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Preface

0.1. Prerequisites

A person interested in reading this book should have the following back-
ground:

e Algebraic geometry (e.g., [Har77|: up to Chapter II, §8 as a minimum,
but familiarity with later chapters-is also needed at times)—this is not
needed so much in our Chapter

e Algebraic number theory (e.g:, |Cas67,Fro67| or |[Lan94, Part One| or
[Neu99, Chapters I and IIJ).

e Some group cohomology (e.g., JAW67| or [Mil13 Chapter 2]).

0.2. What kind of book this is

The literature on rational points is vast. To write a book on the subject, an
author must

1. write thousands of pages to cover all the topics comprehensively, or
2. focus on one aspect of the subject, or

3. write an extended survey serving as an introduction to many topics, with
pointers to the literature for those who want to learn more about any
particular one.

Our approach is closest to[3] so as to bring newcomers quickly up to speed
while also providing more experienced researchers with directions for further
exploration.

This book originated as the lecture notes for a semester-long course,
taught during spring 2003 at the University of California, Berkeley, and fall

v



vi Preface

2008 and fall 2013 at the Massachusetts Institute of Technology. But it
has grown since then; probably now it is about 50% too large for a single
semester, unless students are willing to read much of it outside of class.

0.3. The nominal goal

Many techniques have been used to decide whether a variety over a number
field has a rational point. Some generalize Fermat’s method of infinite de-
scent, some use quadratic reciprocity, and others appear at first sight to be
ad hoc. But over the past few decades, it was discovered that nearly all of
these techniques could be understood as applications of just two cohomolog-
ical obstructions, the étale-Brauer obstruction and the descent obstruction.
Moreover, while this book was being written, it was proved that the étale-
Brauer obstruction and the descent obstruction are equivalent! The topics
in this book build up to an explanation of this “grand unified theory” of
obstructions.

0.4. The true goal

Our ulterior motive, however, is to introduce readers to techniques that they
are likely to need while researching arithmetic geometry more broadly. Along
the way, we mention open problems and applications that are interesting in
their own right.

0.5. The content

Chapter [1]introduces fields of special interest to arithmetic geometers, and it
discusses properties and invariants (the C, property, cohomological dimen-
sion, and the Brauer group) that control the answers to some arithmetic
questions about fields in general. Not all of Chapter (1] is needed in future
chapters; but the Brauer group plays a key role later on (in Chapters |§|

and .

Chapter [2] discusses aspects of varieties with particular attention to the
case of ground fields that are not algebraically closed. Ultimately, we aim to
treat global fields of positive characteristic as well as number fields, so we do
not require our ground field to be perfect. Among other topics, this chapter
discusses properties of varieties under base extension (e.g., irreducible vs.
geometrically irreducible), the functor of points of a scheme, closed points
and their relation to field-valued points, and genus change of curves under
field extension. A final section introduces the main questions about rational
points that motivate the subject, such as the questions of whether the local-
global principle and weak approximation hold.
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Chapter [3|begins with morphisms of finite presentation in order to discuss
spreading out (e.g., extending a variety over a number field k to a scheme
over a ring of S-integers in k). But the heart of the chapter is an extended
introduction to smooth and étale morphisms, going beyond the treatment
in [Har77, I11.§10]. This, together with a section on flat morphisms, pro-
vides the basis for the definitions of the Grothendieck topologies commonly
used for cohomology theories (see Chapter @ The chapter also includes
sections on rational maps and Frobenius morphisms: the latter are used to
understand the Weil conjectures in Chapter [7}

The word “descent” has two unrelated meanings in arithmetic geometry.
One meaning is as in Fermat’s method of infinite descent and its generaliza-
tions, in which it is the height of rational points that descends in the course
of a proof. The second meaning is that of descent of the ground field: the
problem here is to decide whether a variety over a field extension L D k arises
as the base extension of a variety X over k (and to describe all possibilities
for X). Chapter {4 studies this problem and its analogue for morphisms, and
its generalizations to schemes. It also gives applications to the classification
of twists of geometric objects (different k-forms of the same object over a
field extension L), and to restriction of scalars, which transforms varieties
over a field extension L D k into varieties over k.

Chapter [ is a survey on group schemes and algebraic groups over fields.
After discussing their general properties, it defines special types of algebraic
groups, and it states the classification theorem that decomposes arbitrary
smooth algebraic groups into those types. The final section of Chapter
introduces torsors, which are needed to define the descent obstruction in
Chapter [§l For algebraic groups over global fields, we discuss weak and
strong approximation (Section and the local-global principle for their

torsors (Section [5.12.8]).

Chapter [6] is an introduction to étale cohomology and its variants such
as fppficohomology. These cohomology theories are applied to generalize
from torsors of algebraic groups over a field to torsors of group schemes over
an-arbitrary base scheme, and we prove finiteness results for torsors over
a_global field that are unramified at all but finitely many places. Another
application is to generalize the cohomological definition of the Brauer group
of a field to Grothendieck’s definition of the cohomological Brauer group of a
scheme. We end by discussing tools for computing these Brauer groups (the
Hochschild—Serre spectral sequence, and residue homomorphisms) and give
many examples since these will be needed to understand the Brauer—-Manin
obstruction in Section [8.21

Although not needed for the main story of obstructions to rational points,
we include in Chapter [7] the motivating application of étale cohomology,
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namely the Weil conjectures on varieties over finite fields. There we also
discuss related issues, such as the étale cohomology classes of algebraic cycles
and the Tate conjecture.

Chapter [§|defines the cohomological obstructions to the local-global prin-
ciple and weak approximation for a variety X over a global field; these are
expressed as subsets of the set X(A) of adelic points that constrain where
k-points may lie. First is the Brauer—-Manin obstruction, coming from el-
ements of the Brauer group of X. Next is the descent obstruction coming
from torsors of algebraic groups; this is motivated by an example of a genus 2
curve in which the algebraic group is simply a finite group. Next we define
hybrids of these two obstructions and compare their strengths for constrain-
ing k-points. Finally, we explain why all these obstructions-are still not
enough to decide whether a variety has a k-point.

Chapter [0 is a survey of the geometry and arithmetic of higher-dimen-
sional varieties, with special attention paid to surfaces. It begins with the
crude classification given by Kodaira dimension, and it compares the prop-
erties of being rational, unirational, rationally connected, and so on. Next
we give the classification of surfaces over an-arbitrary ground field, and we
discuss the arithmetic of del Pezzo surfaces in some detail since these serve
as excellent examples for the techniques presented earlier in the book. We
end by discussing very briefly what is proved and conjectured for curves of
genus > 1 and more generally for varieties of general type. The reasons
for not exploring this in greater detail are first, that it would require a few
hundred more pages to develop the required theory of height functions and
diophantine approximation, and second, that several books on these topics
exist already (we cite some of them).

A few appendices serve various purposes. Appendix [A] discusses some
set theory that is implicitly used when discussing sheafification, for instance.
Appendix [B| defines certain interesting classes of fields that did not make it
into Chapter [ Appendix[C]contains reference tables with lists of adjectives
that can be applied to morphisms, varieties, or algebraic groups; the tables
indicate where to find definitions, and propositions about their preservation
under base extension, descent, and so on.

0.6. Anything new in this book?

Almost all of the theorems in this book existed previously in the published
literature in some form, but in many places we have tried to make proofs
more readable and to organize topics so as to form a coherent exposition.
There are a few new results: For example, the finiteness of Selmer sets (see
Theorems 6.5.13| and [8.4.6) and Minchev’s theorem on the failure of strong
approximation (Corollary were previously known only over number
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fields, whereas we generalize them to all global fields; these generalizations
require extra arguments in the function field case because of the failure of
Hermite’s finiteness theorem on extensions of bounded degree unramified
outside a fixed set of places. A few smaller innovations include an improved
proof of Theorem (]ED (ii) stating that proper birational morphisms be-
tween smooth surfaces factor into blowups at separable points, the use of the
Lang—Nishimura theorem to avoid general position arguments in the proof of
Lemma[0.4.18 on degree 6 del Pezzo surfaces, and the k-rationality of degree 5
del Pezzo surfaces over even the smallest of finite fields (Theorem .

The book whose content overlaps the most with ours is probably [Sko01].
That book also discusses torsors and the Brauer—-Manin and descent obstruc-
tions, and it is written by a leading expert. Our book can serve as prepara-
tion for reading that one, since ours includes more background material (on
algebraic groups, on étale and fppf cohomology, etc.), while [Sko01] goes fur-
ther in other directions, proving theorems on the Brauer—Manin obstruction
for conic bundle surfaces and for homogeneous spaces of simply connected
algebraic groups, for instance.

0.7. Standard notation

Following Bourbaki, define
N := the set of natural numbers = {0,1,2,...},
Z := the ring of integers'={...,—2,-1,0,1,2,...},
Q := the field of rational numbers = { % :m,n €7Z, n#0 },
R := the field of real numbers,
C := the field of complex numbers = {a + bi : a,b € R}, where i = v/—1,
[, := the finite field of ¢ elements,
Zy = the ring of p-adic integers = @Z/p”Z,
Qp := the field of p-adic numbers = the fraction field of Z,,.

The cardinality of a set S is denoted #S or sometimes |S|. If (A;)ier
is a collection of sets, and for all but finitely many ¢ € I a subset B; C A;
is specified, then the restricted product H;e 1(A;, B;) is the set of (a;) €
[Lic; Ai such that a; € B; for all but finitely many ¢ (with no condition
being placed at the i for which B; is undefined).

If a,b € Z, then a | b means that a divides b, that is, that there exists

k € Z such that b = ka. Similarly, a 4 b means that a does not divide b.
Define Z>; :={n € Z:n > 1}, and so on.
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Rings are associative and have a 1 by definition [Pool4|. Suppose that
R is a ring. Let R* denote the unit group of R. Let Rl[t1,...,t,] denote
the ring of polynomials in t1, ..., t, with coefficients in R. Let R][[t1, ..., t,]]
denote the ring of formal power series in t1,...,t, with coefficients in R.
The ring R((t)) := R[[t]][t"!] is called the ring of formal Laurent series in ¢
with coefficients in R; its elements can be written as formal sums ), ant™,
where a, € R for all n and a, = 0 for sufficiently negative n. If R is an
integral domain, then Frac R denotes its fraction field.

Suppose that k is a field. The characteristic of k is denoted char k.
The rational function field k(t1,...,t,) is Frack[t, ..., t,]. Thering k((t))
defined above is a field, isomorphic to Frack[[t]]. Given an extension of
fields L/k, a transcendence basis for L/k is a subset S C L such that S
is algebraically independent over k and L is algebraic over k(S); such an S
always exists, and #5S is determined by L/k and is called the transcendence
degree trdeg(L/k).

Suppose that R is a ring and n € Z>g. Then M, (R) denotes the R-
algebra of n x n matrices with coefficients in- R, and we define the group
GL,(R) := M, (R)*. If R is commutative; a matrix A € M,,(R) belongs to
GL,(R) if and only if its determinant det(4) is in R*.

If A is a category, then A°PP denotes the opposite category, with the
same objects but with morphisms reversed. We can avoid dealing with an
anti-equivalence of categories A = B by rewriting it as an equivalence of
categories A°PP — B. Let Sets be the category whose objects are sets
and whose morphisms are functions. Let Groups denote the category of
groups in which the morphisms are the homomorphisms. Let Ab denote the
category of abelian groups; this is a full subcategory of Groups, where “full”
means that for A, B € Ab, the definition of Hom(A, B) in Ab agrees with
the definition of Hom(A, B) in Groups. We work in a fixed universe so that
the objects in each category form a set (instead of a class); see Appendix
From now on, we will usually not mention the universe.
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Chapter 1

Fields

The first section of this chapter describes some types of fields. The other
sections are concerned with questions one can ask about a field & in order to
quantify how far it is from being algebraically closed:

(1) How many variables must a degree d homogeneous form over k have
before it is guaranteed to have a nontrivial zero? (the C, property)

(2) How complicated is the absolute Galois group of k? (cohomological
dimension)

(3) How complicated is the set of isomorphism classes of finite-dimensional
central division algebras over k7 (the Brauer group)

1.1. Some fields arising in classical number theory

1.1.1. Closures: Let k be a field. Let k denote a fixed algebraic closure
of k. Let ks denote the separable closure of k in k, so kg is the maximal
separable extension of k contained in k. Let kP®'f denote the perfect closure
of k, so kPf'is the smallest perfect field containing k and contained in k.
Equivalently, if char k = p > 0, then, in order to form a more perfect union,
one can define kPf := J _, k'/P" C k. The absolute Galois group of  is

the profinite group &, := Gal(ks/k) ~ Aut(k/k).
1.1.2. Local fields.

(References: [Fro67|, [Ser79|, [RV99, §4.2|)

A local field is a field & satisfying one of the following equivalent condi-
tions:
(1) k is a finite extension of R, Q, or F,((¢)), for some prime p.

1



2 1. Fields

(2) k is isomorphic to one of the following:
e R,
C,
a finite extension of Q, for some prime p, or
F,((u)) for some prime power g.

(3) kisRor C, or else k is the fraction field of a complete discrete valuation
ring with finite residue field.

(4) k is a nondiscrete locally compact topological field (more precisely, k- is
locally compact and Hausdorff with respect to some nondiscrete topol-
ogy for which the field operations are continuous).

(5) k is the completion of a global field (see Section |1.1.3) with respect to

a nontrivial absolute value.

See Theorem 4-12 in |[RV99| for a proof of the difficult part of the equiva-
lence, namely that nondiscrete locally compact topological fields satisfy the
other conditions.

If £k is R or C, then k is called archimedean; other local fields are called
nonarchimedean.

1.1.3. Global fields.
(Reference: |Cas67])

A number field is a finite extension of Q. A global function field is
a finite extension of F,(t) for some prime p or, equivalently, is the function
field of a geometrically integral curve over a finite field F,, where ¢ is a power
of some prime p. (See Section for the meaning of “geometrically integral
curve”.) When we say that k is a global field, we mean that k is either a
number field or a global function field.

Equivalently, a global field is the fraction field of a finitely generated
Z-algebra that is an integral domain of Krull dimension 1.

By a place of k, we always mean a nontrivial place of k. Let Qj be the
set of places of k.

Definition 1.1.1. If S is a finite nonempty subset of {2, containing all the
archimedean places, then the ring of S-integers in k is
Ors:={ack:v(a)>0forallv¢sS}.

If k is a number field, also define the ring of integers of k as Oy, := Oy g
where S is the set of archimedean places.

If v is a place of k, then k, denotes the completion of k£ at v. Let O,
be the valuation ring of k, if v is nonarchimedean, and let O, = k, if v
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is archimedean. Equip k, and its subset O, with the analytic (i.e., v-adic)
topology coming from the place.

The adéle ring A = A}, of k is defined as the restricted product

H;eﬂk (kv, Ov);

it is a k-algebra for the diagonal embedding of k, and it is equipped with the
unique topology such that

e A is a topological group under addition,

e the subset Hveﬂk O, is open, and

e the subspace topology on Hver O, agrees with the product topology.

The image of k in A is discrete, and A /k is compact.

1.1.4. Other fields. For some other kinds of fields, see Appendix [B]

1.2. C, fields

(References: |Gre69|, [Sha72|, [Pfi95, Chapter 5|)

Definition 1.2.1 (|[Lan52|). Let & be a field, and let » € R>g. Then k is
C, if and only if every homogeneous form f(z1,...,z,) of degree d > 0 in
n variables with n > d” has a'nontrivial zero in k™. The adjective quasi-
algebraically closed is a synonym for C.

1.2.1. Norm forms and normic forms.

Definition 1.2.2. Let L be a finite extension of a field k. Let eq,...,e,
be a k-basis of L. Write L' = L(x1,...,z,) and k¥’ = k(x1,...,z,), where
T1,..., Ty are indeterminates. If Ny, i, denotes the norm from L' to k', then
Ny (w161 + -+ + p€p) is called a norm form for L over k.

Example 1.2.3. Let k = Q and L = Q(+/7). The norm form for L over k
associated to the basis 1,1/7 is 22 — 7z3.

Each norm form for L over k is a degree n homogeneous polynomial
in k[xi,...,x,], where n = [L : k]. Although it depends on the choice
of basis, changing the basis changes the norm form only by an invertible
k-linear transformation of the variables. The value of the norm form at a
point (b1,...,b,) € K" equals Ny (bre1 + -+ + byey).

Definition 1.2.4. Let k be a field. A homogeneous form f € k[z1,..., %]
is called normic if deg f = n and f has only the trivial zero in k™.

Any norm form is normic. To construct other normic forms, we introduce
some notation. If f and g are homogeneous forms, let f(g | g | --- | g) be
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the homogeneous form obtained by substituting a copy of g for each variable
in f, except that a new set of variables is used after each occurrence of |.
If f is of degree d in n variables, and g is of degree e in m variables, then
flglgl--1]g)is of degree de in nm variables. If f and g are normic, then

sois f(glgl---1g)

Lemma 1.2.5. If k is a field and k is not algebraically closed, then k has
normic forms of arbitrarily high degree.

Proof. Since k is not algebraically closed, it has a finite extension of degree
d > 1. Let | = f be an associated norm form. For £ > 2, let

Fo=Fa(f[fl---1f)

By induction, F} is normic of degree d’. O

1.2.2. Systems of forms.

Proposition 1.2.6 (Artin, Lang, Nagata). Let k be a C, field, and let
f1,---, fs be homogeneous forms of the same degree d > 0 in n common
variables. If n > sd”, then f1,..., fs have a nontrivial common zero in k™.

Proof. Suppose that k is algebraically closed. Since n > sd” > s, the
projective dimension theorem [Har77, 1.7.2] implies that the intersection of
the s hypersurfaces f; = 0 in P"~! contains a point.

Therefore, from now on assume that k is not algebraically closed. Sup-
pose also that the f; have no nontrivial common zero. We will inductively
build forms ®,,, of degree D,, in N,, variables, each having no nontrivial
zero, and get a-contradiction for large m. By Lemma [1.2.5] we can find a
normic form @ of arbitrarily high degree e (later we will specify how large
we need e to be). So Dy = Ny = e. For m > 1, define

(Dm:(bmfl(fla"'afs|f17"'7f8|”'|f1a""f5|0707""0)7

where 'within each block fi,..., fs the same n variables are used, but new
variables are used after each |, and we use as many blocks as possible (namely,
| Nm—1/s] blocks) and pad with zeros to get the right number of arguments
to ®,,—1. Thus D,, = dD,,—1 and N,, = n|Ny,—1/s|. By induction on m,
the form ®,,, has no nontrivial zero.

By induction, D,, = d™e. If we could ignore the | |, then N,, would be

(n/s)™e, and
N. m
= = ( n ) e > 1
Dr, sd”
for sufficiently large m, since n > sd”. But we cannot quite ignore | |, so we
choose 8 € R with d" < 8 < n/s and choose the degree e of the normic form
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®g so that n|x/s| > Bz holds for all x > e. Then N, > ™e by induction

on m, and
m
N > ﬁ el > 1
Dr, dr

for m sufficiently large.

Since k is C,., the form ®,, has a nontrivial zero, a contradiction. [l

1.2.3. Transition theorems.

Theorem 1.2.7. Let k be a C, field, and let L be a field extension of k.

(i) If L is algebraic over k, then L is C,.
(i) If L = k(t), where t is an indeterminate, then L is Cyyq.
(iii) If trdeg(L/k) =s, then L is Cyys.

Proof.

(i) Let f € L[x1,...,x,] be a form of degree d > 0, where n > d". Since
L is algebraic over k, the coefficients of f generate a finite extension
Ly of k. If we find a nontrivial zero of f over Ly, then the same is a
nontrivial zero over L. Thus we reduce to the case where L is a finite
extension of k.

Choose a basis e1,...,es of L over k. Introduce new variables y;;
with 1 <¢ <n and 1 < j < s, and substitute

S
T = Zyijej
j=1
for all¢ into f, so that

f(z1,...,zn) = Freg + - - - + Fes,

where each Fy € k[{yi;}] is a form of degree d in ns variables. Since
n > d", we have ns > sd”, so Proposition [[.2.6] implies that the F}
have a nontrivial common zero (y;;) over k. This means that f has a
nontrivial zero over L.

(i) Let f € k(t)[x1,...,2s] be a form of degree d > 0, where n > d" 1.
Multiplying f by a polynomial in k[t] to clear denominators, we may
assume that f has coefficients in k[t]. Let m be the maximum of the
degrees of these coefficients. Choose s € Zs large (later we will say
how large), introduce new variables yij with 1 <7 <nand 0<j <s,

and substitute )
i = Z yijtj
=0
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for all 7 into f, so that
fl@r, .. @) = Foy+ Fit + - + Fygpnt™™,
where each Fy € k[{y;;}] is a form of degree d in n(s + 1) variables.
Because n > d"1,
n(s+1) > (ds+m+1)d"

holds for sufficiently large s, and then Proposition [1.2.6] implies that
the Fy have a nontrivial common zero (y;;) over k. This means that f
has a nontrivial zero over k[t], hence over k(t).

(iii) This follows from (i) and (i), by induction on s. O

1.2.4. Examples of C, fields.

(1)
(2)

A field is Cy if and only if it is algebraically closed. For a generalization,
see Exercise [[.3

The following special case of Theoremis known as Tsen's theorem:
If L is the function field of a curve over an algebraically closed field
k (that is, L is a finitely generated extension of k of transcendence
degree 1), then L is C1.

