proc. 6-th IFAC-Symposium on Nonlinear
Control Systems, Stuttgart, 2:111, 2004.

A. Albu-Schiffer, C. Ott, and G. Hirzinger. A passivity based cartesian
impedance controller for flexible joint robots - part ii:full state feedback,
impedance design and experiments. ICRA, pages pp. 26662673, 2004.

A. Albu-Schéffer, C. Ott, and G. Hirzinger. Constructive energy shaping based
impedance control for a class of underactuated euler-lagrange systems. ICRA,
pages 1399-1405, 2005.

A. Bicchi, G. Toniettiand M. Bavaro, and M. Piccigallo. Variable stiffness actu-
ators for fast and safe motion control. 11th International Symposium of Robotics
Research (ISRR), oct. 2003.

B. Brogliato, R. Ortega, and R. Lozano. Global tracking controllers for flexible-
joint manipulators: a comparative study. Automatica, 31(7):941-956, 1995.

S. Chen and I. Kao. Simulation of conservative congruence transformation con-
servative properties in the joint and cartesian spaces. IEEE International Con-
ference of Robotics and Automation, pages 1283-1288, 2000.

A. DeLuca. Feedforward/feedback laws for the control of flexible robots. IEEE
International Conference of Robotics and Automation, pages 233-240, 2000.
A.DeLuca and P. Lucibello. A general algorithm for dynamic feedback lineariza-
tion of robots with elastic joints. IEEE International Conference of Robotics
and Automation, pages 504-510, 1998.

G. Hirzinger, A. Albu-Schéiffer, M. Hihnle, I. Schaefer, and N. Sporer. On a
new generation of torque controlled light-weight robots. IEEE International
Conference of Robotics and Automation, pages 3356-3363, 2001.

N. Hogan. Impedance control: An approach to manipulation, part I - theory,
part IT - implementation, part III - applications. Journ. of Dyn. Systems, Mea-
surement and Control, 107:1-24, 1985.

T. Lin and A.A. Goldenberg. Robust adaptive control of flexible joint robots
with joint torque feedback. IEEE International Conference of Robotics and
Automation, RA-3(4):1229-1234, 1995.

C. Ott, A. Albu-Schiffer, and G. Hirzinger. Comparison of adaptive and non-
adaptive tracking control laws for a flexible joint manipulator. IROS, 2002.

C. Ott, A. Albu-Schéffer, and G. Hirzinger. A passivity based cartesian
impedance controller for flexible joint robots - part i:torque feedback and gravity
compensation. ICRA, pages pp. 2659-2665, 2004.

M. Spong. Modeling and control of elastic joint robots. IEEE Journal of Robotics
and Automation, RA-3(4):291-300, 1987.

S. Sugano. Human-robot symbiosis. Workshop on Human-Robot Interaction,
ICRA, 2002.



A Unified Passivity Based Control Framework for Flexible Joint Robots 17

19. P. Tomei. A simple PD controller for robots with elastic joints. IEEE Transac-
tions on Automatic Control, 36(10):1208-1213, 1991.

20. M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, 1978.

21. M. Zinn, O. Khatib, B. Roth, and J.K. Salisbury. A new actuation approach
for human friendly robot design. Int. Symp. on Ezperimental Robotics, Ischia,
2002.

22. L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, and P. Dario. Compliance
control for a robot with elastic joints. Proceedings of the 11th International
Conference on Advanced Robotics, Coimbra, Portugal, pages pp. 1411-1416, june
2003.