The Chevalley-Warning theorem states that finite fields are C;. This
was conjectured by E. Artin and was proved first by Chevalley [Che36|,
who proved more generally that over a finite field Fy, a (not necessarily
homogeneous) polynomial f of total degree d in n > d variables with
zero constant term has a nontrivial zero. Warning’s proof [War36| of
this proceeded by showing that the total number of zeros, including the
trivial zero, was a multiple of p := charF,. Ax [Ax64| showed moreover
that the number of zeros was divisible by ¢, and in fact divisible by ¢?,
where b= [n/d| — 1 is the largest integer strictly less than n/d. For an
improvement in a different direction, observe that Warning’s theorem
says that a hypersurface X in P"~! over F, defined by a homogeneous
form of degree d < n satisfies #X(F,;) = 1 (mod p); this can be ex-
tended to some varieties that are not hypersurfaces, such as smooth
projective rationally chain connected varieties |[Esn03, Corollary 1.3];
see [Wit10| for a survey about this and further generalizations.

Lang proved that if k£ is complete with respect to a discrete valuation
having algebraically closed residue field, then k is C;. More generally, if
k is a henselian discrete valuation field with algebraically closed residue
field such that the completion K is separable over k, then k is C7. (See
Section for the definition of henselian.) This applies in particular if
k is the maximal unramified extension of a complete discrete valuation
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field with perfect residue field. For example, the maximal unramified
extension Q)" of @, is C1. See |[Lan52| for all these results.

(5) A local field of positive characteristic is Cy; see [Lan52, Theorem §|.
More generally, if k is C., then k((t)) is Cr41 |Gre66].

1.2.5. Counterexamples. The field R is not C,. for any r, since for every
n > 1 the equation 27 + - - - + 22 = 0 has no nontrivial solution. The same
argument applies to any formally real field.

E. Artin conjectured that nonarchimedean local fields were Cy; the expec-
tation being that if a field k is complete with respect to a discrete valuation
with a C) residue field, then k should be C,1;. That nonarchimedean local
fields satisfy the Cy property restricted to degree d forms was proved for d = 2
|[Has24] and d = 3 [Dem50}, Lew52|. Also Ax and Kochen [AK65| nearly
proved that the field Q, is Ca: using model theory they showed that for each
d, for all primes p outside a finite set depending on d; every homogeneous
form of degree d in > d? variables over Qp has a nontrivial zero. But then
Terjanian [Ter66| disproved Artin’s conjecture by finding a homogeneous
form of degree 4 in 18 variables over Q2 with no nontrivial zero. Later it was
shown that if [k : Q,] < oo, then k is not C, for any r |[AK81,|Ale85|. It
follows that if k is a number field, then k'is not C, for any r (Exercise [L.8).

1.2.6. Open questions.

Question 1.2.8. Is there a field £ and r € R>q such that k£ is . but not

Question 1.2.9 (E. Artin). Let Q* be the maximal abelian extension of
Q. (The Kronecker-Weber theorem states that Q" is obtained by adjoining
all roots of 1 to @.) Is Q** a Cy field?

Definition 1.2.10. A field k is called C. if whenever one has homogeneous
forms fi1;..., fs in n common variables of degrees di,...,ds, respectively,
with-n >dj + --- + d, the forms have a nontrivial common zero in k".

Question 1.2.11 (|Gre69, p. 21|). Is C, equivalent to C..?

By definition, C] implies C,. The converse holds at least for fields k
such that for every d > 1 there exists a homogeneous form of degree d in
d" variables over k with no nontrivial zero [Lan52, Theorem 4]. The C.
property is studied in more detail in [Pfi95, Chapter 5].

Question 1.2.12. What general classes of varieties are guaranteed to have
a k-point whenever k is C17

Question 1.2.13 (Ax). Is every perfect PAC field C1? (See Section for
the definition of PAC.)
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By |Kol07a, Theorem 1|, every PAC field of characteristic 0 is C, and
even C]. See |[FJO8| 21.3.6] for a few other positive partial results toward

Question [[.2.13
1.3. Galois theory

1.3.1. &j-sets. Let k be a field. Let & be the profinite group Gal(ks/k).
A &-set is a set S (with the discrete topology) equipped with a continuous
action of &;. A morphism of &p-sets is a map of sets respecting the ®&y-
actions. A &p-set is called finite if it is finite as a set. For example,.if - H is
an open subgroup of &y, then &;/H equipped with the left multiplication
action of &, is a finite &p-set.

A continuous action of & on a set S is called transitive if S # () and
for every s1,s9 € S there exists g € & such that gs; = 5. In this case, if
we fix s € S and define H = Stabg, (s) := {9 € & : gs = s}, then H is
open and the map &y /H — S sending gH € &y /H to gs is an isomorphism
of B-sets; in particular, .S is finite. Every &p-set decomposes uniquely as a
disjoint union of transitive G-sets, the orbits.

1.3.2. Etale algebras. The problem with field extensions L D k is that if
we change the base by tensoring with a field extension &’ of k, the resulting
algebra L ®j, k' over k' need not be a field. The notion of étale algebra
generalizes the notion of finite separable field extension in order to fix this
problem.

Definition 1.3.1. A k-algebra L is called étale if it satisfies any of the
following equivalent conditions:

e [ is a direct product of finite separable extensions of k;

o the ks-algebra L ®y ks is a finite product of copies of kg;

e the morphism of schemes Spec L — Spec k is finite and étale in the sense

of Section m (see Proposition |3.5.35)).

A ‘morphism between two étale k-algebras is a homomorphism of k-
algebras. If L is an étale k-algebra and %’ is any field extension of k, then
L ®p k' is an étale k'-algebra.

The following is Grothendieck’s restatement and generalization of Galois
theory.

Theorem 1.3.2 (|]SGA 1| V.7 and Proposition V.8.1]). The functors
{finite BG-sets}PP «— {étale k-algebras},
S — Home, sets (9, ks) = Homgets (S, ks) ©F
Homy,_aigebras (L ks) <— L
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are tnverse equivalences of categories.

Example 1.3.3. If S is a transitive &y-set, say S = & /H for an open sub-
group H < &g, then the corresponding étale algebra is the H-fixed subfield
Homeg, sets(®r/H, ks) = (ks)™ of kg, i.e., the finite separable extension of k
associated to H by classical Galois theory.

In general, a finite ®y-set S is a finite disjoint union [[S; of transi-
tive B-sets. If S; corresponds to the finite separable extension L;, then S
corresponds to the étale algebra [] L;.

Example 1.3.4. If S is a finite set with trivial &-action, the corresponding
étale algebra is a finite product of copies of k. Such étale algebras are called
split.

1.3.3. Galois étale algebras. Just as étale algebras generalize finite sep-
arable field extensions, Galois étale algebras generalize finite Galois field
extensions:

Definition 1.3.5. Let L be an étale k-algebra with a left action of a finite
group G. If Q D k is a field extension, then L&y (2 is an étale 2-algebra with
left G-action, and so is ngGQ = Homges(G, 2) via the right translation
G-action on G. Call L a Galois étale k-algebra with Galois group G if for
some field extension 2 D k we have L ®; Q ~ [] geG Q) as étale (2-algebras
with left G-action.

@ Warning 1.3.6. The group Aut(L/k) can be larger than G, and in fact G
is not determined by L/k. For example, if L = k X k X k X k, then L can
be equipped with actions of Z/4Z or 7Z/27 x 7 /27 making it a Galois étale
algebra, but Aut(L/k)~ Sy. This explains why in Definition [1.3.5the group
G and its action-on L must be specified in advance.

Remark 1.3.7. If an € as in Definition [1.3.5| exists, then one such 2 is k.

1.3.4. Galois descent for vector spaces. Let L O k be a finite Galois
extension of fields with Galois group G. An action of G on an L-vector space
W is semilinear if o({w) = (of)(ow) for all 0 € G, £ € L, and w € W.

Example 1.3.8. The coordinatewise action of G on L™ is semilinear. More
generally, if V' is any k-vector space, then V ®p L is an L-vector space with
semilinear G-action.

Let W& = {w € W : gw = w for all g € G}; this is a k-vector space.
Lemma 1.3.9. Let V be a k-vector space. Then the k-linear map
V — (Ve L)Y
v o ®1
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18 an isomorphism.

Proof. For V =k, this is the Galois theory fact L& = k. Any V is a direct
sum of copies of the 1-dimensional space k, and the formation of the map
respects direct sums. |

Lemma 1.3.10. Let W be an L-vector space with semilinear G-action. Then
the L-linear map

WS e, L — W
wRL — lw

s an isomorphism.

Proof. We will prove that the same holds even if L is'only a Galois étale
k-algebra with Galois group G' (and W is an L-module with semilinear G-
action). The advantage of considering this more general statement is that
now we can extend the ground field by applying @z to k, L, and W. The
operation of taking G-invariants and the property of a linear map being an
isomorphism are preserved by such a base change, so after renaming €2 as k,
we reduce to the split case L = ngG k. Let eg = (0,...,0,1,0,...,0) € L,
with 1 in the gth coordinate. Then the L-module W is [] gec Wy for some
k-vector spaces Wy := e,W. An element g € G maps e4 to e1, and hence
provides an isomorphism W, = Wj. Then W& is the diagonal image of
Wy — ngG Wy. Finally, the map WE @, L — W restricts to an isomor-

phism W& @, keg = W for each g, so it is an isomorphism. O

Theorem 1.3.11.  Let L D k be a finite Galois extension of fields with Galois
group G. The functors

®kL

{k-vector spaces} {L-vector spaces with semilinear G-action}

S —
take G-invariants

are inverse equivalences of categories.

Proof. The two compositions are isomorphic to the identity functors, by

Lemmas [1.3.9 and [1.3.101 O

Corollary 1.3.12. Let L O k be a finite Galois extension of fields with
Galois group G. For each r € Z>q, there is only one r-dimensional L-vector
space with semilinear G-action, up to isomorphism.

Proof. The functor ®;L in Theorem [1.3.11| respects dimension: dimg V =
dimy,(V ® L). There is only one r-dimensional k-vector space, up to iso-
morphism. ([
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Remark 1.3.13. Theorem [1.3.11] and its proof generalize to the theory of
descent developed by Weil and Grothendieck. See Chapter [

1.3.5. Hilbert’s theorem 90 and generalizations. Let us gather a few
fundamental results in Galois cohomology. Let L™ denote the additive group
of a field L. If k is a field, and n € Z>; is not divisible by chark, let iy
denote the group of nth roots of 1 in kg*.

Definition 1.3.14. If A is a commutative group scheme (see Section
over a field k, then the notation H?(k, A) denotes the Galois cohomology
group HY (&, A(ks)). (This definition is made so as to agree with the étale
cohomology group H, (Spec k, A) of the sheaf defined by A on the étale site
of Speck; see Section M) If A is noncommutative, the same definition is
made for ¢ =0, 1.

Proposition 1.3.15. Let L O k be a Galois extension of fields.

(i) We have HY(Gal(L/k),L*) = 0 for all ¢ > 1. In particular, we have
HY(k,Gg,) =0 for all ¢ > 1.

(ii) (“Hilbert’s theorem 90”) We have H(Gal(L/k), L*) = 0. In particular,

HY(k,G,,) = 0.
(iii) For each r € Zsq, we have H(Gal(L/k),GL.(L)) = 0. In particular,
H!(k,GL,) = 0.

Remark 1.3.16. Hilbert’s original theorem 90 was essentially the special
case of in which Gal(L/k) is a finite cyclic group; see Exercise It
was E. Noether who generalized it to arbitrary (finite) Galois extensions.

Proof. We may assume that [L : k] < oo, since the general case then follows
by taking a direct limit.

(i) By the normal basis theorem, LT is an induced Gal(L/k)-module, so

it has trivial cohomology.

(i1) This is the » = 1 case of , which we will now prove.

(iii) Let G = Gal(L/k). Given a l-cochain (i.e., function) £: G — GL, (L),
let We be L" equipped with the function G x L™ — L" sending (o, w) to
& (ow). Exercise shows that this describes a semilinear G-action
(i.e., the group action axiom (o7)*w = o*(7+w) is satisfied) if and only
if ¢ is a cocycle. Exercise [[.9b] shows also that given two 1-cocycles &
and &', we have Wg ~ W as L-vector spaces with semilinear G-action
if and only if £ and & are cohomologous. Thus we obtain a bijection

{r—dimensional L-vector spaces with semilinear G-action}

H'(G,GL,(L))

isomorphism
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By Corollary|[1.3.12] the latter set has one element, so H*(G, GL,.(L)) =
0 too. (]

Remark 1.3.17. There is an alternative proof of that proceeds by
showing directly that every 1-cocycle £: G — GL,.(L) is cohomologous to the
trivial 1-cocycle, by writing down a Poincaré series; see [Ser79), Chapter X,
Proposition 3|. This proof has the advantage of being short and needing little
beyond Dedekind’s theorem on linear independence of automorphisms, but
it is harder to remember and does not readily generalize to give the theory

in Chapter [4

Remark 1.3.18. Suppose that L is an extension of k. Choose an embed-
ding ¢: ks — Lg; we then get an inclusion homomorphism A(ks) — A(Ls)
and a restriction homomorphism &7 — &;. Thus we get a-homomorphism
HY(k, A) — H%(L, A), and it is independent of ¢, since the conjugation action
of a group G on any cohomology group H?(G, M) is-trivial, as can be proved
by dimension shifting.

1.4. Cohomological dimension

(Reference: |Ser02])

This section is almost never used in the rest of the book, so it may be
skipped upon a first reading.

1.4.1. Definitions. Let G be a profinite group. When we say that A is a
G-module, we mean that A is an abelian group with an action of the abstract
group G such that the map G x A — A giving the action is continuous for
the profinite topology on G and the discrete topology on A.

A G-module A is called torsion if and only if every element of the abelian
group A has finite order. If B is an abelian group and n is an integer, define
Bln] := {b € B : nb =0} If pis a prime number, define B[p>] :=
Unz 1 Blp"].

Definition 1.4.1. Let G be a profinite group, and let p be a prime number.

(i) The p-cohomological dimension of G, denoted cd,(G), is the smallest
n € N such that for all torsion G-modules A and all integers q > n,
HI(G, A)[p>] = 0. If no such n exists, then cd,(G) = +o0.

(ii) The strict p-cohomological dimension of G, denoted scd,(G), is de-
fined in the same way as cd,(G), except that the word “torsion” is
omitted.

(iii) The cohomological dimension of G is cd(G) = sup, cd,(G).

(iv) The strict cohomological dimension of G is scd(G) := sup, scd,(G).



1.4. Cohomological dimension 13

Proposition 1.4.2. For any profinite group G and any prime number p,
scdp(GQ) equals cdp(G) or cdy(G) + 1.

Proof. Clearly scd,(G) > cd,(G). To complete the proof, we assume that
cdp(G) = n < oo and attempt to prove that scd,(G) < n+ 1.

Let A be a G-module. Take the long exact sequences associated to

0= Apl = AL pA—0
and

0—pA—A— A/pA—0.
For ¢ > n + 1, the hypothesis c¢d,(G) = n implies HY(G, Alp]) = 0 and
H7Y(G, A/pA) = 0, so the long exact sequences give injections HY(G, A) N
HY(G,pA) and HY(G,pA) — HI(G, A), respectively. The composition of
these injections is multiplication by p on H?(G, A), so HI(G, A)[p>] = 0.
Thus scd,(G) < n + 1, by definition. O

Recall that if & is a field, then & denotes the profinite group Gal(ks/k).

Definition 1.4.3. If & is a field, then cd,(k) := cd,(®y). Define scd,(k),
cd(k), and scd(k) similarly.

1.4.2. Transition theorems. The condition cd(k) < r on a field behaves
under field extensions similarly to the C). condition. To prove such results, we
need to develop analogous transition theorems for cohomological dimension
of groups.

Let us first recall-the definition of induced modules, and Shapiro’s lemma.

Definition 1.4:4. Suppose that H is a closed subgroup of a profinite group
G. Given an H-module A, the induced module Ind%(A) is the group of
continuous - maps ¢: G — A such that ¢(hx) = h¢(x) for all z € G and
h € H. Fach g € G acts on Ind%(A) by (9¢)(x) = ¢(xg); this makes
Ind%(A) a G-module.

Lemma 1.4.5 (Shapiro’s lemma). Let H be a closed subgroup of a profinite
group G. For each H-module A, we have HY (G, Ind%(A)) ~ HI(H, A).

Next is a transition theorem for cohomological dimension of groups:

Proposition 1.4.6. Let H be a closed subgroup of a profinite group G, and
let p be prime. Then cdy(H) < cdy(G) and scdp(H) < scdy(G). Equality
holds in both, if either

() the index (G : H) is prime to p, or

(ii) the subgroup H is open in G and cdp(G) < 0.
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Remark 1.4.7. The condition “(G : H) is prime to p” means that each
open subgroup of G containing H has index prime to p. Alternatively (but
equivalently), (G : H) can be interpreted as a supernatural number [Ser02]
[.1.3].

Proof of Proposition Let A be a torsion H-module. Then the G-
module A’ := Ind%(A) is torsion, and it satisfies HY(G, A') ~ HI(H, A)
(Shapiro’s lemma). Thus c¢d,(H) < cdy(G) by definition.

Now suppose (lil). The corestriction-restriction formula Cor o Res = n on
cohomology for subgroups of finite index n implies that

Res: HY(G, 4)[p] — HI(H, A)[p™]

is injective, at least if (G : H) is finite (and prime to p). In fact, this holds
also for (G : H) infinite (and prime to p), by expressing the cohomology as
direct limits over cohomology of finite groups. Hence cd,(G) < cd,(H).

Now suppose instead. Let n = cdp(G). We may assume n > 1.
Choose a torsion G-module A such that H"(G;A)[p>] # 0. Let A’ =
Indg(A). There is a surjection of G-modules 7: A” — A mapping ¢ to
> veG/H T ¢(z~!) (where x ranges over a set of coset representatives for H
in G). If B = ker, then we have an exact sequence

H*(G,A") - H"(G;A) — H"T(G, B).
These groups are torsion, so taking p-primary parts is exact. Since cdy(G) =
n, we have H"™1(G, B)[p>°] = 0, so H*(G, A")[p>] — H"(G, A)[p>] is sur-
jective. Thus H"(G, A")[p*] is nonzero, and Shapiro’s lemma identifies this
with H"(H, A)[p>]. Hence cd,(H) > n = cdp(G).

The same proofs work for scd,. O

Given an algebraic extension L D k, let [L : k|s denote the separable de-

gree; then “[L : ks is prime to p” means that every finite separable extension
of k inside L has degree prime to p.

Corollary 1.4.8. Let L be an algebraic extension of k, and let p be prime.
Then cdp(L) < cdp(k). Equality holds in both, if either

(i) [L : k]s is prime to p, or
(ii) [L: kls < o0 and cdy(k) < oo.
Corollary [T.4.8] can be strengthened for finite extensions.
Proposition 1.4.9. Suppose [L : k| < co. Then cd,(L) = cd,(k) unless the

following are simultaneously satisfied:
(i) p=2,
(ii) k is formally real, and
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(iii) cda(L) < o0.
Proof. See |[Ser02, 11.§4.1, Proposition 10/]. O

Remark 1.4.10. We have cd2(R) = oo but cd2(C) = 0, so the “unless”
clause in Proposition [I.4.9] cannot be eliminated.

Proposition 1.4.11. Let L be an extension of k with trdeg(L/k) = s, and
let p be prime. Then cdp(L) < cdp(k) + s. Equality holds if L is finitely
generated over k, cd,(k) < oo, and p # chark.

Proof. See |[Ser02, 11.§4.2, Proposition 11]. O

Proposition 1.4.12. Let L be complete with respect to a discrete valuation
with residue field k, and let p be prime. Then cd,(L) < cdy(k)+ 1. Equality
holds if cd,(k) < oo and p # char L.

Proof. See |Ser02, I11.§4.3, Proposition 12]. O

1.4.3. Examples.

(1) If k is a separably closed field, then &, is trivial, so cd, (k) = scd,(k) =0
for all p.

(2) If k is a finite field, then & = Z, and cdp(k) = 1 and scd, (k) = 2 for
all p.

(3) If k is a nonarchimedean local field, then cd,(k) = scd,(k) = 2 for all
p # chark. (For cd, this follows from Proposition For scd), in
the case of finite extensions of Qy, see [Ser02, 11.§5.3, Proposition 15].
For a proof of the more general fact that an n-dimensional local field k
in the sense of Section has cd,(k) = scd,(k) = n+1 for p # chark,
see [Koy03|.)

(4) Suppose that k is a global field and p # char k. If k has a real place,
suppose that p # 2. Then cdy(k) = scd,(k) = 2. (See [Ser02, 11.§4.4,
Proposition 13] and [NSWO08, Theorems 8.3.17 and 10.2.3].)

(5) Let ko be a finite field or a number field. Let p be a prime not equal
to char ky. In the case where kg is a number field having a real place,
assume in addition that p # 2. Then for any finitely generated field
extension k of kg,

d (k) — trdeg(k/ko) +1 if ko is a finite field,
T deg(k/ko) +2 if ko is a number field.

This follows from the previous examples by using Proposition [1.4.11
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1.5. Brauer groups of fields
(Reference: |GSO06])

1.5.1. Azumaya algebras over a field.

Definition 1.5.1. An Azumaya algebreﬂ over a field k is a k-algebra A
(associative and with 1, but possibly noncommutative) such that A @y, ks is
isomorphic as a ks-algebra to the matrix algebra M, (ks) for some n > 1.

Equivalent definitions are given in Proposition Some of these def-
initions require additional terminology, which we now provide. Let A be a
(possibly noncommutative) k-algebra. Then A is said to be finite-dimen-
sional if and only if the dimension of A as a k-vector space is finite. We say
that A is central if and only if its center is the image of k£ in A. Finally, A
is simple if and only if A has exactly two 2-sided ideals, namely 0 and A.

Proposition 1.5.2 (Characterizations of Azumaya algebras). The following
conditions on a k-algebra A are equivalent:

(i) There exists a finite separable extension L' D k such that the L-algebra
A ®y L is isomorphic to the matriz-algebra M, (L) for some n > 1.

(ii) The ks-algebra A ®y ks is isomorphic to the matriz algebra My, (ks) for
somen > 1; i.e., A is an Azumaya algebra over k.

(i) There exists a field extension L D k such that the L-algebra A @y, L is
isomorphic to the matriz-algebra My, (L) for some n > 1.

(iv) The algebra A is a finite-dimensional central simple algebra over k.

(v) There is a k-algebra isomorphism A ~ M, (D) for some integer r > 1
and some finite-dimensional central division algebra D over k.

In , r and D are uniquely determined by A.

Sketch of proof. The implications & = = and the im-
plication = are left as Exercise m The implication =
and the uniqueness of r and D are a consequence of Wedderburn’s theo-
rem |[GS06, Theorem 2.1.3]: the idea is to choose a simple A-module M, to
recover D as Endy M, and to show that the homomorphism A — Endp M
is an isomorphism. The implication = , or equivalently the state-
ment that a finite-dimensional division algebra over a separably closed field
is commutative, is due to Noether and Kéthe (for a proof, see [Boul2| §13.2,
Proposition 3]). O

1Azumaya algebras over a field are more commonly called central simple algebras, while the
term “Azumaya algebra” is reserved for the generalization in which the field is replaced by a ring
or scheme. Our reason for calling them Azumaya algebras even over a field is (1) to use a single
term consistently for all bases and (2) to highlight that the property of being a twist of a matrix
algebra is often more useful or relevant than the properties of being central and simple.
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Let Az be the category of Azumaya algebras over k, with k-algebra
homomorphisms as the morphisms. Each A of dimension d can be described
by d? elements of k expressing the product of each pair from a basis in terms
of the basis. It follows that the isomorphism classes in Az, form a set (in the
universe Y we are working in, as in Appendix [A)), in contrast with, say, the
category of isomorphism classes of arbitrary k-algebras, which is too large
to be a set (in U).

The opposite algebra A°PP of A is the k-algebra with the same underly-
ing k-vector space structure, but with multiplication - defined by a - b="ba,
the reverse of the original multiplication.

Proposition 1.5.3.
(i) If A € Az, then A°PP € Az.
(ii) If A, B € Az, then A®y, B € Az.
(iii) If A € Az and L is a field extension of k, thenA ®y L € Azp,.

Proof. We leave this as Exercise [1.15] O

Definition 1.5.4. A quaternion algebra over k is a 4-dimensional Azumaya
algebra over k.

1.5.2. Splitting fields.

Definition 1.5.5. An Azumaya algebra A is called split if it is isomorphic
to M,,(k). A field L such that the L-algebra A ®j L is isomorphic to M,,(L)
for some n > 1 is called a splitting field for A, and then one says that L
splits A.

Proposition 1.5.6. Let A € Azy. Let L be a field with k C L C A. Then
[L: k> < [A:k|. If equality holds, then L splits A.

Proof. Let n = [L : k]. View A as a right L-vector space; let r be its
dimension. Left multiplication by any a € A defines an L-endomorphism
A — A. Thus we obtain a k-algebra homomorphism A ®; L — Endy A ~
M;(L). Since A ®, L is simple, this homomorphism is injective. Thus

rm=[A:k]=[A®y L: L] <[M.(L): L] =r>
Multiply the inequality rn < 72 by n/r to obtain n? < rn = [A : K].

If equality holds, then A ®; L — Endp A ~ M, (L) must have been an

isomorphism. O
Proposition 1.5.7. Let D be a central division algebra of degree 1% over a

field k. Then D contains a degree r separable field extension L D k.

Proof. See |GS06, Proposition 4.5.4]. O
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1.5.3. Reduced norm and reduced trace. If A € Az, the composi-
tion nr, of an isomorphism ¢: A ®y, ks — M, (ks) with the determinant map
M, (ks) — ks is independent of the choice of ¢, since any two ¢’s differ by a
ks-algebra automorphism of M, (ks), and any such automorphism is given by
conjugation by an element of GL,(ks). (More generally, any automorphism
of an Azumaya algebra over a field is inner, i.e., conjugation by a unit. Even
more generally, the Skolem—Noether theorem |GS06|, Theorem 2.7.2] states
that for any two k-algebra homomorphisms f, g from a simple k-algebra A
to an Azumaya k-algebra B, there exists b € B* such that f(z) = bg(x)b*
for all z € A.)

If o € &, then o acts on A ®j ks (through the second factor) and on
M, (ks) (entry-by-entry), so we get a ks-algebra isomorphism ¢, characterized
by the fact that it makes the diagram

A Sk ks — Mr(ks)

A 122 k's o > Mr(ks)

commute. The independence of nr, on ¢ implies that nr := nr, is &-
equivariant, meaning that “nr(z) = nr(?z) for all o € & and = € A ® ks.
By Galois theory, nr restricts to a multiplicative map nr = nry,: A — k,
called the reduced norm. It restricts further to a group homomorphism
AX — kX

Similarly, one can define the reduced trace try,,: A — k, by using the
trace instead of the determinant. It is a k-linear map.

Example 1.5.8. Let £k = R, and let A = H be Hamilton’s ring of quater-
nions, which is a 4-dimensional R-algebra generated by i and j satisfying
i? = —1, j2 = —1, and ji = —ij. There is a C-algebra isomorphism
H ®g C = M3(C) sending o ® 1 to left-multiplication-by-a: on the right
R(7)-vector space H = R(i) @ jR(¢) with basis 1, j. Explicitly, we have

H®r C = MQ((C)

10
1®1|—><0 1>

i 0)
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If « =a+bi+cj+dij, where a,b,c,d € R, then
a+bi —c—di
nrg /g (o) = det <c —di a—Ubi

_ a+bi —c—di\ _
tr/p(a) = tr (c— di a—bi ) = 2a.

1.5.4. Definition of the Brauer group. Call two elements A, B € Az
similar (or Brauer equivalent), and write A ~ B, if either of the following
equivalent conditions holds:

>—a2+b2+02+d2,

(1) There exist m,n > 1 and a division algebra D € Az such that
A ~M,,(D) and B ~ M, (D) as k-algebras.

(2) There exist m,n > 1 such that M,,(4) ~ M,,(B) as k-algebras.

Define Brk as the set Az /~ of similarity classes. It turns out that the
operations (A, B) — A®y B and A — A°PP on Az induce the multiplication
and inverse maps for a group structure on Brk. The abelian group Brk is
called the Brauer group of k. (Equivalently, but slightly less elegantly,
one can define Brk as the set of isomorphism classes of finite-dimensional
central division algebras over k, and define the product of D and D’ to be
the division algebra D" such that D ®j D' ~ M,,(D") for some n > 1.)

If L is a field extension of k, then' A — A®y L induces a group homomor-
phism Brk — Br L. In fact, Br is a covariant functor from fields to abelian
groups.

1.5.5. Cohomological interpretation of the Brauer group.

Proposition 1:5.9. For each r > 1, there is a natural injection

{Azumaya k-algebras of dimension %}

—  HY (&, PCL,(k)).

k-isomorphism

Proof. Let A € Az be such that [A : k] = 72. Choose a ks-algebra iso-
morphism ¢: M,(ks) — A ®p ks. As in Section By acts on such
isomorphisms. Define

50' = ¢—1 (U¢) € AUtks—algebras(Mr(ks)) =~ PGLr(ks)a

the last isomorphism is due to the fact that every automorphism of a matrix
algebra is inner. If 0,7 € &, then

Cor =07 () =07 ("0) (T07) (Te) =67 (9) " (67 (9)) =& 7&r-
In other words, £ is a 1-cocycle. Changing ¢ (i.e., composing ¢ with an

automorphism of M,.(ks)) changes £ to a cohomologous cocycle, so we get an
element of H! (&, PGL,(ks)) depending only on A.
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Finally, we must prove that the map just defined is injective. Sup-
pose that A, B € Az, satisfy [A : k] = [B : k] = 72, and that choices
of ¢: My(ks) = A ®p ks and 9: M,(ks) — B ®i ks give rise to coho-
mologous cocycles. Then, after changing 1, the cocycles become equal:
¢~ (¢) = Y1 () for all ¢ € By. Rewriting this as o~ = (z/)qb_l)a
shows that the kg-algebra isomorphism ©¥¢~1: A ®y ks — B ®y, ks restricts
to a k-algebra isomorphism A = B. ([

Remark 1.5.10. In fact, the injection of Proposition [I.5.9] is a bijection.
This is an elementary special case of descent theory, Theorem [£.5.2]in par-
ticular: an Azumaya algebra of dimension 72 is the same thing as a twist of
the matrix algebra M, (k).

Taking cohomology of the short exact sequence of &x-modules
1 = ks* — GL,(ks) = PGL,(ks) — 1
and applying Proposition gives a map of pointed sets
(1.5.11) H! (&, PGL,(ks)) — H2(Sy, ks ™).

The latter is denoted H?(k, G,,). Composing Proposition [1.5.9| with (I.5.11))
lets us associate to each A € Az an element [A] € H?(k, G,,).

Theorem 1.5.12. The map taking each A € Az to the associated element
of H2(k,G,,) induces an isomorphism of abelian groups Brk = H2(k,G,,).

Proof. See [Ser79, Chapter X, §5|. O

Proposition 1.5.13. Let k be a field.
(i) If char k { n, then HY(k, ju,) ~ k> /EX".
(ii) If char k4 n, then H%(k, un) ~ (Brk)[n].
(iii) For any Galois extension L D k of fields,
H?(Gal(L/k), L*) ~ ker (Brk — BrL).

Proof.
(i) Take the long exact sequence of cohomology associated to
0= pp = ks = k™ =0

and apply Hilbert’s theorem 90.

(ii) Same proof as (), but using Theorem [1.5.12}
(iii) Since HY(L,G,,) = 0 by (i), we get an inflation-restriction sequence
for H?,

0 — HX(Gal(L/k), L*) 25 H2(k, G,) 25 H2(L, Gyp).



1.5. Brauer groups of fields 21

(To construct this sequence and prove it is exact, one can either use
cocycles explicitly or deduce it from the Hochschild—Serre spectral se-

quence; see Corollary [6.7.4l) Now apply Theorem [1.5.12| to the two
groups on the right. O

Remark 1.5.14. Parts () and of Proposition [1.5.13| can be generalized
to the case where char k | n, but in place of Galois cohomology one must use
the fppf cohomology to be introduced in Section [6.4.1]

1.5.6. Period and index.

Definition 1.5.15. The index of a finite-dimensional central division alge-
bra D over k is y/[D : k|, which is a positive integer by Proposition
More generally, the index of M, (D) is defined to be the index of D. This
makes index a well-defined function Brk — Z~.

Definition 1.5.16. The period of an element A € Az (or of its class [A])
is the order of [A] in Brk.

2

Proposition 1.5.17. If A is an Azumaya- algebra of dimension r* over k,

then r[A] =0 in Brk. In other words, period divides index.

Proof. Write A ~ M, (D) for a central division algebra D over k. Then
[D : k] divides [A : k], and A and D have the same period and the same
index, so we may reduce to the case that A is a central division algebra D. By
Proposition D contains a degree r separable field extension L D k. By
Proposition L is a splitting field for D. Then [D] € ker(Brk — Br L).
By Exercise we have r[D] = 0.

For a different proof, see the proof of Theorem [6.6.17](i). O

Remark 1.5.18. If k is a local or global field, every element of Brk has

period equals index (Theorems 1.5.34 and 1.5.36), so the injection
HY(®4, PGL, (k) — (Brk)[r] is a bijection for each r > 1.

@ Warning 1.5.19. For general k, the image of HY(&;, PGL,(ks)) < Brk
need not even be a subgroup! For example, if » = 2, the image consists
of the classes of quaternion algebras, but a tensor product of quaternion
algebras can be a division algebra, in which case it is not similar to another
quaternion algebra. Explicitly, if kg is a field of characteristic not 2, and
k = ko(t1,t2,t3,t4), then the k-algebra (¢1,t2) ® (t3,t4) (in the notation of
Section turns out to be a division algebra |[GS06, Example 1.5.7].
Its period is 2, but its index is 4.

1.5.7. Cyclic algebras.
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1.5.7.1. Clyclic algebras from cyclic fields. Let L O k be a degree n cyclic
extension of fields. Given a € k* and a generator o of Gal(L/k), we construct
a k-algebra as follows. Let L[z], denote the twisted polynomial ring having
the same additive group as L[z]|, but whose multiplication is defined so that
xl = (°f)x. Let A be the quotient of L[z], by the ideal generated by the
central element ™ — a. Then one can show that A € Azy; see Exercise

1.5.7.2. Cyclic algebras from étale algebras. One can generalize the construc-
tion by allowing L to be only an étale k-algebra instead of a field extension.

Start with an element a € k£* and a continuous homomorphism y: & —
Z/nZ. Let S = Z/nZ, and let each g € B act on S by s — s+ x(g). By
Theorem[I.3.2] S corresponds to an étale k-algebra L, and the automorphism
s — s+ 1 of the By-set S corresponds to a k-algebra automorphism o of
L. As in Section form A := L{z|,/(z™ — a). Again it turns out that
A € Azy; see Exercise [1.20]

Definition 1.5.20. The k-algebra A just constructed, or its class in Brk,
is denoted (a, x). Such an algebra is called a cyclic algebra.

One advantage of allowing L to be an étale algebra instead of insisting
on a field is that now if A is a cyclic algebra over k, and ¥ D k is a field
extension, then A ®, k' is a cyclic algebra over k’.

1.5.7.3. First cohomological interpretation. The construction of (a,x) can
also be understood cohomologically. For simplicity, suppose that y: & —
Z/nZ is surjective, or equivalently that L is a field. Let G = Gal(L/k), so

~ ~0
X induces x: G — Z/nZ. By definition of Tate cohomology, H (G, L*) =
kX /Np(L*), and we may consider the image of a in this group. The gener-

~2
ator o = Y~ 1(1) of G determines a generator u of the cyclic group H (G, Z),
~0 ~ 2
and “cup product with u” gives an isomorphism H (G,L*) — H (G, LX)
|[AWG67; §8, Theorem 5|. The latter is isomorphic to ker (Brk — Br L) by
Proposition 1.3.15, and one can show that the composition

~0 ~ 22
(1.5.21) k* - H (G,L*) - H (G,L*) < Brk,
maps any a € k* to the class of the cyclic algebra (a, x), maybe with a sign
error, depending on the definition of w. The following two propositions are
consequences of this.

Proposition 1.5.22. Let L and x be as above. Suppose that A € Az and
that [A : k] = [L : k]>. Then A is split by L if and only if A ~ (a,x) for
some a € k*.

Proof. By (1.5.21), A is split by L if and only if it is similar to (a, ) for
some a € k*. But A and (a,y) have the same dimension, so similar is
equivalent to isomorphic. O
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Proposition 1.5.23. Let L and x be as above. For a € k*, the k-algebra
(a,x) is split if and only if a € Ny, (L™).

Proof. The kernel of the composite homomorphism in (1.5.21)) equals the
kernel of the first homomorphism, which is Ny, (L*). O

1.5.7.4. Second cohomological interpretation. We can give a another coho-
mological interpretation of (a,x), at least when chark t n. The element a
can be mapped to an element of kX /k*" = H'(k, u,,). On the other hand,
X € Hom(&y,Z/nZ) ~ H*(k,Z/nZ). Under the cup product

H(k, un) x HY(k, Z/nZ) — B%(k, un) ~ (Brk)[n],

a and x pair to give an element of (Br k)[n], which turns out to be the class
of the cyclic algebra (a, x), at least up to a sign.

Suppose now that chark { n and that k contains a primitive nth root
of unity, ¢. Then ¢ determines an isomorphism Z/nZ =+ p, of &x-modules,
so we get an isomorphism H'(k,Z/nZ) ~ H(k, ji) ~ k*/k*". Now given
a,b € k*, we can take the cup product of their images under

HY(k, pun) x HY(k, Z/nZ) = H*(k, ) ~ (Brk)[n]

to get an element of Brk. Alternatively, from a and the étale k-algebra
L = k[t]/(t™ — b) equipped with the automorphism o mapping ¢ to (t, one
can construct a cyclic algebra (a,b): € Az, representing the element of Br &
defined in the previous sentence. When n = 2, one writes simply (a, b) for
(a, b)_l .

Remark 1.5.24. Exercise|l.23|shows that every quaternion algebra is cyclic.
In particular, if chark # 2, then every quaternion algebra D over k is of the
form (a,b) for some a,b € k*: this algebra has a k-basis 1,i,7,ij where
i? = a, j2 = b, and ji = —ij. (The elements a and b are not uniquely

determined by D.)

1.5.8. Connections with the C, property and cohomological dimen-
sion.

Proposition 1.5.25. Let k be a field. The following eight conditions are
equivalent:

(i) edk <1, and if chark = p > 0, then (Br K)[p™°] = 0 for every algebraic
extension K of k.
(ii) Br K = 0 for every algebraic extension K of k.

(iii) If K is an algebraic extension of k and L/ K 1is a finite Galois extension,

then H1(Gal(L/K),L*) =0 for all ¢ > 1.
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(iv) If K is an algebraic extension of k and L/ K is a finite Galois extension,
then Ny g: L* — K* is surjective.
(i), (it"), (iit"), (iv'): Same as (),...,({iv]), but restricted to extensions K that

are finite and separable over k.

Proof. See |[Ser02, 11.§3.1, Proposition 5|. O

Definition 1.5.26. A field k is said to be of dimension < 1 if it satisfies
the equivalent conditions of Proposition [1.5.25] We then write dim &£ <1.

?P Warning 1.5.27. This has nothing to do with the Krull dimension, which
is 0 for any field k.

Proposition 1.5.28. If k is C'1, then Brk = 0.

Proof. Let D be a finite-dimensional central division algebra over k, so
[D : k] = r? for some r > 1. An associated reduced norm form is of degree r
in 72 variables and has no nontrivial zero. This contradicts the C property
unless » = 1. This holds for all D, so Brk = 0. O

Corollary 1.5.29. If k is Cy, then k is of dimension < 1.

Proof. We check condition in Proposition [1.5.25, Let k& be Ci. Any
algebraic extension K of k is C; by Theorem [1.2.7|fi), and hence it satisfies
Br K = 0 by Proposition [1.5.28 U

@ Warning 1.5.30. The converse to Corollary|1.5.29|is false. See [Ser02} p. 80|
for a counterexample, due to Ax [Ax65|. In fact, Ax finds a field of dimension
< 1 that is not C, for any 7.

Remark 1.5.31. Serre wrote in [Ser02, p. 88| that it is probable that for
all 7 > 0, all C; fields satisfy cd k < r. This is true for r < 2 (the r = 2 case
is a theorem of Merkurjev and Suslin). Moreover, [OVV07| shows that C,
fields of characteristic 0 satisfy cds k& < 7.

1.5.9. Examples.
Theorem 1.5.32 (Wedderburn). If k is a finite field, then Brk = 0.

Proof. The Chevalley-Warning theorem says that k is C;. Apply Proposi-
tion [1.0.28] (I

Theorem 1.5.33 (original form of Tsen’s theorem). If k is a field of tran-
scendence degree 1 over an algebraically closed field, then Brk = 0.

Proof. Again k is C1, so apply Proposition [1.5.28 ([
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Theorem 1.5.34 (Brauer group of a local field). Suppose that k is a local
field.
(i) There is an injection inv: Brk — Q/Z, whose image is
3Z/Z if k=R,
0 if k=C,
Q/Z  if k is nonarchimedean.
(ii) If L is a finite extension of k, then the diagram
Brk —2 Q/Z
(1.5.35) l J[L:k:}

BrL 5 Q/Z
commutes.

(iii) Fvery Azumaya algebra over k is cyclic.

(iv) Ewvery element of Brk has period equal to-index.

Proof. The cases where k is R or C are easy, so assume that k is non-
archimedean.

(i) If F is the residue field of k, one shows that Brk ~ H(F, Q/Z) ~ Q/Z;
see [Ser67, bottom of p. 130].

(ii) See [Ser67, Theorem 3].

(iii) Let m/n € Q be a rational number in lowest terms, with n > 1. Let
L be the degree n unramified extension of k. Let o € Gal(L/k) be the
Frobenius automorphism. Choose a € k* of valuation m. By |Ser67,
p. 138]; the cyclic algebra A := L[x],/(z™ —a) is a division algebra with
inv A =m/n € Q/Z. These m/n cover all possible invariants, so every
Azumaya algebra is a matrix algebra over one of these and is cyclic by
Exercise

(iv) Each A in has period equal to index. O

If L Ok is a finite extension of global fields, we write w|v to mean that
the place w of L lies over the place v of k; in this case, the inclusion k, < Ly,
gives rise to a homomorphism Br k, — Br L,,.

Theorem 1.5.36 (Brauer group of a global field). Suppose that k is a global
field.  For each place v of k, let k, be the completion of k at v, and let
inv,: Brk, — Q/Z be the injection associated to the local field k.
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(i) Then the sequence
0— Brk — EBBrk:U zg“ Q/Z — 0
v

18 exact.

(ii) If L is a finite extension of k, then the diagram

0 Brk PBrk, =2 @z — 0
L Jia
0 BrL PPrrr. =2 0z — 0
commutes. o

(i) Every Azumaya algebra over k is cyclic.

(iv) Ewvery element of Brk has period equal to index.

Proof.

(i) This follows from |Tat67, diagram (9) in Section 11.2, together with
Proposition 7.3(b) and Section 11.2(bis)|.

(ii) Compare |Tat67, diagram (7) in Section 11.2]. The commutativity of
the left square followsfrom functoriality of Br. The commutativity of
the right square follows from the identity >, [Lw : ko] = [L : k.

(iii) By Exercise m it suffices to consider a central division algebra A
over k. Let n be the order of [A] € Brk. Let S be the finite set of
places v such that inv, A # 0. The Grunwald—Wang theorem produces
a degree.n cyclic extension L D k such that each local degree [L,, : k]
above a place v € S is n if v is nonarchimedean, and is 2 if v is real;
see |[AT67, Chapter 10, Theorem 5|. By Theorem , all local
invariants of A®y L are 0. By the injectivity of the first homomorphism
in , the extension L splits A. Now

(1.5.37) n = (period of A) < (index of A) < [L: k] =n,
so equality holds everywhere. In particular, [A : k] = [L : k], so A is
cyclic by Proposition [1.5.22]

(iv) This follows from the equality in ((1.5.37)). O

Theorems [1.5.34] and [1.5.36] are byproducts of the cohomological proofs
of local and global class field theory; it seems that they cannot be proved
without effectively doing a large part of the work toward class field theory.
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Theorem 1.5.38 (Faddeev). Suppose that k is any field and K = k(t).
There is an exact sequence

0 — Brk — BrK “= G H' (k[t]/(f),Q/Z) — 0,
f

where f ranges over all monic irreducible polynomials in k[t], with the caveat
that one must exclude the p-primary parts if k is imperfect of characteristic p:

Proof. See |Ser02, II.Appendix.§5| and |[GS06| 6.4.5] for a proof and a
generalization. O

Remark 1.5.39. It is perhaps more natural to let the direct sum range over
all closed points of ]P)]lc. This adds one summand to the direct sum, so one
must also add a new term H!(k, Q/Z) to the end of the sequence; the result
is a four-term exact sequence.

Theorem [1.5.38 is related to Theorems [6.8.3] and

Exercises

1.1. (a) Prove that an algebraic extension of a separably closed field is
separably closed.

(b) Prove that an algebraic extension of a perfect field is perfect.

(c) Let k be a field. Prove that k = (k)P = (kPerf), = kperf . g
(The last expression denotes the subfield of k generated by kPe'f
and ksg.)

1.2. Let k£ be a-global or local field. Prove that k is perfect if and only if

char k = 0.

1.3. For which r € R>¢ is C, equivalent to being algebraically closed?

1.4. (a) For each finite field F, and nonnegative integer n, evaluate the

sum - cp, a”.

(b) Prove the Chevalley-Warning theorem, that every finite field I,
is C1. (Hint: Given a homogeneous polynomial f € Fy[z1, ..., zy]
of degree d < n, evaluate

Z (1 —f(al,...,an)q_l) EFq
(a1ye.an)EF™

in two different ways.)
(c) Using a similar method, prove directly that F, is C, without using
the paragraph following Question [I.2.11]

1.5. Let L O k be a finite extension of fields, and let » € R>¢. If L is C,,
must k be C,.7
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1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14. (

Let k be a C; field, and let L be a finite extension. Prove that the
norm homomorphism Ny .: L™ — k* is surjective.

Let k be a field.

(a) Prove that {r € R>¢ : k is C; } has a minimum, if it is nonempty.

(b) Let r(k) denote the real number in Exercise if it exists. Let
k(t) be the rational function field over k. Prove that r(k(t)) =
r(k) + 1, in the sense that if one side is defined, then so is the
other, and then they are equal.

Let k, be a nonarchimedean completion of a number field &, and let

r € R>p. Assuming (as is true) that k, is not C,., prove that k is not

Cy.

Let L O k be a finite Galois extension with Galois group G. Let

r € Z>p. Given a 1-cochain (i.e., function) £: G — GL,(L), let W¢ be

L" equipped with the function G x L™ — L" sending (o, w) to {,(ow).

(a) Prove that this describes a semilinear' G-action (i.e., the group
action axiom (o7) * w = o x (T *x w) is satisfied) if and only if & is
a 1-cocycle.

(b) Prove that given two l-cocycles ¢ and &', we have W ~ W as
L-vector spaces with semilinear G-action if and only if £ and &’
are cohomologous.

Let L D k be a finite Galois extension of fields. Suppose that Gal(L/k)
is cyclic, generated by . The original Hilbert theorem 90 proved by
Hilbert stated that if '€ L™ satisfies Ny ,(a) = 1, then there exists
b € L* such that a = %b. Explain why Proposition 1.3.15 is a
generalization of this.

Use the original Hilbert theorem 90 to prove that if z,y € Q satisfy
22 + 3% = 1, then there exist u,v € Q not both 0 such that

- u? — v 2uw
(z,y) = u2 +v2’ w2 402 )7
(This can be proved also in more elementary ways.)

Let A be a torsion abelian group. Prove that A ~ P, A[p*], where
the direct sum is over all prime numbers p.

Let G be a profinite group, let p be a prime, and let n € N. Prove that
cd,(G) < n if and only if H"*(G, A) = 0 for every simple G-module
A killed by p. (A G-module A is simple if A # 0 and the only
G-submodules of A are 0 and A.)

(Equivalence of definitions of Azumaya algebra) Prove the implications

. . . . and the implication (v . . of Proposi-

tion [
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1.15.
1.16.

1.17.

1.18.

1.19.

1.20.
1.21.

1.22.

1.23.

(Properties of Azumaya algebras) Prove Proposition m

For a finite-dimensional k-algebra A, the usual norm Ny, A — k
maps a to the determinant of the k-linear endomorphism of A given
by & + ax. For A € Az, what is the relationship between N4/, and
the reduced norm nr 4 /.7

Let {K,} be a directed system of fields, and let K = lim K be the
direct limit. Prove that Br K = @Br K,.

Prove that if L is an extension of k, the diagram
Brk —— H%(k,G,,)

l !

BrL —— H*(L,G,,)

commutes.

Let L O k be a field extension of degree m. Prove that the kernel
of Brk — Br L is killed by n. (Hint: If L D k is separable, use the
identity CoroRes = [L : k] of |JAWG67, §6, Proposition 8|.)

Let (a, x) be a cyclic algebra over a field k. Prove that (a,x) € Azy.

Let k be a field. Suppose that char k 1 n and that k contains a primitive
nth root of unity (. Show that
k> k>
kxn % kXxXn
a,b— (a,b)¢

— (Brk)[n]

is an antisymmetric pairing; that is, (b,a)¢ = —(a,b)¢ in Brk.

Let D be‘a quaternion algebra over a field k. Let tr and nr denote the
reduced trace and reduced norm for D/k. Prove that for « € D one
can define @ € D such that the following hold:

(a) The map

D — D

a— Q

)
()
(d; nr(a) = nr(a@) = aa.

involution o +— @ restricts to the nontrivial automorphism of L
over k.

Prove that every quaternion algebra over a field is a cyclic algebra.
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1.24. Show that if A is a cyclic algebra over a field k, then so is M,.(A4) for
any r > 1.
1.25. Describe all Azumaya algebras over R, and show that they are all
cyclic algebras.
1.26. Let k be a separably closed field that is not algebraically closed. Let
p = char k.
(a) Prove that Brk(t) # 0. Better yet, find an element of Brk(t)
whose image in Br k((t)) is nonzero.
(b) Prove that every element of Brk(¢) is killed by some power of p.
1.27. (a) Let k be a global field, and let a € Brk. Prove that there is a root
of unity ¢ € k such that the image of a in Brk(¢) is 0.
(b) Let k be a global field, and let k*" denote its maximal abelian
extension. Prove that k2P is of dimension < 1. (So in particular,
Brk®® =0.)
1.28. Let k be a perfect field.
(a) Prove that if chark = p > 0, then (Br £)[p] = 0.
(b) Prove that dimk <1 if and only if cd &k < 1.
1.29. Let k be a field.

(a) Show that if ¢ is an indeterminate, the field k(t) has a nontrivial
cyclic extension of degree not divisible by char k.

(b) Let k be a field, and let K be the purely transcendental extension
k(ti,...,tm) for some m > 2. Use Theorem to show that
Br K is huge.in the following sense: the cardinality of Br K equals
the cardinality of K.



Chapter 2

Varieties over arbitrary
fields

We refer to [Har77| for definitions of standard terms regarding schemes:
noetherian, connected, irreducible, reduced, integralE] regular, finite type,
separated, proper, projective, dimension, rational map, dominant.

Definition 2.0.1. If S is a scheme, an S-scheme (X, f) is a scheme X
equipped with a morphism of schemes f: X — S. The morphism f is called
the structure morphism.

To simplify notation, we usually write X instead of (X, f). Sometimes
it helps to think of X — S as a family of schemes, one above each point of

S.

Definition 2.0.2. An S-morphism between S-schemes (X, f) and (Y, g) is
a morphism-of schemes ¢: X — Y such that

¢

N

S

X Y

comiutes.

For a scheme S, let Schemesg denote the category whose objects are
S-schemes and whose arrows are S-morphisms. If X and Y are S-schemes,
let Homg(X,Y) denote the set of S-morphisms from X to Y.

31

L This definition should read as follows: A scheme X is integral if it is nonempty and for every
nonempty open set U C X, the ring Ox (U) is an integral domain.
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When R is a commutative ring, R may be used as an abbreviation for
Spec R; the meaning is usually clear from context. For instance, if X is a
scheme (over SpecZ), then X X7 Q means X Xgpecz Spec Q.

2.1. Varieties

Our definition of variety will be rather inclusive. If we want to consider
a more restricted class of varieties, we can apply adjectives (such as “irre-
ducible”) as needed.

Definition 2.1.1. A variety over a field k is a separated scheme X of finite
type over Speck.

@ Warning 2.1.2. In [Har77, I1.§4|, varieties must also be integral; we are
not including this condition in the definition of variety.

Varieties over a field k may also be called k-varieties.

Definition 2.1.3. A curve is a variety of pure dimension 1. (Pure means
that all the irreducible components have the same dimension.) A surface is
a variety of pure dimension 2. A 3-fold is a variety of pure dimension 3, and
SO on.

2.2. Base extension

Definition 2.2.1. If X is an S-scheme and S’ — S is a morphism, then
the base extension Xg is the S’-scheme X xg S’. The base extension of a
morphism of S-schemes X — Y is the S’-morphism Xg — Yg induced by
the universal property of the fiber product X xg 5’.

Recall some important applications of base extension:

e If X .is(a k-variety or k-scheme, and L is a field extension of k, then
X, is the scheme defined by the same equations but considered over L
instead of k.

e Let X be a k-scheme, and let 0 € Autk. Then the base extension
of X by the morphism o*: Speck — Speck induced by o is a new
k-scheme 7 X. Since ¢* is an isomorphism of schemes, X and X are
isomorphic as abstract schemes, but generally they are not isomorphic
as k-schemes. For instance, if X is an affine variety, then X can be
obtained by applying ¢ to each coefficient in the equations defining X.

77X > X

L

Speck A Speck
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e Let X be an S-scheme with structure morphism f: X — S. If U is an
open subscheme of S, then X is also written f~!U since its underlying
topological space is f~'U. The same applies to closed subschemes of S.

o Let s € S. Let k(s) be the residue field of the local ring 0s,. The
scheme S’ := Speck(s) has a natural morphism to S. The result-
ing scheme Xg may also be written X, or f~!(s) since its underlying
topological space is f~!(s). It is called the fiber of X — S above s
[Har77, p. 89]. If p is a prime ideal of a ring A and X is an A-scheme,
then the fiber X, is also called the reduction of X modulo p.

Example 2.2.2 (Varieties that become isomorphic only after base field ex-
tension). Let X be the affine plane curve over Q defined by the equation
22 +y? = 1; that is, X := SpecQ[z,y]/(2? +3? — 1). Let Y be the plane
curve over Q defined by 22 + y? = —1. If L = Q(i), then X; ~ YL as
L-varieties. But X 2 Y, because Q[xz,y]/(z? + y? — 1) admits a Q-algebra
homomorphism to Q while Q[x,y]/(z? + %? + 1) does not.

Most properties of morphisms are preserved by base extension. Often
they are defined expressly so as to make this so.

Theorem 2.2.3. Let blah denote a property for which a positive answer is
listed in the “base extension” column of Table [ on pp. [303{303 If X — S
is blah, then Xg — S’ is blah for any morphism S’ — S.

Xgr > X
blah?l lblah
S’ > S

The following properties of a variety can be lost by base extension of
the ground field: integral, connected, irreducible, reduced, and regular. This
motivates some more definitions.

Definition 2.2.4. Let X be a scheme over a field k. Then X is said to be
geometrically integral if and only if X7 is integral. Define geometrically
connected, geometrically irreducible, geometrically reduced, and geomet-
rically regular similarly.

Remark 2.2.5. When one speaks of the geometry of X, as opposed to the
arithmetic of X, one is usually referring to properties of Xz.

Example 2.2.6. Let X be the affine plane curve 22 —2y? = 0 over Q. Then
X is irreducible. (In fact, X is integral, since #? — 2y? is an irreducible
element of the unique factorization domain Q[z,y].) But X is not geometri-
cally irreducible, since X@ is the union of the closed subvarieties defined by

r+ 2y =0and z — 2y = 0.
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Example 2.2.7. Let X be the curve 42 = 2 over Q in the (z, y)-plane. Then
X is connected but not geometrically connected.

Example 2.2.8. Let k be the imperfect field [F,,(¢), where ¢ is an indetermi-
nate. Let X be the affine plane curve y? = taP over k. Then X is reduced
but not geometrically reduced.

Example 2.2.9. Let L be a finite extension of a field k. View X = Spec L
as a k-variety. Then X is integral. But if the separable degree of L over
k is greater than 1 (that is, L is not purely inseparable over k), then X is
neither geometrically connected nor geometrically irreducible. And.if the
inseparable degree of L over k is greater than 1 (that is, L is not separable
over k), then X is not geometrically reduced and hence not geometrically
regular.

Example 2.2.10. Regular local rings are reduced, so regular implies re-
duced, and geometrically regular implies geometrically reduced. So if L is
a finite inseparable extension of a field k, then SpecL is a regular k-variety
that is not geometrically regular.

For another example of a k-variety that is regular but not geometrically
regular, see Example [3.5.23] That example is also geometrically integral.

2.2.1. Function fields.

Definition 2.2.11. If X is an integral finite-type k-scheme, its function
field k(X) is the residue field at the generic point of X. Alternatively,
k(X) := Frac A for any affine open subset U = Spec A of X.

Remark 2.2.12. Suppose that X is irreducible but not necessarily reduced.
Then the first part of Definition [2.2.11] still makes sense. The alternative
definition must be modified slightly, however: A might not be a domain, so

one should take Frac(A/nil(A)), where nil(A) is the nilradical of the ring A.

We can construct varieties with given function field:

Proposition 2.2.13. Let K be a finitely generated field extension of k. Then
there exists a normal projective integral k-variety X with k(X) ~ K.

Proof. Let S be a finite set of generators of K as a field extension of k.
Let Ap be the k-subalgebra of K generated by S. Thus Ag is a domain
with FracAg = K. Then Xy := SpecAp is an affine integral k-variety
with k(Xy) = K. If we choose a closed immersion Xy < A™ and choose
a standard open immersion A" <— P" then the Zariski closure of X in
P™ is a projective integral k-variety X; with k(X;) = K. Let X be the
normalization of X;. By |[Har77, Exercise 11.3.8|, X is finite over Xj, so X
is projective. The other properties are immediate. U
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Remark 2.2.14. A weak form of the resolution of singularities conjec-
ture states that Proposition [2:2.13] holds with “normal” replaced by the
stronger condition “regular”. Resolution of singularities was proved by Hi-
ronaka [Hir64] in the case that k has characteristic 0; see [Kol07b] for an
exposition of a proof. In arbitrary characteristic it is known in dimension
< 2 (i.e., trdeg(K/k) < 2); see |Art86b| for an exposition of a proof by
Lipman [Lip78|. Finally, if one can tolerate replacing K by a finite exten-
sion, then one can solve the problem in general [dJ96|; this suffices for many
applications.

2.2.2. Separable and primary field extensions. Section [2.2:3]will show
that for an integral k-variety X, the properties of being geometrically irre-
ducible, geometrically reduced, and geometrically integral are equivalent to
field-theoretic properties of the extension k(X)/k.

First we define the field-theoretic properties. The following definition of
separable agrees with the usual notion for algebraic field extensions.

Definition 2.2.15. A field extension L of k is separable if the ring L ®;, &k’
is reduced for all field extensions k" of k.

Proposition 2.2.16. Let L be a finitely generated field extension of a field
k.

(i) The field L is separable over k if and only if L is a finite separable
extension of a purely transcendental extension k(t1,...,t,).

(ii) Let n = trdeg(L/k). Elements ty,...,t, of L generate a purely tran-
scendental extension of k over which L is a finite separable extension
if and only if dty,...,dt, form a basis for the L-vector space Qp ;. of
Kahler differentials.

Proof.

(i).See |Mat80, (27.F)].
(ii)“See the proof of [Mat80| (27.B)]. O

@ Warning 2.2.17. If L is separable over k, then every subextension is sep-
arable over k, so in particular every finite subextension is separable over k.
But there exist also inseparable field extensions L over k such that all finite
subextensions are separable over k. See Exercise [2.2]

Definition 2.2.18. A field extension L of k is primary if the largest sepa-
rable algebraic extension of k£ contained in L is k itself.

Purely inseparable algebraic field extensions are primary. Purely tran-
scendental field extensions are primary and separable. For equivalent defini-
tions of “primary” and “separable”; see [FJO8| §2.6].
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2.2.3. Geometric properties determined by the function field.
Proposition 2.2.19. Let X be a finite-type k-scheme. Then the following

are equivalent:
(i) X 1s geometrically irreducible.

(ii) There is a separably closed field L containing k such that the L-scheme
X, is irreducible.

(iii) For all fields L containing k, the L-scheme Xy, is irreducible.
(iv) X is irreducible, and the field extension k(X) of k is primary.

Sketch of proof. See [EGA IVg, 4.5.9]. One shows first that for a field L
containing k, the L-scheme X X L is irreducible if and ‘only if the scheme
Spec(k(X) ®j L) is irreducible. The rest is field theory. O

Proposition 2.2.20. Let X be a finite-type k-scheme. Then the following
are equivalent:
(i) X is geometrically reduced.

(ii) There is a perfect field L containing k-such that the L-scheme Xp, is
reduced.

(iii) For all fields L containing k, the L-scheme X1, is reduced.

(iv) X s reduced, and for each irreducible component Z of X, the field
extension k(Z) of k is separable.

Proof. See [EGA IV, 4.6.1]. O

Combining Propositions [2.2.19] and [2.2.20] leads to equivalent conditions
for X to be geometrically integral.

Remark 2.2.21. The property of X being geometrically regular depends
on more than the function field, even when X is assumed to be a projective
integral variety over an algebraically closed field k. For instance, the cuspidal
cubic curve 3%z = 3 in IF’% is not regular at (0 : 0 : 1), but it has the same
function field as P, which is regular.

2.2.4. The constant field of a function field. Let K be a finitely gener-
ated field extension of k, so K = k(X)) for some integral finite-type k-scheme
X. The constant field of K or of X is the maximal algebraic extension k’
of k contained in K. It is a finite extension of k: in fact, if ¢1,...,%, is a
transcendence basis of K /k, then

K k] =K (t1, - tn) ke, tn)] < [K 2 K(ty, ..., tn)] < 0o,

Proposition 2.2.22. Let X be an integral finite-type k-scheme. Let k' D k
be its constant field.
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(i) If X is geometrically integral, then k' = k.
(i1) If X is proper, then Ox(X) is a subfield of k.
(iii) If X is normal, then k' C Ox(X).

Proof.
(i) Proposition [2.2.19| implies that k'/k is primary. Proposition [2.2.20

implies that k’/k is separable. A primary separable finite extension of
a field is trivial.

(ii) Let L be the k-algebra 0x(X). Since X is proper, dimy L < 0o. Since
X is integral, L is an integral domain. Thus L is a finite field extension
of k contained in k(X), so L C k.

(iii) We have k C k' C k(X), with k" integral over k. For each x € X, the
ring Ox , is integrally closed in its fraction field k(X)) and contains k,
so it contains k. Thus k' C (", .y Ox» = Ox(X). O

Remark 2.2.23. The following counterexamples explain why the hypothesis
in each part of Proposition [2.2.22|is needed, respectively:

(i) P} as k-scheme, for any nontrivial finite extension F/k,
(ii) A}, and
(iii) 22 —2y? = 0 over Q.

2.3. Scheme-valued points

2.3.1. Motivation: Rational points on affine varieties over fields.
Let X be the subvariety of A}’ defined by a system of polynomial equations

fl(xb'"amn) =0
f2($1,...,$’n) =0

fm(l‘ly . . -,ﬂi'n) =0.

In other words, if we define A := k[x1,...,2,]/(f1,..., fm), then X is the
affine k-variety Spec A. Then a k-rational point (or simply k-point) on X is
an n-tuple (ay,...,a,) € k™ such that fi(a,...,ay) = fm(a1,...,a,) = 0.
The set of k-points on X is in bijection with the set Homy aigebras(4, k),
which is in bijection with Homp schemes(Spec k, X). This motivates the gen-
eral definition in the next section.

2.3.2. The set of scheme-valued points.

Definition 2.3.1. Let X be an S-scheme. If T is a S-scheme, then the set
of T-points on X is X(7T') := Homg(T, X).
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@ Warning 2.3.2. The definition of X (7") depends on the structure morphism
X — S, even though the notation does not show it explicitly. This is in
keeping with our notational convention of using X as abbreviation for the
S-scheme (X, f) where f: X — S is the structure morphism.

In the case where S = Speck and T' = Spec L for a field extension L of
k, an element of X (L) is called an L-rational point or simply an L-point.

2.3.3. Functor of points, Yoneda’s lemma, and representable func-
tors.
(Reference: |Vis05| §2.1])

If T/ — T is an S-morphism, then sending each S-morphism 7" — X to
the composition 7" — T' — X defines a map of sets X (T') — X (T”). In fact,
we obtain a functor:

Definition 2.3.3. The functor of points of an S-scheme X is the functor
hx: Schemesy” — Sets
T +— X(T) :=Homg(T, X).
A morphism of S-schemes f: X — Y induces a map of sets X(T') —

Y(T) for each S-scheme T, and whenever 77 — T is an S-morphism, we
obtain a commutative square

X(T) — Y(T)

T

X(T) —=Y(T").
In other words, f induces a morphism of functors (i.e., natural transforma-
tion) hf: hx — hy.
The following is purely formal, true in any category, not just Schemesg,
but is also very useful:

Lemma 2.3.4 (Yoneda’s lemma). Let X andY be S-schemes. The function
HomS(X, Y) — Hom(hX, hy)
f — hf
is a bijection.
Sketch of proof. The inverse map takes a morphism of functors F': hx —

hy to the image of the identity 1x € Homg(X, X) = X(X) under the map
F(X): X(X) = Y(X). O

For a stronger version of Yoneda’s lemma, see [Vis05, p. 14].
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Remark 2.3.5. Yoneda’s lemma implies that X is determined by its functor
of points hx. In fact, X is already determined by the restriction of hx to
affine schemes, because hx (T) = X(T') can be recovered as lim X (7;), where
(T;) is the directed system of all affine open subschemes of T' ordered by
inclusion.

Because no information is lost in passing from X to hx, it is sometimes
convenient to identify X with its functor of points hx! Then more gen-
eral functors Schemesy™ — Sets can be thought of as generalizations of

schemes; some of these functors are of the form hyx, and some are not.

Definition 2.3.6. A functor F: Schemesy” — Sets is representable if it
is isomorphic to hps for some S-scheme M. In this case, one says also that
M represents I, or that M is a fine moduli space for F'.

Sometimes when one wants to construct a scheme, at first one can con-
struct only what should be its functor of points /. Then one must ask
whether F' is actually represented by a scheme. If so, then all the tools of
algebraic geometry can be applied to that'scheme in order to understand
F better. If not, one can hope that F. might still be represented by some
algebraic object more general than a scheme but close enough to a scheme
that some tools of geometry can still be applied. For example, F' might be
represented by an algebraic space.or an algebraic stack; for an introduction,
see [LMBOO]| or |Ols16|. Alternatively, if F' is not represented by a scheme,
so F' is not isomorphic to any hjs, then it might be at least approximated by
a functor hjs in the following sense:

Definition 2.3.7. Let F': Schemes™” — Sets be a functor. An S-scheme

M equipped witha morphism of functors F' - hyy is a coarse moduli space
for F' if the following hold:

(i) For every other S-scheme M’ with a morphism F — hys, there is a
unique morphism hy; — hpy (or, equivalently, a unique S-morphism
M — M) such that F' — hyy factors as F = hyy — hay.

(ii) For every algebraically closed field k& and morphism Speck — S, the
map F'(Speck) — M (k) given by ¢ is a bijection.

Intuitively, one can understand Definition as follows. The set
F(Speck) is a certain collection of objects. If T" is a k-scheme, an element
of F(T) may be thought of as a family of such objects parameterized by T'.
Thus giving F specifies both the objects and also what constitutes a family
of objects. If M is a coarse moduli space, then each object in F'(Spec k) has
a class in M(k), and condition says that the objects are in bijection with
their classes. The morphism F' — hjs gives in particular that for each T'
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there is a map F(T') — Homg (7T, M); it may be thought of as taking a family
m: X — T to the morphism 7" — M sending each point ¢ € T'(k) to the point
of M corresponding to class of the fiber 7~1(¢). Finally, condition (fl) requires
that M is such that h); is as close as possible to F'; it prevents, for example,
replacing the morphism F' — hjy; by a composition F' — hy; — hy such
that M (k) — N(k) is a bijection. In fact, since condition (i) is a universal
property, it guarantees that M is unique if it exists.

Example 2.3.8 (Moduli space of curves). Fix g € Z>¢. For an algebraically
closed field k, let Mg (k) be the set of isomorphism classes of smooth. pro-
jective geometrically integral curves of genus g over k (see Section for
the definition of smooth). More generally, for any scheme T'; let My(T)
be the set of isomorphism classes of smooth proper T-schemes whose fibers
are geometrically integral curves of genus g. Then the functor F' := M,
is not represented by a scheme, but it has a coarse moduli space M, that
is a quasi-projective scheme over Z; alternatively, M, is represented by an
algebraic stack [DM69|. Also, the subfunctor Mg parameterizing genus g
curves whose automorphism group is trivial is represented by a quasi-pro-
jective scheme M 59 , and it is nonempty for g-> 3.

Example 2.3.9 (Moduli space of curves with marked points). More gener-
ally, for any g,n € Zx, there is a quasi-projective coarse moduli space My,
whose points over an algebraically closed field parameterize genus g curves
with n distinct marked points. The subfunctor parameterizing (C, p1, ..., pn)
such that the group of automorphisms of C fixing p1, . . ., py is trivial is repre-
sented by a quasi-projective scheme M gn. For fixed g, we have My ,, = M, gn
for sufficiently large n; that is, M, ,, is a fine moduli space for n large enough
relative to g. The symmetric group S, acts on Mg,.

Example 2.3.10 (Moduli space of genus 0 curves with marked points). The
group AutP! ~ PGL, acts simply transitively on triples of distinct points
of P!, Therefore, for n > 3, the space My, parameterizing (AutP')-orbits
of m-tuples of points on P! is a fine moduli space. Let us work over a field
k. Then My3 is a point Speck. Next, Mys ~ Pl — {0,1, 00}, since any
4-tuple of distinct geometric points can be moved by an automorphism of
P! to a unique 4-tuple of the form (0,1, 00, z) with ¢ {0,1,00}. And My
is (P! — {0,1,00})2 — A, where A is the diagonal; see Section for an
application. For each n > 3, the space M, is an open subscheme of A”.

Example 2.3.11 (Twists of My ,). Over non-algebraically closed fields, we
may consider twists of M, , in the sense of Section Start by thinking of
My, as parameterizing isomorphism classes of genus g curves C equipped
with a closed immersion Spec k™ — C. If L is a degree n étale k-algebra, then

L

there is a coarse moduli space M, ( n over k parameterizing genus g curves
g7
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C equipped with a closed immersion Spec L — C'. The varieties Mg(ﬁl) and

M, ,, become isomorphic after base change to ks.

Example 2.3.12 (Compactifications of the moduli space of curves). There
is a functor ﬂg that parameterizes isomorphism classes of stable genus g
curves; see [HM98| Theorem 2.15] for an introduction and for the definition
of stable. Knudsen and Mumford proved that ﬂg has a coarse moduli space
Mg that is a projective variety containing M, as an open subvariety: the first
proof, published long after its discovery, was that in [Knu83, Theorem 6.1],
but a simpler proof was given in [Mum77, Corollary 5.2|. Similarly one can

— . . T —(L
construct projective varieties Mg, and M grf

2.3.4. Functorial properties. If X is an S-scheme and U C X is an open
subscheme, then U(T') C X(T') for any S-scheme T'; see Exercise

Remark 2.3.13. Let k be a field, and let X be a k-scheme. If {X;} is an
open covering of X, then J X;(k) = X (k).

@ Warning 2.3.14. Remark [2.3.13] holds more generally for a local ring k,
but not for an arbitrary ring. It can fail for a polynomial ring, for instance:
a morphism A — X need not have image ‘contained in any one Xj.

Despite Warning [2.3.2] we do get-independence of S if we base change
X appropriately:

Proposition 2.3.15. If X is an S-scheme, S’ — S is a morphism of
schemes, and T is an S’-scheme, then Xg(T) = X(T), where on the right
we view T as S-scheme via the composition T — S’ — S.

Proof. The universal property of the fiber product gives Homg/ (T, Xg/) =
Homg (T, X). O

2.3.5. Example: Scheme-valued points on projective space. Let X
be an. S-scheme. By Proposition PY(X) = Py (X) := Homg(X,Py),
and the set on the right is described by |Har77, Theorem I1.7.1]. The
outcome is that there is a bijection

% is a line bundle on X, and /o~
80y .-+, 8n € I'(X,Z) generate & o

By definition, global sections sq, ..., s, generate .Z if and only if for every
P € X, they do not simultaneously vanish when evaluated at P (that is,
for every P € X, their images in the 1-dimensional k(P)-vector space stalk
ZLp/mpZLp do not all vanish). On the right, tuples are considered up to
isomorphism: (.Z,sg,...,s,) and (£, s, ...,s),) are called isomorphic if

and only if there is an isomorphism of line bundles .Z — ¢’ mapping s; to
s for each i.

PS(X) «— {(.,2”,30,...,371) :
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Remark 2.3.16. Intuitively, one can think of (£, so, ..., sy) as describing
the morphism

X — Pg
P+— (s0(P),...,sn(P)).

Strictly speaking, this does not make sense, since the s;(P) are not well-
defined elements of the field k(P) (s; not being a function on X). But at
each P, we can fix j such that s; is nonvanishing at P (that is, s; ¢ mp.Zp),
and then for every i the ratio s;/s; may be viewed as a function defined in
a neighborhood of P in X.

Example 2.3.17. Let us compute P"(A) when A is a principal ideal domain.
By |Har77, Proposition 11.6.2 and Corollary 11.6.16|, Pic A = 0. That is,
the only line bundle on X := Spec A, up to isomorphism, is Ox. Global
sections of Oy are simply elements of A, and a sequence of global sections
ag, - - - ,an € A generate Ox if and only if ag, ..., a, generate the unit ideal.
An isomorphism of line bundles &x — Ox is the same as an A-module
isomorphism A — A, which is the same as multiplication by some unit
A € A*. Hence

P (A) = {(ag,...,an) € A" ag,...,a, generate (1)}/ ~,

where the equivalence relation ~ is-as follows: (ag,...,a,) ~ (af,...,a,) if
and only if there exists A € A* such that a; = Aa; for all i. The equivalence
class of (ag,...,a,) is denoted (ag : -+ : ay).

In the special case where A is a field, this gives the expected description
of P*(k).

Remark 2.3.18. If'A'is a principal ideal domain and K = Frac A, it follows
from Example that the natural map P"(A4) — P"(K) is a bijection.
Namely, given (ag : -+ : a,) € P"(K), the fractional ideal generated by
ag, - - -, ap is principal, and if we choose a generator A, then scaling all the
a; by A~! results in an equivalent point that comes from P"(A). For a
generalization of this remark, see Theorem [3.2.13

2.3.6. Scheme-valued points on separated schemes.
(Reference: [EGA IV, §11.10])

Definition 2.3.19. A morphism of schemes f: X — Y is called dominant if
the set f(X) is dense in the topological space Y i.e., the only closed subset
of Y containing f(X) is Y itself. Call f scheme-theoretically dominant
(cf. [EGA IV3 11.10.2]) if either of the following equivalent conditions
holds:

e Whenever U is an open subscheme of Y, and f|;-1: f —1U = U factors
as f71U — Z — U for some closed subscheme Z of U, we have Z = U.
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e The sheaf homomorphism 0y — f.Ox is injective.

@ Warning 2.3.20. It would be insufficient to require the first condition only
for U =Y, i.e., to require only that the only closed subscheme of Y through
which f factors is Y itself; one really needs to impose the condition for every
open subscheme U C Y. See Exercise [2.10

Scheme-theoretically dominant implies dominant. If Y is reduced, then
the notions are equivalent, since then every open subscheme U is reduced
too, and the only closed subscheme of U having the same topological space
as U is U itself.

Proposition 2.3.21. Let X be a separated S-scheme. If T" — T is a
scheme-theoretically dominant S-morphism, then X(T) — X (T') is injec-
tive.

Proof. Let f,g € X(T), and let e be the morphism 77 — T, so we have

7 1P x xex.

Since X is separated over S, the diagonal A C X x g X is a closed subscheme.
Let Z = (f,g)~'A, which is “the closed subscheme of T" on which f and g
agree”. Let f’, g be the images of f,g in X (T”), and let Z’ = (f’,q')'A.
Then Z' = e 1(Z). If f' = ¢', then Z' = T’, but e is scheme-theoretically
dominant, so then Z = T, which means that f = ¢g. This proves injectivity.

[l

Corollary 2.3.22. If R C R’ is an inclusion of rings and X is a separated
R-scheme, then X(R)— X(R') is injective.

Proposition [2.3.21] implies also that, under suitable hypotheses, mor-
phisms agreeing on a dense open subscheme agree everywhere:

Corollary 2.3.23. Let X be a reduced S-scheme, and let' Y be a separated
S-scheme. Let U be a dense open subscheme of X. If f and g are morphisms
X =Y such that fly = g|u, then f =g.

Proof. Proposition [2.3.21|says that Y (X) — Y (U) is injective. O
2.3.7. Varieties that are not geometrically integral.

Proposition 2.3.24. Let k be a field. A connected k-scheme with a k-point
18 geometrically connected.

Proof. More generally, if X and Y are connected k-schemes and X has a
k-point, then X Xj Y is connected; see [EGA IV, Corollaire 4.5.14] or
[SGA 3;, Exposé VIs, Lemma 2.1.2]. O
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@ Warning 2.3.25. In contrast with Proposition [2.3.24] an irreducible k-
variety with a k-point need not be geometrically irreducible: the Q-variety
2 2 . } . .
x* — 2y” = 0 in Example has the rational point (0,0).

But if we have not just one k-point, but a Zariski dense set of k-points,
Wwe can say more:

Proposition 2.3.26. Let X be a finite-type scheme over a field k such that
X (k) is Zariski dense in X.

(i) If X is irreducible, then X is geometrically irreducible.
(ii) If X is reduced, then X is geometrically reduced.
(i) If X is integral, then X is geometrically integral.

Proof.

(i) Replacing X by its associated reduced subscheme X,oq affects neither
the hypotheses nor the conclusion. Suppose that X is not geometrically
irreducible. By Proposition [2.2.19(i)<(iv), k(X)/k is not primary, so
there exists a € k(X)) \ k separable and algebraic over k. By definition
of k(X), we have a € 0(U) for some nonempty affine open subscheme
U C X. Since X (k) is Zariski dense in X, there exists a k-point in
U. This point induces a k-algebra homomorphism &(U) — k, which
restricts to a k-algebra-homomorphism k(«) — k, contradicting the
fact that field homomorphisms are injective.

(i) It suffices to prove the statement for each subscheme in an open cover
of X. So assume that X = SpecA. Each x € X(k) corresponds
to a k-algebra homomorphism A — k. Putting these together gives a
homomorphism A — [, ¢ x () k, which is injective since X (k) is Zariski

dense and A is reduced. Tensoring with % yields an injection

Aevk— | J[ #|ekc [[ *
zeX (k) zeX (k)

which shows that A ®, k is reduced. Thus X is geometrically reduced.
(iii) Combine (i) and (). O

Remark 2.3.27. Proposition is often applied in its contrapositive
form: if X is an integral k-variety that is not geometrically integral, then
X (k) is not Zariski dense. In this case, the study of X (k) reduces to the
study of Y (k) for a lower-dimensional variety Y. For this reason, when
studying rational points, we can reduce to the case of geometrically integral
varieties.
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2.4. Closed points

Definition 2.4.1. A closed point of a scheme X is a point x € X such that
{z} is Zariski closed in X.

If X is a variety over an algebraically closed field k, the map
X (k) — {closed points of X'}
(f: Speck — X) —— f(Speck)
is a bijection. The nonclosed points of X are the generic points of the
positive-dimensional integral subvarieties of X.
To develop intuition for our generalizations to arbitrary fields k, namely
Propositions and we begin with an example:
Example 2.4.2. Let X = A} = SpecR[t]. The following are in bijection:
(i) The set of closed points of X.
(i)
(iii) The set of monic irreducible polynomials of R[t].
(iv) The set of Gal(C/R)-orbits in X (C)="C.

The set of maximal ideals of R[t].

If z € X is a closed point corresponding to a monic irreducible polynomial
f € R[t], then k(z) = R[t]/(f), so [k(z) : R] = deg f, which may be 1 or
2. Those z with [k(z) : k] = 1 correspond to size 1 orbits in (iv]), which
correspond to elements of X (R).

Proposition 2.4.3. Let X be a k-variety, and let x € X. The following are
equivalent:

(i) The point x is closed.
(ii) The dimension of the closure of {x} is 0.
(iii) The residue field k(x) is a finite extension of k.

Proof. The closure {z} with its reduced structure is irreducible and reduced,
so-it is an integral k-variety.

(i)=(ii): The dimension of a one-point space is 0.

(ii)=(i): Suppose that y € m; we must prove that y = z. We have
irreducible closed subsets {y} C {z}, but we are assuming dim {z} = 0, so
{y} = {z}. In a scheme, an irreducible closed subset has a unique generic
point, so y = x.

(i)« (iii): The function field of {x} is k(z), so dim {z} = tr deg(k(z)/k).
In particular, dim {x} = 0 if and only if k(x) is algebraic over k, which is the
same as saying that k(z) is a finite extension of k since we know in advance
that k(z) is a finitely generated field extension of k. O
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Definition 2.4.4. The degree of a closed point z on a k-variety X is
[k(x) : k.

Remark 2.4.5. Schemes of finite type over Z share many properties with
schemes of finite type over a field. In particular, there is an analogue of
Proposition that states that if X is a scheme of finite type over Z and
x € X, the following are equivalent:

(i) The point z is closed.
(ii) The (Krull) dimension of the closure of {z} is 0.
(iii) The residue field k(z) is finite.

The proof of (i)« (ii) is as before, and (i)« (iii), which ‘may be called the
arithmetic weak Nullstellensatz, is [EGA IV3) 10.4.11.1(i)].

Proposition 2.4.6. Let X be a k-variety. Then the map

{ &-orbits in X (k) } — { closed points of X }
orbit of (f: Speck — X) — f(Speck)

s a bijection.

Proof. For any field extension L of k, [Har77, Lemma I1.4.4] gives a bijec-
tion
X(L) «— {(z,t) |z € X, and ¢: k(z) — L is a k-embedding },

in which the x coming from P € X(L) is the unique point in the image of
Spec L — X. Take L = k. Suppose that P € X (k) corresponds to (z,¢).
Since k(x) is finitely generated over k, it is a finite extension of k, so z is a
closed point. Thus we get a bijection

X (k) +—{(x,t) | € X is closed, and ¢: k(z) = k is a k-embedding }.

This bijection is Si-equivariant, where o acts on X (k) coordinatewise (or,

equivalently, by forming the composition Speck = Speck B x ) and acts
on the right set by (z,t) = (x,100). For each closed point z € X, the set of

k-embeddings ¢: k(z) < k is a nonempty and transitive B-set, so the set
of B-orbits on the right-hand side equals the set of closed points «. O

In particular, if X is a k-variety, then k-points of X are in bijection with
closed points with residue field k.

@ Warning 2.4.7. On schemes that are not varieties, closed points can behave
strangely. For instance, there exists a nonempty scheme with no closed points
at alll See |[Liu02| Exercise 3.27].



2.5. Curves 47

2.5. Curves

(Reference: |[Liu02| Chapter 7])

2.5.1. Genus.
(Reference: [Liu02, Chapter 7, Definition 3.19])

Let X be a regular, projective, geometrically integral curve over a field
k. Its genus g = g(X) admits several equivalent definitions:

e The arithmetic genus of X is p,(X) := dim;, H} (X, Ox).

o Let w$ be the dualizing sheaf [Har77, II1.§7|, a line bundle on X. If
X is smooth (see Section , then w$ is simply the canonical sheaf
wx = Qﬁ(/k [Har77, 11.§8]. The geometric genus of X is p,(X) :=
dimy, HO(X, w$).

e The genus is the integer g that makes the Riemann—Roch theorem (The-

orem [2.5.3) hold.

o If k = C, then the compact Riemann surface X (C) can be viewed as a
compact orientable 2-dimensional R-manifold, which is a g-holed torus
for a unique g > 0.

The proof of the Serre duality theorem |[Har77, Corollary II1.7.7] works
over an arbitrary field k, and shows that the k-vector spaces H! (X, Ox) and
HO(X,w$) are dual, s0 pa(X) = py(X).

If Y is a curve birational to a regular, projective, geometrically integral
curve X, define g(Y) :=g(X).

2.5.2. Genus change under field extension.

(Reference: |Tat52])

Theorem 2.5.1. Let X be a reqular, projective, geometrically integral k-
curve:Let L O k be a field extension. Then

(a) We have g(X1) < g(X), with equality if and only if X1, is regqular.

(b) The difference g(X) — g(Xr) is divisible by (p — 1)/2.

(c) If L is separable over k, then g(Xp) = g(X).

Sketch of proof.

(a) Let X1, be the desingularization of X7. We can define p,(X1) as before
even if Xy is not regular; in fact, p,(Xz) = pe(X) since cohomology
commutes with flat base extension [Har77, Proposition I11.9.3]. But
g(X1) is defined as pq(X1), which is less than or equal to pa(Xy), with
equality if and only if X, is already regular.
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(b) See [Tat52].

(c) If L is separable over k, then X is regular (this follows from Proposi-
tion 3.5.51), so this is a special case of @ O

Example 2.5.2. Let p be an odd prime. Let k be the imperfect field F(t).

Let X be the affine curve y?> = 2P — t over k. One can show that g(X) =

(p—1)/2. On the other hand, X7, is isomorphic to the curve y* = 2P, which

is birational to PL, so g(Xz) = 0.

2.5.3. The Riemann—Roch theorem.
(Reference: |Liu02} §7.3|)

Let X be a regular, projective, geometrically integral k-curve of genus
g. The group Div X of Weil divisors on X is the free abelian group on the
set of closed points P of X. Each D € Div X gives rise to a line bundle
0 (D). By [Har77, Corollary I11.6.16], this induces an isomorphism from
the group of Weil divisors modulo linear equivalence to the Picard group
Pic X of isomorphism classes of line bundles: If D = Y npP € DivX,
define deg D := Y" np deg P, where deg P is as in Definition [2.4.4] and define
{(D) = dimy H°(X, ¢(D)). A canonical divisor is a divisor K such that
wg = O0(K).

Theorem 2.5.3 (Riemann-Roch). Let X and K be as above. Then
D) —4(K —D)=degD+1—g.

Proof. Once one has the Serre duality theorem, this is very similar to the
proof of [Har77, Theorem IV.1.3], so we leave it as Exercise [2.15| See
also [Liu02, Chapter 7, Theorem 3.26]. O

2.6. Rational points over special fields

2.6.1. Rational points over finite fields. Let k be a finite field, and let
X be a k-variety. Then X (k) is finite. (This is obvious if X is affine, and the
general case follows by applying Remark to an affine open covering.)
More will be said in Chapter

2.6.2. Rational points over topological fields.
(Reference: |Ser55|)

Let k be a topological field (for example, a local field), and let X be a
k-variety. We can use the topology of k to define a topology on X (k), called
the analytic topology, as follows. Give the set A"(k) = k x -+ x k the
product topology. If X is a closed subvariety of A", give X (k) C A™(k) the
subspace topology. Finally, if X is obtained by gluing affine open subsets
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X1,..., X, then use the same gluing data to glue the topological spaces
X1(k), ..., Xmn(k). Two different affine open coverings give the same topol-
ogy on X (k), as one can check by comparison with a common refinement.
Any morphism of k-varieties X — Y induces a continuous map X (k) — Y (k)
of topological spaces.

Proposition 2.6.1. Let k be a local field. Let X be a k-variety.
(i) If X is proper over k, then X (k) is compact.
(ii) More generally, if X — Y is a proper morphism of k-varieties, then

X (k) = Y (k) is a proper map of topological spaces. (The latter means
that the inverse image of any compact subset of Y (k) is compact.)

The converses hold when k = C.
Proof. See Serre’s “GAGA” paper |Ser55|. O

@ Warning 2.6.2. The converses can fail for k = R; see Exercise |2.16

Remark 2.6.3. In the case kK = C, one can go further by equipping the
topological space X (C) with a sheaf of germs of holomorphic functions to
get a locally ringed space X?". (If dim X > 0, then X?" is not a scheme.)
Such locally ringed spaces are special cases of complex analytic spaces; see
[Har77, Appendix B] for a survey with more details, and [SGA 1, XII]
for a definition of X?" as the complex analytic space representing a certain
functor. There are also various nonarchimedean analogues [Con08§].

Remark 2.6.4 (Hilbert’s tenth problem over a local field). There is an
algorithm that, given a local field k of characteristic 0 and a k-variety X,
decides whether X (k) is nonempty. (Strictly speaking, to make sense of
this, one should assume that X is given over an explicitly presented finitely
generated subfield of k, so that X admits a finite description suitable for
input into a Turing machine.) The analogue for F,((¢)) is an open question.

2.6.3. Adelic points.
(Reference: |[Conl2al)

Let k be a global field, and let €, O 5, ky, O,, and A be as in Sec-
tion Let X be a k-variety. Since A is a k-algebra, the set X(A) of
adelic points is already defined, as the set of k-morphisms Spec A — X.

There is a more down-to-earth description of X (A), however, as we
now sketch. There exists a finite set S of places and a separated finite-
type Oy g-scheme X such that &j ~ X. Then X(A) is in bijection with

H;eﬂk (X (ky), X(O,)); see Exercise
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This bijection lets us equip X (A) with a topology. First, equip each
X (ky) with the analytic topology. Next, for nonarchimedean v ¢ S, equip the
open and closed subset X' (O0,) C X(k,) = X (k,) with the subspace topology.
Finally, define the adelic topology on X (A) ~ H;egk (X (ky), X(O,)) as the
restricted product topology, in which the basic open sets are those of the form
[Toer Uv x [L,¢r X(Oy) for a finite set T 2 S and open subsets U, € X (kv)
for each v € T.

Remark 2.6.5. If X is a closed subscheme of A", the adelic topology on
X (A) agrees with the subspace topology obtained by viewing X (A) as a
subset of the topological space A™.

2.6.4. Rational points over global fields. Let k be a global field. Let
X be a k-variety. One would like to know the answers to many questions,
such as the following.

2.6.4.1. Existence of rational points.

Question 2.6.6. Does X have a k-point?

The problem of answering this question given an arbitrary X is equiv-
alent to Hilbert's tenth problem over k, which is the problem of finding
a general algorithm that takes a multivariable polynomial f(z1,...,2,) €
klx1,...,zy,] as input and outputs YES or NO according to whether there
exists @ € k™ such that f(a@) = 0.

e For each global function field k, no such algorithm exists [Phe91,Sh192|
Vid94| Eis03|.
e On the other hand, for each number field k, it is unknown whether such
an algorithm exists. It is not even proved yet that one can decide, given
a € Q, whether 2% + 3 = a has a solution in rational numbers.
See'|Po0o08| for more about extensions of Hilbert’s tenth problem.

2.6.4.2. Finiteness of rational points.

Question 2.6.7. Is X (k) finite or infinite? When X (k) is finite, can one
list its elements?

For curves X over number fields, the following theorem of Faltings gives
a partial answer. Because of Remark and the fact that X and its
normalization differ in only finitely many points, we may assume that X is
nice in the sense of Definition [3.5.68]

Theorem 2.6.8 (|Fal83|). Let X be a nice curve of genus > 1 over a number
field k. Then X (k) is finite.
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For more details and generalizations, see Section [0.5] Question [2.6.7] can
be difficult to answer even for specific, simple-looking equations:

Example 2.6.9. Let X be the projective surface in IP’% defined by the ho-
mogeneous equation xt + 2y* = 2% + 4w*. There are two obvious rational
points, given in homogeneous coordinates as (1 : 0 : £1 : 0). The next
smallest solutions are

(£1484801 : £1203120 : £1169407 : £1157520),

according to [EJO6|. Are there infinitely many others? (This surface is an
example of a K3 surface; see Section [9.3.2.2] It is not known whether there
is a K3 surface X over a number field £ such that X (k) is nonempty and
finite.)

2.6.4.3. Growth of rational points. Let us now return to'the case of an ar-
bitrary variety X over a global field k. If X (k) is infinite, one can try to
“measure its size” in some way. For example, given P € P"(Q), one can
write P = (ag : - : ap) with a; € Z and ged(ag,. .., a,) = 1, and define the
height of P as H(P) := max |a;|. Then, for X C Pf, one defines

Nx(B) :=#{zr € X(Q): H(z) < B}.

Question 2.6.10. For X C g, can one predict the rate of growth of Nx (B)
as B — oo?

For a survey on this question, see [Pey02].

2.6.4.4. Zariski density of rational points.
Question 2.6.11. Is X (k) Zariski dense in X7

Question 2.6.12. Is there a finite extension L of k such that X (L) is Zariski
dense (in X7)? If so, one says that “rational points are potentially dense on
X"

Campana |[CamO04, Conjecture 9.20] has conjectured that for a variety
X over a number field, potential density is equivalent to a certain geometric
condition.

2.6.4.5. Local approximation of rational points.

Question 2.6.13. Given a place v of k, is X (k) dense in X (k,) with respect
to the v-adic (analytic) topology?

Related to this is the following conjecture of Mazur:

Conjecture 2.6.14 (|[Maz92|). If X is a Q-variety, then the closure of
X(Q) in X(R) with respect to the analytic topology has at most finitely many
connected components.
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One strategy for determining whether a variety over global field & has a
k-point is to check first whether it has a k,-point for each completion k, of
k. This motivates the following question:

Question 2.6.15. Does the implication
X (ky) # 0 for all places v of k. =  X(k) #0

hold? If so, one says that X satisfies the local-global principle (or Hasse
principle).

If X satisfies the local-global principle, one can ask whether a stronger
condition holds:

Question 2.6.16. Is the image of X (k) — [], X (ky) dense with respect to
the product of the v-adic topologies? If so, one says that X satisfies weak
approximation.

Exercise explains how weak approximation is about simultaneous
approximation of k,-points for finitely many v by a k-point. Some varieties
satisfy the local-global principle and/or weak approximation, and others do
not. See |[Har04] for a survey on weak approximation.

One can ask for even more:

Question 2.6.17. Is the image of X (k) — X (A) dense with respect to the
adelic topology?

This is stronger than weak approximation since the adelic topology on
X (A) generally has more open sets than the topology induced on X (A) as
a subset of [[ X(k,) equipped with the product topology. In fact, adelic
density is too_strong to have a chance of holding for many varieties: for
instance, if X is affine, then X (k) is discrete in X (A) since k is discrete in
A. Therefore we now weaken the condition slightly.

Let 'S be a finite set of places of k. Define the prime-to-S adéle ring
A% = H;¢S(kU,OU), so A = ([[,egkv) x A®. For any k-variety, define
an adelic topology on X (A®) as in Section by viewing X(A®) as a

restricted product. The weakened question is then:

Question 2.6.18. Is the image of X (k) — X(A®) dense with respect to
the adelic topology? If so, one says that X satisfies strong approximation
with respect to S.

See Section for approximation theorems in the case that X is an
algebraic group, and see Section for a way to prove that strong approx-
imation fails for certain varieties.
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2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Exercises

Find a field k£ and a regular integral k-variety X that is neither affine,
projective, geometrically connected, geometrically reduced, nor geo-
metrically regular.

Let k = Fp(s,t), where s and ¢ are indeterminates. Let X be the
k-variety sxzP + tyP =1 in A%. Let L be the function field of X.

(a) Show that the only finite extension of k contained in L is k- itself.
(b) Show that L is not separable over k.

For any scheme X over a field, if X,..q is the associated reduced
scheme, then the natural map Xeq(k) — X(k) is a bijection. For
which schemes S is it true that for every S-scheme X, the map
Xred(S) = X(9) is a bijection?

Let X be an S-scheme, and let U be an open subscheme. Prove that
for any S-scheme 7', the set U(T") is the subset of X (7T') consisting of
S-morphisms f: T"— X such that f(T") is contained in U as a set.

Let F' be the functor Schemes®® — Sets that maps each scheme X
to Ox(X)* and that maps a morphism f: X — Y to the natural map
Oy (Y)* — Ox(X)* induced from the ring homomorphism 0y (Y) —
Ox(X). Prove that F is representable.

Let S be a scheme with a morphism Spec k — S for some algebraically

closed field k. Let F: Schemes” — Sets be a functor. Prove that
any fine moduli space for F' is also a coarse moduli space for F.

Fix p,q,r € Z~y. A primitive integer solution to the generalized
Fermat equation zP 4+ y¢ = 2" is one in which z,y,z € Z and
ged(x,y;2) = 1. Let S = SpecZ[x,y, z]/(aP + y? — 2"), and let T be
the closed subscheme SpecZ[z,y, z]/(x,y,2). Let 8" = S — T, which
is-an open subscheme of S. Prove that S’(Z) is in bijection with the
set of primitive integer solutions to aP 4+ y? = 2.

Find a scheme X over Z such that
X(A) ~{(a,b) € A% : a,b generate the unit ideal in A}
functorially in the ring A.

Give an example of an S-scheme X with open subschemes U and V
such that UUV = X but U(S)UV(S) # X(95).

Let k be a field. Let Y = Specklt]. For n > 1, let X,, be the closed
subscheme Spec k[t]/(t"). Let X be the disjoint union [[, ~; X,. Let
f: X — Y be the morphism that on each X, is the inclusion.

(a) Is f dominant?
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2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

(b) Is f scheme-theoretically dominant?
(¢) Does f factor through a closed subscheme of Y other than Y itself?

(Failure of descent) Let & = Q(v/2). Prove that there does not exist a
variety X over QQ such that X} is isomorphic to the affine plane curve
22 +y? = /2 over k.

Let X be the curve 22 +y? + 22 =0 in ]P’]%. Prove that the homomor-
phism Pic X — (Pic X¢)%(C/R) is not an isomorphism.

Let X be a scheme of finite type over ;. Let N4 be the number of
degree d closed points on X. Prove that Zd\n dNg = #X(Fyn) for
each n > 1.

Use Mobius inversion to give a formula for the number of degree n
monic irreducible polynomials in [Fg[t].

Assuming that the Serre duality theorem [Har77) Corollary I11.7.7]
holds over an arbitrary field k (it does), prove the Riemann-Roch
theorem (Theorem for regular, projective, geometrically integral
curves over k.

Give two examples of nonproper R-varieties X such that X (R) is com-
pact in the analytic topology, one with X (R) empty and one with
X (R) nonempty.

Let k be a global field. Let X be a k-variety with a k,-point for every
v. Prove that X satisfies weak approximation if and only if for every
finite set S of places and any nonempty open sets U, C X(k,) for
v € S, there exists x € X (k) such that x € U, for all v € S.



Chapter 3

Properties of morphisms

3.1. Finiteness conditions

3.1.1. Quasi-compact and quasi-separated morphisms.

Definition 3.1.1 (|[Har77, Exercise 11.2.13]). A scheme X is quasi-compact
if one of the following equivalent conditions is satisfied:

(i) The topological space of X is quasi-compact; i.e., every open cover of
X has a finite subcover. . (One says “quasi-compact” instead of just
“compact” for clarity since some authors include “Hausdorff” as part of
the latter.)

(ii) The scheme X is a finite union of affine open subsets.

Definition 3.1.2 (JEGA I, 6.6.1], |[EGA IV, §1.1]). A morphism of
schemes f: X — S is quasi-compact if one of the following equivalent con-
ditions is satisfied:

(i) There is an affine open covering {S;} of S such that for each ¢, the
scheme f~18; is quasi-compact.

(ii) For every affine open subset U C S, the scheme f~'U is quasi-compact.

Definition 3.1.3 (JEGA IV}, §1.2]). A morphism of schemes f: X — S'is
quasi-separated if one of the following equivalent conditions is satisfied:

(i) There is an affine open covering {S;} of S such that whenever X1, Xo
are affine open subsets of f~15;, the intersection X; N X> is a union of
finitely many affine open subsets.

(ii) For every affine open U C S and every affine open subsets X7, Xo C
f~1U, the intersection X7 N X5 is a union of finitely many affine open
subsets.

55
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(iii) The diagonal morphism X — X x ¢ X is quasi-compact.

If X is noetherian, then every open subscheme of X is quasi-compact, so
every morphism X — S is both quasi-compact and quasi-separated. Most
theorems about noetherian schemes use only that the schemes are quasi-
compact and quasi-separated.

Example 3.1.4. Let A be a polynomial ring k[z1, z2, .. .] in countably many
indeterminates over some field k. Let P € Spec A be the closed point. cor-
responding to the maximal ideal (x1,x9,...). Let U be the open subscheme
of Spec A obtained by removing P. Then the open subsets D(z;) of Spec A
form an open cover of U with no finite subcover, so U is not quasi-compact.

Example 3.1.5. With notation as in Exercise let- X be “infinite-
dimensional affine space with a doubled origin”, i.e., the scheme obtained
by gluing two copies X1, X2 of Spec A along the copy of U in each. The
identity morphisms X; — Spec A glue to give a morphism X — Spec A
that is not quasi-separated, since X; and X, are affine open subsets whose
intersection is not quasi-compact.

3.1.2. Finitely presented algebras.

Definition 3.1.6 (JEGA IV, 1.4.1]). Let A be a commutative ring, and let
B be an A-algebra. Then B is said to be a finitely presented A-algebra (or of
finite presentation over A) if B is isomorphic as A-algebra to A[ty, ..., t,]/1
for some n € N and some finitely generated ideal I of the polynomial ring

Alty,... tnl.

Remark 3.1.7. The only difference between “finitely generated” and “finitely
presented” is the requirement in the latter that I be finitely generated as an

ideal.

Proposition 3.1.8. Let A be a commutative ring. If an A-algebra B is
finitely presented, then it is finitely generated. The converse holds for noe-
therian A.

Proof. Remark explains why “finitely presented” implies “finitely gen-
erated”. If A is noetherian, the Hilbert basis theorem says that A[t1,...,t,]
is noetherian, so any ideal [ in it is automatically finitely generated. ([

Over non-noetherian rings, the more restrictive notion “finitely presented”
has better properties than “finitely generated” (which is synonymous with “of
finite type”). Non-noetherian rings do come up in arithmetic geometry; for
instance, the adeéle ring of a global field is not noetherian.
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Example 3.1.9. Let k be a field, and let A = k[x1,z9,...]. Then the
A-ideal I := (z1,22,...) is not finitely generated. One can show that the
finitely generated A-algebra A/I is not finitely presented; see Exercise

3.1.3. Morphisms locally of finite presentation.

Definition 3.1.10 (JEGA IV, 1.4.2|). Let f: X — S be a morphism of
schemes, let x € X, and let s = f(x). Then one says that f is locally of finite
presentation at z if there exist affine open neighborhoods V' = Spec A4 of s
and U = Spec B of x such that B is of finite presentation over A. One says
that f is locally of finite presentation (or that the S-scheme X is locally
of finite presentation) if f is locally of finite presentation at every x € X.

Remark 3.1.11. An S-scheme is locally of finite presentation if and only
if “its functor of points commutes with taking direct limits of rings”. More
precisely, an S-scheme X is locally of finite presentation if and only if for
every filtered inverse system of affine S-schemes (Spec 4;), the natural map
liﬂX(Ai) — X(liﬂAi) is a bijection [EGA IV3, 8.14.2.1]. (See Defini-
tion for the meaning of “affine S-scheme”.) This is a version of “spread-
ing out”, to be discussed further in Section

3.1.4. Morphisms of finite presentation.

Definition 3.1.12 (JEGA IV} 1.6.1]). A morphism f: X — S is of finite
presentation if it is locally of finite presentation, quasi-compact, and quasi-
separated.

The three conditions in the definition of “finite presentation” are there so
that for each affine open subset U = Spec A of S, the scheme f~'U admits
a finite description, as we now explain. First, the fact that f is locally of
finite presentation implies that f~'U is covered by affine open subsets V;,
each of the form Spec B, where B is isomorphic to an A-algebra of the form
Alty, .. tn]/(f1, ..., fm) for some polynomials fi,..., fi,. Second, the fact
that f is quasi-compact implies that only finitely many V; are needed. Third,
the fact that f is quasi-separated implies that the intersections V; NV} are
covered by finitely many affine subsets (each of finite presentation over A),
so the data needed to glue the V; to form f~'U are describable by a finite
collection of polynomial maps with coefficients in A.

Remark 3.1.13. Suppose that S is locally noetherian. Then by Proposi-
tion [3.1.8] a morphism f: X — S is locally of finite presentation if and only
if it is locally of finite type, and it is of finite presentation if and only if it is
of finite type.
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3.2. Spreading out

If X is an affine Q-variety, then for some N > 1 there exists an affine finite-
type scheme X over Z[1/N] whose generic fiber Xy is isomorphic to X:
simply let N be the product of the denominators appearing in the finitely
many coefficients appearing in the finitely many polynomials defining X.

We can generalize this by replacing Z and Q by any integral scheme S
and its generic point, respectively. In general, the principle of “spreading out”
is that for schemes of finite presentation, whatever happens over the generic
point also happens over some open neighborhood of the generic point.

Theorem 3.2.1 (Spreading out). Let S be an integral scheme, and let K be
its function field. Let blah denote a property for which a positive answer is

listed in the “Spreading out” column of Table[1] on pp.[30Z303

(i) (Spreading out schemes) Suppose that X is a.scheme of finite presen-
tation over K. Then there exist a dense open subscheme U C S and a
scheme X of finite presentation over U such that Xk ~ X ; see Figure[l]

(ii) (Spreading out properties of schemes) Suppose that X — S is of finite
presentation. If X — Spec K is blah; then there exists a dense open
subscheme U C S such that Xy.— U 1is blah.

(iii) (Spreading out morphisms) Suppose that X and X' are schemes of finite
presentation over S, and f: Xx — X} is a K-morphism. Then there
exists a dense open subscheme U C S such that f extends to a U-mor-
phism Xy — X

(iv) (Spreading out properties of morphisms) Let f: X — X’ be an S-mor-
phism between schemes of finite presentation over S. If f: X — X}
is blah, then there exists a dense open subscheme U C S such that
f‘UZ XU — Xév is blah.

Sketch of proof. In all parts, we may replace S by an affine open neigh-
borhood of the generic point to assume that S = Spec R.

First we prove . Let X be a K-scheme of finite presentation. As in
Section X has a finite description involving only finitely many poly-
nomials over K. Write each coefficient as a fraction of elements of R, and
let R’ be the localization of R obtained by adjoining the inverses of all the
denominators that appear. Then the description of X over K as the scheme
obtained by gluing certain affine pieces also makes sense as the description
of a scheme X over U := Spec R’, which is what we needed.

The proof of is similar to that of .

Part , on the other hand, requires a separate proof for each possibility
for blah. See Table [I| on pp. for references.
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Figure 1. Spreading out X to X

Part is the special case of with X’'= S. U

Remark 3.2.2 (Spreading out to an open neighborhood of a point). The-
orem can be generalized as follows.Let S be any scheme, and let
s € §. Then a scheme X of finite presentation over Spec 0g s can be spread
out to a scheme X of finite presentation over some open neighborhood of s
in S. The other parts of Theorem generalize similarly.

Remark 3.2.3. The ring Og is the injective limit of the coordinate rings
of the affine open neighborhoods of s in S, so Spec O ¢ is a projective limit
of schemes. This suggests an even more general version of Theorem [3.2.1], for
projective limits of schemes. This is the setting considered in [EGA IV3)
§8.10].

In the following sections, we give some standard applications of spreading
out.

3.2.1. Reducing statements to the noetherian case.

Proposition 3.2.4. Suppose that X is of finite presentation over a commu-
tative ring A. Then there exists a noetherian ring Ag contained in A and
a scheme Xo of finite presentation over Ay whose base extension (Xo)a is
1somorphic to X.

Proof. Any A is the direct limit (union) of its finitely generated subrings
Ap. By Remark X ~ (Xp)a for some scheme X of finite presentation
over a finitely generated ring Ay. (Concretely, one can take Ay to be the
Z-subalgebra of A generated by the finitely many coefficients in a description
of X.) Now Z is noetherian, so Ay is noetherian too. O
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3.2.2. Specialization arguments. If X and Y are Q-varieties whose base
extensions Xq(;) and Yg(y) are isomorphic, where ¢ is an indeterminate, then
one can specialize t to some rational number ¢, chosen carefully to avoid the
poles of the finitely many rational functions appearing in the description of
the isomorphism, to obtain an isomorphism X — Y. This idea extends to
the following.

Proposition 3.2.5 (Specializing an isomorphism). Let k C L be an arbitrary
extension of fields. Let X and Y be k-varieties such that Xy ~ Y. Then
Xp ~ Yp for some finite extension F 2 k.

Proof. Let f: X; — Y, be an isomorphism. The field L is the direct limit
of its finitely generated k-subalgebras A. By Remark fis the base
extension of an isomorphism f4: X4 — Y4. Let m be a maximal ideal of A,
and let F':= A/m. By the weak Nullstellensatz, F' is a finite extension of k.
Reducing f4 modulo m (i.e., taking the base change by Spec A/m — Spec A)
yields an isomorphism Xrp — Yp. U

The same technique reduces many questions about varieties over an ar-
bitrary field to the case in which the field is-a number field or a finite field,
depending on the characteristic. In fact, by using the arithmetic weak Null-
stellensatz (Remark that the quotient of a finitely generated Z-algebra
by a maximal ideal is a finite field); even the characteristic 0 case can often
be reduced to the finite field case.

Alternatively, after- using spreading out to pass from a general field of
characteristic 0 to a finitely generated Q-algebra B, one can embed B into
Qj for a suitable prime p to reduce to a question over Q,; see Corollary[7.7.6]

3.2.3. Models over discrete valuation rings. Let R be a discrete val-
uation ring, with fraction field K, residue field k, and uniformizer . (For
instance, we could have R = Z,, K = Qp, k = F,, m = p.) Let X be a
proper K-variety. We want to make sense of the reduction of X modulo m,
which should be a k-variety.

For a projective K-variety X, the lowbrow approach is to scale each defin-
ing equation of X by a power of 7 so that its coefficients lie in R but not all
in the maximal ideal (this procedure is sometimes called “chasing denomina-~
tors”), and then reduce all the coefficients modulo 7. The isomorphism class
of the k-variety defined by the resulting equations depends not only on the
isomorphism class of X, but also on the choice of defining equations.

We want to reinterpret this construction in terms of R-schemes. The
scheme Spec R consists of two points: the generic point n = Spec K cor-
responding to the prime (0) of R, and the special point or closed point
s = Spec k corresponding to the maximal ideal (7) of R.
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special fiber
generic fiber

SpecF; Spec Q7

Figure 2. The model Xg := ProjZ+[z,y, 2]/ (zy — 72*) of Example

Definition 3.2.6. Let Xz be an R-scheme. The generic fiber of Xy is
the K-scheme X = Xp Xspec R Spec K, and the special fiber of Xp is the
k-scheme X}, = X Xgpec R Speck.

Remark 3.2.7. Schemes of finite type over discrete valuation rings or rings
of S-integers of number fields are often called arithmetic schemes (if they
satisfy other technical conditions depending on the author). In the special
case where the relative dimension is 1, they are called arithmetic surfaces,
because the base is a ring of dimension 1.

Definition 3.2.8. Let-X be a K-scheme. An R-model of X is an R-scheme
Xr equipped with an isomorphism X xz K = X of K-schemes.

Example 3.2.9. Let X be the Q7-curve Proj Qr[z,y, 2]/ (zy—722). Then the
schemes ProjZs[z,y,2]/(zy — 72%) and Proj Z;[z,y, 2]/ (zy — 2%), equipped
with suitable isomorphisms, are Z7-models of X. They are not isomorphic,
however, as one can see from their special fibers. See Figure [2]

According to Definition X itself is yet another Z7z-model of X.

Now, a “reduction modulo 7 of a K-variety X” can be understood as the
special fiber of an R-model of X. Example [3.2.9]shows, however, that to get
a reasonable result, one should impose additional restrictions on the model.
We will do so in Section B.5.14

3.2.4. Models over Dedekind domains and schemes. Definition 3.2.8
makes sense for any integral domain R. A common situation, generalizing
the discrete valuation ring case, is where R is a Dedekind domain, that is, an
integrally closed noetherian domain of dimension < 1. The main examples
of such R are
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(1) the integer ring Z, or, more generally, the ring of integers Ok of a
number field,

(2) the coordinate ring of an affine regular integral curve over a field, and

(3) localizations of the above.

A scheme over a Dedekind domain has one generic fiber, and many closed
fibers, one for each nonzero prime of R.

Remark 3.2.10. One can generalize even further, to integral Dedekind
schemes. A Dedekind scheme is a noetherian normal scheme of dimen-
sion < 1. Examples include

(i) Spec R for any Dedekind domain R;
(ii) regular curves over a field; and

(iii) schemes of the form X — {z}, where X is a normal noetherian local
scheme of dimension 2 and x is its closed point. (A scheme X is local
if it has exactly one closed point z, and z isin the closure of {y} for all
y € X.) For example, X could be Spec ks, t]m, where k is a field and
m is the ideal (s,1).

By Lemma[3.2.11|(i)=(iii) below, any Dedekind scheme X is a disjoint union
of integral Dedekind schemes, and their number is finite since X is noether-
ian. Also, any Dedekind scheme is covered by finitely many open sets of the
form Spec R for Dedekind domains R.

Lemma 3.2.11. For-alocally noetherian scheme X, the following are equiv-
alent:

(i) For every x € X, the local ring Ox 5 is an integral domain.

(ii) The scheme X is locally integral: every point has an open neighborhood
that is an integral scheme.

(ii) The scheme X is a disjoint union of integral schemes.

Proof. The implications (iii)=-(ii) and (ii)=-(i) are trivial. It remains to
prove (i)=(iii).

Suppose that each local ring Ox ; is an integral domain; then each & ,
is reduced, so X is reduced. Since irreducible and reduced together imply
integral, it remains to show that the irreducible components of X are dis-
joint. The irreducible components passing through a given point z are in
bijection with the the minimal primes of O ,, of which there is just one (the
zero ideal). Thus each x lies in exactly one irreducible component; i.e., the
irreducible components are disjoint. U
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3.2.5. Valuative criterion for properness. Return to the setting of Sec-
tion [3:2:3] where R is a discrete valuation ring. Suppose that we have ex-
tended a K-scheme to an R-model. We now wish to speak of reducing
K-points on the generic fiber to k-points of the special fiber. There is no
homomorphism K — k, so to make sense of this, we must first extend the
K-point to an R-point of the model. For a proper scheme over a discrete val-
uation ring, this extension is always possible (and unique), by the S = Spec R
case of one direction of the following:

Theorem 3.2.12 (Valuative criterion for properness [Har77, Theorem I1.4.7
and Exercise 11.4.11]). Let f: X — S be a morphism of finite type with S
noetherian. Then f is proper if and only if whenever Spec R is an.S-scheme
with R a discrete valuation ring and K its fraction field, the natural map
X(R) = X(K) is bijective.

We generalize the S = Spec R case to Dedekind domains as part of
the following:

Theorem 3.2.13. Let R be an integral domain,-and let K = Frac R. Let X
be an R-scheme.

(1) If X is separated over R, then X(R)— X (K) is injective.

(ii) If X is proper over R and R is.a Dedekind domain, then X (R) — X (K)
s bijective.

Proof.
(i) This is a special case of Corollary [2.3.22]

(ii) Proper schemes over R or K are of finite type, hence of finite presen-
tation, since R and K are noetherian rings. Let f € X(K). We need
to extend f: Spec K — X to an R-morphism Spec R — X. Apply
Theorem to find a dense open subscheme U C Spec R such
that f extends to a U-morphism fy;: U — Xy, or equivalently, an R-
morphism f;: U — X. Since R is noetherian of dimension < 1, the
complement (Spec R) — U is a finite union of closed points p. It suffices
to extend fy to U U {p} — X for one p, since then we can repeat the
extension argument for each missing point.

By Theorem we can extend f to a morphism Spec R, — X.
Next, apply Remark to spread this morphism out to an R-mor-
phism fi,: V — Xy C X for some dense open V' C Spec R. The
restrictions of fiy and fyy to U NV must agree, by part applied to
each ring used in an affine cover of U N'V. Thus we can glue to obtain
an extension of f to U NV, which contains both U and p. O

Remark 3.2.14. The same argument proves Theorem [3.2.13| more gener-
ally when R is replaced by an integral Dedekind scheme with function field
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K. Even more generally, if X is a separated (resp. proper) S-scheme, T is
an integral Dedekind scheme with a morphism to S, and K = k(T), then
X(T) — X(K) is an injection (resp. bijection); this statement can be re-
duced to the previous sentence by Proposition [2.3.15] For an important

application, see Proposition (]ED

@ Warning 3.2.15. Theorem 3.2.13 does not hold for arbitrary integral
domains R; see Exercise [3.3|

3.3. Flat morphisms

3.3.1. Flat modules.
(References: |Har77, I11.§9] and |[BLR90, §2.4|)
Definition 3.3.1. Let A be a commutative ring, and let B be an A-module.
Then B is flat if the functor ® 4 B is exact; that is, whenever
0— M —M-—M"—0
is an exact sequence of A-modules, the induced sequence
0—M®@4B—Mx4B—M'®o4B—0

1s exact.

Examples 3.3.2.

(i) Free modules are flat. In particular, any module over a field k (that is,
a vector space) is flat.

(ii) A module over a discrete valuation ring or Dedekind domain is flat if
and only if it is torsion-free.

(iii) Any localization S™1A of A is flat.

3.3:2. Flat and faithfully flat morphisms.

Definition 3.3.3. A morphism of schemes f: X — Y is flat at a point
r € X if Ox, is flat as an Oy j,)-module. Also, f is called flat if f is flat
at every z € X.

Definition 3.3.4. A morphism of schemes f: X — Y is faithfully flat if f
is flat and surjective.

Remark 3.3.5. Let A — B be a homomorphism of commutative rings.
Then Spec B — Spec A is flat if and only if B is flat over A. Also, Spec B —
Spec A is faithfully flat if and only if B is flat over A and for any nonzero
A-module M one has M ®4 B # 0. This explains the use of the word
“faithfully”.
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Figure 3. Dimension of a variety at a point; see Example [3.3.9

3.3.3. Dimension and relative dimension.

Definition 3.3.6 ([JEGA IV, Chapter 0, 14.1.2]). Let X be a topological
space. Its dimension dim X € {—00,0,1,2,...,00} is the supremum of
the set of nonnegative integers n for which there exists an m-step chain
X0 C X5 C--- C X, of irreducible closed subsets of X. If x € X, define the
dimension of X at x as

dim, X :=inf{dim U : U is an open neighborhood of z in X }.

Remark 3.3.7. The empty space is not irreducible. We have dim X = —oo
if and only if X = 0.

@ Warning 3.3.8. The definition of dim, X differs from the definition in
|[Har77, Proposition II11.9.5] for schemes, where it is defined as dim Ox ,.
For example, if z is ‘the generic point of an integral k-variety X, then
dim, X = dim X aceording to the definition above from [EGA IV, Chap-
ter 0, 14.1.2], but dim Ox , = 0 since Ox , is a field. See Theorem for

the relationship more generally.

Example 3.3.9. Let X C A} = Speck|z,y,z] be the union of the plane
z = 0-and the line x = y = 0 over a field k. Let P be the point (0,0,1) of
X. Then dim X = 2, but dimp X = 1. See Figure [3|

Theorem 3.3.10. Let X be a scheme that is locally of finite type over a
field k. Let x € X. Then

dim, X = dim Ox , + trdeg(k(x)/k).
Proof. See [EGA IVgy, 5.2.3|. O

Definition 3.3.11. If f: X — S is a continuous map of topological spaces,
and x € X, define the relative dimension of X over S at z as

dim, f := dim, f~(f(x)).
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Proposition 3.3.12. Let f: X — S be a flat k-morphism between irre-
ducible k-varieties. Then dim, f = dim X — dim S. In particular, dim, f is
independent of x.

Proof. This is a special case of [Har77, Corollary I11.9.6]. O

3.4. Fppf and fpqc morphisms
(Reference: |Vis05) §2.3])

The notions in this section will play an important role in the definition of
“topologies” finer than the Zariski topology, for use in faithfully flat descent
(Chapter [4)) and in the construction of cohomology theories (Chapter [6).

Definition 3.4.1. A morphism of schemes X — Y is fppf if it is faithfully
flat and locally of finite presentation.

Proposition 3.4.2. A morphism f: X — Y that is flat and locally of finite
presentation is open; i.e., for every open subset U C X, the set f(U) is open
inY.

Proof. Here is a very brief sketch:

(1) Reduce to proving that f(X) isopen in Y when X and Y are affine and
X — Y is of finite presentation.

(2) Use Proposition to assume moreover that Y is noetherian.

(3) Chevalley’s theorem states for a finite-type morphism between noether-
ian schemes, f(X) is constructible, i.e., a finite boolean combination of
open subsets.

(4) Flatness implies that f(X) is stable under generization (one says that
y1 is a generization of y9 if yo belongs to the closure of {y;} in Y, and
the conclusion here means that any generization of a point of f(X) is
again in f(X)).

(5) In a noetherian scheme, a subset is open if and only if it is constructible
and stable under generization [Har77, Exercise 11.3.18(c)].

See |[EGA IVy, 2.4.6] for details. O

Definition 3.4.3 (Kleiman [Vis05, 2.34]). A morphism of schemes X — Y
is fpqc if it is faithfully flat and every quasi-compact open subset of Y is the
image of a quasi-compact open subset of X.

Example 3.4.4. Let Y be a positive-dimensional k-variety. For each point
y € Y, there is a morphism Spec Oy,, — Y. Let X be the disjoint union
Her Spec Oy,,. Then the natural morphism X — Y is faithfully flat but
not fpqc.
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Remark 3.4.5. Both fppf and fpqc are French acronyms: fppf stands for
“fidélement plat de présentation finie” and fpqc stands for “fidélement plat
quasi-compact”. Our (slightly nonstandard) definitions of fppf and fpqc are
less restrictive than a direct translation would suggest; this is so that fppf
and fpqc morphisms include Zariski open covering morphisms. See Proposi-
tion

3.5. Smooth and étale morphisms
(Reference: |MO15, 5.3-5.4], |[Ray70a], [BLR90| §2.2])

Section 1.5 of [Har77| gives two equivalent definitions of “nonsingular”
for varieties over an algebraically closed field. These definitions disagree
over imperfect fields, so we will avoid the term “nonsingular” and instead use
“regular” and “smooth” for the two distinct notions.

3.5.1. Regular schemes. Recall the following definition:

Definition 3.5.1. A scheme X is regular if X is locally noetherian and
Ox . is a regular local ring for every z € X.

Remark 3.5.2. The localization of a regular local ring at a prime ideal is
a regular local ring |[Eis95,.19.14]. Thus, for X locally of finite type over a
field or over Z, one gets an equivalent definition if one checks the local rings
at only the closed points x.

Remark 3.5.3. Definition agrees with the definitions of nonsingular
given in |[Har77, p. 32| for quasi-projective integral varieties over an alge-
braically closed field and [Har77| p. 177| for arbitrary integral varieties over
an algebraically closed field.

Remark 3.5.4. “Regular” is an absolute notion: if X is an S-scheme, the
question of whether X is regular ignores the structure morphism X — S. In
contrast, “smooth” is relative: we will speak of an S-scheme X being smooth
over S, and this does depend on more than the structure of X as a scheme.

Proposition 3.5.5. A reqular scheme is a disjoint union of integral schemes.

Proof. Regular local rings are integral domains [Eis95, Corollary 10.14].
Apply Lemma 3.2.11 U

Corollary 3.5.6. A connected reqular scheme is integral.
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3.5.2. Inspiration from differential geometry. (This section is purely
motivational.) The notion of smooth variety is an algebraic version of the
notion of (smooth) manifold. In particular, we want the definition to have
the following property: for a C-variety X,

(3.5.7) X is smooth over C <= X*" is a manifold,

where the condition on the right means that X" can be covered by open
subsets isomorphic as complex analytic spaces to open subsets of C”.

g% Warning 3.5.8. It is not enough to require that X (C) be locally-isomor-
phic as topological space to open subsets of C": one problem with this is
that this would not distinguish X from its associated reduced variety X eq.
Nonreduced varieties should never be considered smooth.

Stupid Idea 3.5.9. We might try adapting the definition of manifold to
the algebraic setting and come up with the following “definition”:

“A C-variety is smooth of dimension r if and only if it is covered by
Zariski open subschemes each isomorphic to an open subscheme of
AR
But this would be wrong, in the sense that it would violate : If X
is defined by 23 + 3 = 1 in AZ, then X®" is a manifold, so X should be
smooth, but it turns out that X is not birational to affine space, so it does
not satisfy the “definition”. The Zariski topology is simply too coarse: It
does not have enough open sets.

Remark 3.5.10. Stupid Idea[3.5.9 actually works if one uses the étale topol-
ogy instead of the Zariski topology. But the definition of the étale topology
requires the notion of étale morphism, which we have not yet defined. And
in fact, one definition of étale morphism depends on the definition of smooth.

There is a different characterization of manifolds that does adapt well to
the algebraic setting. A subset X C C™ is a complex manifold of dimension
r if and only if in a neighborhood of each x € X it is locally the intersection
of n — r analytic hypersurfaces H,41,..., H, meeting transversely. Here
each H; is defined as the zero set of a holomorphic function g; defined on
a neighborhood of z in C"”. The condition that the hypersurfaces meet
transversely at = means that the n — r tangent spaces T, H; at x (each
a subspace of codimension < 1 of the tangent space T,C™) intersect in a
subspace of codimension n — r, that is, dimension r. Dually, this means
that the differentials dg;(z) evaluated at x are linearly independent in the
cotangent space of C™ at x. In terms of coordinates t1,...,%, on C", this
means that the rows of the (n — r) x n Jacobian matrix J with entries
Jij = 0g;/0t; evaluated at x are independent. In other words, J has rank
n — r when evaluated at x.
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Remark 3.5.11. It is the implicit function theorem which shows that the
linear independence of differentials makes X a manifold. More explicitly, if
one extends the list g 4+1,...,¢gn to a list of holomorphic functions g1, ..., g,
in a neighborhood of x in C" such that dg;(x),...,dg,(z) form a basis for
the cotangent space of C" at z, then (g1, ..., gr) defines a biholomorphic map
between an open neighborhood of x in X and an open subset of C". The
functions g1, ..., g, restricted to X (or rather, to the open neighborhood of
x in X on which they are defined) are called local coordinates at x, because
they correspond under the biholomorphic map to the standard coordinates
on (an open subset of) C™.

3.5.3. Summary of the definitions of smooth. A definition of “smooth”
for morphisms X — S between schemes of finite type over a field is given
in [Har77, I11.§10], but in arithmetic geometry it is sometimes necessary to
work in greater generality: for instance, S might be SpecZ,,.

So we want to define what it means for a morphism of schemes f: X — S
to be smooth, or in other words, what it means for an S-scheme X to be
smooth (over S). There are several approaches, yielding equivalent defini-
tions, each with its own virtues. We summarize three of them here:

(1) Generalize the differential criterion given at the beginning of |Har77,
1.85] to make everything relative to a base scheme S instead of Speck.
This definition yields a practical criterion for testing smoothness. A
variant of it is used as a starting point in [BLR90, §2.2]. See Sec-
tion B.5.4]

(2) Work fiber by fiber. Roughly, first define a k-variety X to be smooth if
and only if it is geometrically regular; then define a morphism f: X — S
to be smooth if and only if the fiber f~!(s) is smooth over the residue
field k(s) for each s € S. Actually, in the first step one should work
more generally with X locally of finite type over a field, and then for
morphisms to an arbitrary S one needs technical conditions (locally of
finite presentation, and flat) to make sure that the fibers are locally of
finite type and that the fibers form a decent family, respectively. This
definition provides perhaps the clearest visualization of what a smooth
S-scheme looks like, but it is not as useful as a starting point for proving
things. See Section [3.5.6

(3) Characterize smooth morphisms by the “infinitesimal lifting property”.
This definition, due to Grothendieck, is elegant, though less intuitive.
Also, variants give definitions of the related adjectives G-unramified and
étale. See Section 3.5.12

3.5.4. Definition 1 of smooth: The differential criterion.
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Definition 3.5.12. Let » € N. Let f: X — S be a morphism of schemes,
and let z € X.

(i) (Special case) Suppose that f is
Alty, ..., tn]
(gT+17 “e. agn)

Then f is obviously smooth of relative dimension r at z if and only
if the matrix

Spec —  Spec A.

<gtgj<$>) € Mpuoryn(k(®))

has rank n — r.

(ii) (General case) An arbitrary f is smooth of relative dimension r at x
if and only if there exist open neighborhoods U C X of x and V C S of
f(z) such that f(U) C V and f|y: U — V is isomorphic to a morphism
that is obviously smooth of relative dimension r.-at x.

Remark 3.5.13. For an A-morphism
Alty, ...ty

(gT-l-la s 7gn)
f is smooth of relative dimension r at x if and only if f is obviously smooth

X := Spec 7, Spec A,

of relative dimension r at z. (One way to prove this is to give an intrinsic
characterization of “obviously smooth”: e.g., f as above is obviously smooth
of relative dimension r at x if '‘and only if & Xie(a)or 1S @ regular local ring.)
Thus we can dispense with the made-up terminology “obviously smooth” and
just say “smooth” from now on.

Definition 3.5.14. Let f: X — S be a morphism of schemes. We say that
X is smooth over S, or that X is a smooth S-scheme, or that f is smooth,
if at each € X the morphism is smooth of some relative dimension.

Remark 3.5.15. If f: X — S is smooth of relative dimension r at x, then
f is of relative dimension r at x. (In proving this, one can reduce first to the
special case, and then to the case where S = Speck for a field k.)

Definition 3.5.16. The smooth locus of f: X — S is the subset
xsmooth . — £ ¢ X ¢ fissmooth at z} C X.

Its complement X®"8 := X — Xsm°0th j5 called the singular locus or non-
smooth locus.

Proposition 3.5.17. The subset X5 js open in X.

Proof. We may assume we are in the special case of Definition [3.5.12] If
the matrix of derivatives has maximal rank n — r at a point x, then some
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(n —7) X (n —r) minor is nonvanishing at z, and will be nonvanishing in
some open neighborhood U of z. Then U C Xsmooth ([

@ Warning 3.5.18. The smooth locus can be empty, even for nonempty
varieties over a field. See Example [3.5.65]

Proposition 3.5.19. If X — S is smooth of relative dimension r, then the
Ox-module Qg is locally free of rank r.

Proof. The construction of x/g is local on X and S, so we may reduce to

the special case of Definition [3.5.12] and we may assume that a particular
()

(n—r) x (n —r) minor of (ggj

is a unit in the ring

B:=Alty,...,tn]/(gr+1y- -+ 9n)-
By [Eis95, §16.1], Qp/4 is the quotient of the free B-module with basis
dti,...,dt, by the relations 29:1 gf; dtj for i = r +1,...,n. This quotient
is a free B-module of rank r, with basis consisting of the dt; for which the
index j is not involved in the (n —7) X (n — r) minor above. O

Remark 3.5.20. There is a partial converse to Proposition Suppose
that f: X — S is a flat morphism between irreducible k-varieties. Let
r:=dim X —dim.S. Then f is smooth of relative dimension r if and only if
Qx/s is locally free of rank r.

@ Warning 3.5.21. If Qx/g is locally free of the wrong rank, then the mor-
phism X — S is not smooth. For example, if k is a field of characteristic p,
then the 0-dimensionalirreducible k-scheme X := Spec k[e]/(€P) is such that
Qx/, is locally free of rank 1. This X is not smooth of any relative dimension
over k.

3.5.5. Smooth vs. regular. The relationship between “smooth” and “reg-
ular” over arbitrary fields is given by the following generalization of [Har77),
Theorem 1.5.1]:

Proposition 3.5.22. Let X be locally of finite type over a field k.

(i) X is smooth if and only if X is geometrically regular.

(i1) If X is smooth, then X is regular; the converse holds if k is perfect.
(iii) For a closed point x € X with k(x)/k separable, the variety X is smooth

at x if and only if X is reqular at x (i.e., Ox 4 is a reqular local ring).

Proof. See |IBLR90, §2.2, Proposition 15| and its proof. O

Example 3.5.23 (Regular variety that is not smooth). Let k be the imper-
fect field Fp(t), where p is odd and ¢ is an indeterminate. Let X be the curve
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y?> = aP —t in A?, so X = Speck[z,y]/(f) with f := y*> — (2P — t). Since
f is irreducible even in k[x,y], the curve X is geometrically integral. We
will show that X is regular but not smooth. Let P be the closed point of X
corresponding to the maximal ideal (zP — t,y) of k[z,y]. The subscheme of
X defined by f = 90f/0x = 0f /0y = 0 is {P}, so X is smooth everywhere
except at P (where it is definitely not smooth). This implies that X is reg-
ular except possibly at P, but we will find that X is regular even at P. Let
mp be the maximal ideal of Ox p, so k(P) := Ox p/mp ~ k[z,y]/(aP —t,y).
We must compute the k(P)-dimension of

EN (xp_tvy)
mp (2P —ty)? + (f)

is a 2-dimensional k(P)-vector space spanned by zP — ¢ and y

(xp _tvy)
(:Cp,ty)Q

(not surprising, given that A% is regular of dimension 2), and the image of f
in this vector space is nonzero, so
m P —
dim —5 = dim (z 3 v)
mp (@ —t,y)* + (f)
Thus Ox p is a regular local ring. So X is regular at P.

Now

=1=dimX = dimﬁ)gp.

To summarize, X is regular, and smooth everywhere except at P. By
Proposition [3.5.22] X is not geometrically regular; this can also be checked
directly, by examining the point on X7 corresponding to the maximal ideal

(.%' - tl/p7 y) of E[l‘, Z/]

Example 3.5.24. Let k be a field, let S = A} = Speck[t], and let X be the
S-scheme Spec k[t][x,y]/(xy —t). In other words, X is a family of hyperbolas
depending on a parameter ¢, which degenerates to a union of two lines when
t = 0. The Jacobian matrix for X — §'is (y :E) Thus the nonsmooth locus
of X — S is the subscheme y = z = zy — t = 0 of Speck|[t][x,y] = A}. This
consists of the single point (0,0,0) € A3(k). In other words, all the fibers
of X: — S are smooth except for the fiber above t = 0, which has a single
singularity.

Although X is not smooth over S, we have k[t][x, y]/(zy —t) ~ k[z, y], so
X ~ A? (the projection A} — A? to the (z,y)-plane maps X isomorphically
to its image); thus X is smooth over k. In particular X is regular, even
geometrically regular.

Example 3.5.25. Let X = SpecZz,y]/(zy — 7), and let m be the unique
morphism from X to SpecZ. The same computation as in the previous
example shows that the nonsmooth locus of 7 consists of the single point
given by the maximal ideal (x,y,7) of Z[x,y]; in geometric terms, it is the
point (0,0) on the fiber above the prime (7) of SpecZ. If U is the open
subset Spec Z[1/7] of SpecZ, then 7~'U — U is smooth.
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Again, one can check that X is regular.

3.5.6. Definition 2 of smooth: Geometrically regular fibers. For a
morphism that is flat and locally of finite presentation, smoothness can be
tested fiberwise:

Proposition 3.5.26. Let f: X — S be a morphism that is locally of finite
presentation. Let x € X, and let s = f(x). Let X be the fiber f~1(s). Then
f is smooth of relative dimension v at x if and only if f is flat at x and X
is smooth of relative dimension r over the residue field k(s) at x.

Proof. See [BLR90, §2.4, Proposition §|. O

Combining Propositions [3.5.26| and [3.5.22 shows that Definition [3.5.12is
equivalent to the following:

Definition 3.5.27 (cf. |[EGA IVa, §6.8.1}). A morphism of schemes
f: X — § is smooth if all of the following hold:

e f is flat;

e f is locally of finite presentation; and

e for all s € S, the fiber X over k(s) is geometrically regular.

For £ € X, the morphism f is called smooth at x if there is an open
neighborhood U of z such that f|y: U — S is smooth.

3.5.7. Unramified morphisms. Let A < B be an inclusion of discrete
valuation rings, with uniformizers m4 and 7wp, respectively. In algebraic
number theory, the extension B over A is called unramified if and only if the
maximal ideal (7wp) of B is generated by m4 and the residue field extension
B/(mp) over A/(m4) is a finite separable extension (or separable algebraic if
one is considering infinite extensions).

This definition can be generalized to local rings. Recall that a homo-
morphism f: A — B between local rings with maximal ideals my4 and mp is
called local if f~!(mp) = my4 [Har77, p. 73].

Definition 3.5.28. A local homomorphism of local rings f: A — B with
maximal ideals m4 and mp is unramified if f(my)B = mp and B/mp is a
finite separable extension of A/my.

Example 3.5.29. Let A = CJ[[z]], and let B = A[y/z] = C|[[y/z]]. Let
f: A— B be the inclusion. Then my = (z), but f(ma)B = (v/2)?’B #
(vVz)B = mp, so B is not unramified over A.

Remark 3.5.30. Definition[3.5.28|relates to the ordinary English meaning of
“ramified” as “branched”, as we now explain. Example[3.5.29|is related to the
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fact that there is no single-valued branch of /2 defined in a neighborhood
of the origin; the map from the associated Riemann surface down to the
complex plane is generically 2-to-1, with “the branches coming together”
above z = 0.

Definition 3.5.31 (|[SP, Tag 02G4|). Let f: X — S be a morphism of
schemes, and let 2 € X. Then f is unramified at x if f is locally of finite
type at x and Og () — Ox ; is an unramified homomorphism of local rings.
Also, f is called unramified if f is unramified at every z € X.

g% Warning 3.5.32. There is a variant in which “locally of finite type” is
replaced by “locally of finite presentation”. Following [SP, Tag 02G4], we
reserve the adjective G-unramified for this more restrictive variant. In fact,
the original definition of unramified in [EGA IV, 17.3.1} is what we are
calling G-unramified. The decision to require only “locally of finite type” was
made in |[Ray70al, Chapitre I, Définition 4].

Example 3.5.33. Open and closed immersions. are unramified. But not
all closed immersions are G-unramified; this is one of the advantages of
unramified over G-unramified.

See |[BLR90, §2.2, Definition 1 and Proposition 2| for some equivalent
definitions.

3.5.8. Etale morphisms.

Definition 3.5.34. A morphism f: X — S is étale at a point z € X if
it is flat at x and G-unramified at z. Also, f is étale if f is étale at every
rzeX.

Etale morphisms can be thought of as the algebraic analogue of locally
biholomorphic. maps in differential geometry. In fact, a morphism of C-
varieties X — Y is étale if and only if the induced morphism X3" — Y?@"
between complex analytic spaces is locally biholomorphic (that is, each point
x € X has an open neighborhood that is mapped isomorphically to its
image).

Alternatively, étale morphisms can be thought of as generalizations of
finite separable extensions of fields, as the following proposition suggests.

Proposition 3.5.35. Let k be a field, and let X be a k-scheme. The follow-
ing are equivalent:

(1) X is unramified over k.

(il) X is étale over k.

(iii) X is a disjoint union of k-schemes of the form Spec L where each L is
a finite separable extension of k.


http://stacks.math.columbia.edu/tag/02G4
http://stacks.math.columbia.edu/tag/02G4
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Proof.

<:>: Over a field, flatness is automatic, and “locally of finite type”
coincides with “locally of finite presentation”.

:>: Immediate from the definition of unramified.

:>: By definition, X is locally of finite type. The question is local
on X, so we may assume that X = Spec A for some finitely generated k-
algebra A. The definition of unramified implies that each local ring Ox ,
is a finite separable extension of k, so dimA = 0. Hence A is artinian
|[AMG69, Theorem 8.5| and is a finite product of local artinian rings [AMG69,
Theorem 8.7|, each of which is a finite separable extension of k. ([

Corollary 3.5.36. If f: X — S is an unramified morphism-of schemes,
then the relative dimension dimy f is 0 for all x € X.

Proof. Let s = f(x). Unramified morphisms are stable under base change,
so the fiber X is unramified over Speck(s). Then dim X, = 0 by Proposi-
tion [3.5.39] 0

The following characterization of étale morphisms is sometimes taken as
a definition.

Proposition 3.5.37. A morphism f: X — S is étale at a point x € X if
and only if it is smooth of relative dimension 0 at x.

Proof. This follows from |[BLR90, §2.4, Proposition §|. O

The primitive element theorem states that a finite separable extension of
a field k is generated by one element. Proposition is a generalization.

Definition 3.5.38. Let A be a commutative ring. Let p € A[t] be a monic
polynomial." Let B = A[t]/(p). Let C = B[g~!] for some ¢ € B. If the
image of p'(t) in C is in C*, then SpecC — Spec A is called a standard
étale morphism.

Geometrically, the condition p'(t) € C* says that the fiber above each
point of Spec A looks like the set of zeros of a separable polynomial; see
Figure 4} in which we view ¢ as an element of A[t] instead of its image in

Alt]/(p).

Proposition 3.5.39 (Local structure of an étale morphism). Let f: X — S
be a morphism of schemes, let x € X, and let s = f(x) € S. Then f is étale
at = if and only if there exist affine open neighborhoods X' C X of x and
S" C S of s with f(X') C S such that f|x: X' — S is a standard étale
morphism.



76 3. Properties of morphisms

Spec A[t]

Spec A
Figure 4. A standard étale morphism

Proof. The proof relies on Zariski’s main theorem; see |Ray70a, V.§1,
Théoréme 1] and [BLR90, §2.3, Proposition 3|. O

3.5.9. Fundamental groups.
(Reference: |Sza09)])

3.5.9.1. Fundamental groupsin topology. Let X be a topological space that
is reasonably nice (e.g., path eonnected, locally path connected, and locally

simply connected). A cover of X is a map of topological spaces Y 2 X such
that X can be covered by open subsets U such that p~'U — U is isomorphic
to a disjoint union of copies of U each mapping by the identity to U. A
morphism of covers is a map of topological spaces over X. The covers of X
form a category Coversy. For x € X, the fiber functor

F,: Coversy — Sets

is the functor sending a cover Y 5 X to the fiber p~!(x).

Theorem 3.5.40. The following groups are naturally isomorphic:

(1) the group of homotopy classes of loops in X based at x;
(ii) the group of deck transformations of the universal cover X - X;

(i) the automorphism group of the fiber functor F,.

The fundamental group 71 (X, x) of the pointed topological space (X, =)
is any of the three groups in Theorem Then F, can be upgraded
to a functor F: Coversx — {m(X,x)-sets}, which turns out to be an
equivalence of categories.
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The space X is called simply connected if the only connected cover of
X is given by the identity map X — X. For any x € X, this condition is
equivalent to 71 (X,z) = {1}.

There is a variant of 71(X,z) in which Coversy is replaced by the
category FCoversx of covers with finite fibers. The universal cover may
not exist in FCoversy (consider X = C*; for each n > 1 the nth power
map C* 25 C* defines a cover, and no finite cover can dominate them all). So
the variant of the fundamental group should be defined either as the inverse
limit of the deck transformation groups of the finite Galois covers.of X or
as the automorphism group of the restriction F,|pcoversy- Both approaches
lead to the same group 71(X,z). This group 71 (X, z) is isomorphic to the
profinite completion of 71 (X, x), i.e., the inverse limit of all finite quotients
of m (X, z).
3.5.9.2. The étale fundamental group. Which of the three definitions in The-
oremworks best in the algebraic setting?. Not : loops are not a good
notion in a space with the Zariski topology. For or , we need an alge-
braic analogue of covers. Ideally, the analogue should be such that algebraic
covers of a C-variety X roughly correspond to covers of the topological space
X(C).

A first attempt might be to apply the topological definition of cover
directly to X with the Zariski topology. But there are often not enough
Zariski locally trivial covers. For example, the complex manifold C* has
universal cover C =% C* and fundamental group Z, but the corresponding
algebraic variety Al \ {0} has no connected Zariski locally trivial cover.

Etale morphisms come to the rescue. Actually, étale morphisms are not
quite restrictive enough, since they include open immersions like AL\ {0} <
A%: that do-not induce a cover of topological spaces. Instead we use finite
étale morphisms. (The morphism Af \ {0} < A} has finite fibers, but it is
not finite; since k[z, z7!] is not a finite k[z]-module.)

To explain why a finite étale morphism is the algebraic analogue of a
topological cover with finite fibers, we state the generalized Riemann exis-
tence theorem. Let X be a C-variety. Let X" be the associated complex
analytic space; its underlying topological space is X (C). Let FEtx be the
category of finite étale covers of X. There is a corresponding notion of finite
étale cover of X", and we let FEtxan be the corresponding category.

Theorem 3.5.41 (Generalized Riemann existence theorem). For each C-
variety X, the natural functors

FEtx — FEtxa — FCoversx c)

are equivalences of categories.
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Proof. See [SGA 1| Théoréme XIIL.5.1]. O

Remark 3.5.42. In Theorem [3.5.41]it is necessary to restrict to finite covers.
Infinite topological covers such as C =5 C* have no algebraic analogue.
They can at best be approximated by their finite subcovers.

Now we are prepared to define the algebraic analogue of the fundamental
group. Let X be any scheme. Let z be a geometric point of X, ie., a
morphism z: Spec() — X for some separably closed field €. Pulling back
a finite étale morphism Y NS¢ by x: Spec) — X yields a finite disjoint
union of copies of SpecQ (Proposition , and forgetting the scheme
structure yields a set p~!(x). The fiber functor F,: FEtx — Sets sends
an object Y & X to p~(z).

Definition 3.5.43. The étale fundamental group 7§"(X, ) is the group
Aut F;;. (Alternative terminology/notation: algebraic fundamental group,
(X, @), F1(X,2).)

For a connected scheme X with a geometric point z, as (Y,y) varies
over pointed connected (finite) Galois étale covers of (X,x), the Galois
groups Gal(Y/X) form an inverse system whose inverse limit is 7¢*(X, z), so
7$'(X, z) is a profinite group.

Example 3.5.44. If X is a C-variety and = € X(C), then the generalized

Riemann existence theorem (Theorem [3.5.41)) shows that 7$*(X,x) is the
profinite completion of 71 (X (C), x).

Definition 3.5.45. Let X be a connected variety over a separably closed
field. Then X is algebraically simply connected if it has no nontrivial
connected finite étale cover. For any geometric point x: Spec{) — X, this
is equivalent to the condition that 7$*(X,z) = {1}.

% Warning 3.5.46. There exists an algebraically simply connected C-variety
X such that the topological space X(C) is not simply connected. That is,
there exists a connected C-variety such that 71(X,z) is nontrivial but has
trivial profinite completion. To see this, combine Example with the
following two facts:

1. There exists an infinite finitely presented group G with no nontrivial finite
quotients [Hig51].

2. For any finitely presented group G, there exist an integral C-variety X
and = € X (C) such that m (X (C),z) ~ G |[Sim11} Theorem 12.1].

Remark 3.5.47. Toledo |Tol93| found a smooth projective integral variety
X over C and z € X (C) such that 71 (X, z) — m$'(X, z) fails to be injective.
It is not known if there exists such an (X,z) with m(X,z) # {1} and
(X, z) = {1}.
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3.5.10. Local coordinates. The following proposition should be compared
with the discussion in Remark B.5.171

Proposition 3.5.48. Let f: X — S be smooth of relative dimension r at
a point x € X, and let s = f(x). Then the following are equivalent for
elements gi,...,9r € Ox z:

(i) The differentials dgi(x), ..., dg,(x) form a basis for the (r-dimensional)
cotangent space QX/S,:c ® k(x).

(ii) There is an open neighborhood U of x in X to which the g; extend, such
that the S-morphism (g1,...,9,): U = A% is étale.

Moreover, such g1, ..., g, exist.

Proof. See |IBLR90, §2.2, Proposition 11 and Remark 12]. O

Definition 3.5.49. An r-tuple (g1, ...,g,) satisfying the equivalent condi-
tions of Proposition [3.5.48] is called a system of local coordinates at z.

Remark 3.5.50. Suppose that in the setting of Proposition [3.5.48 we have
S = Speck and x € X (k). Then we have an isomorphism of r-dimensional
k-vector spaces

mg/m2 = Qi @ k()
gi>dg().

Thus for ¢1,..., g, vanishing at x, we have that g¢i,..., g, are local coordi-
nates at x if and only if their images in m,/m2 form a basis.

Local coordinates.can be used to reduce questions about smooth schemes
to the case of étale schemes. For example:

Proposition 3.5.51. Let X — S be a smooth morphism of schemes.
(1) If S is reduced, then X is reduced.

(ii) If S-is normal, then X is normal.

(iti) If S is reqular, then X is regular.

Sketch of proof. Each statement is local on X. Proposition says
that locally X — S factors into an étale morphism and a morphism of the
type AG — S. Thus we reduce to proving the statements for étale morphisms
of the type described in Proposition [3.5.39| and for morphisms of the type
Spec A[t] — Spec A. For these, it is a calculation; see [Ray70a, VII.§2| for
some more details. O

3.5.11. Example: Etale schemes over a normal scheme.

(Reference: |[SGA 1, 1.10])
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We now classify étale schemes Y over a normal locally noetherian scheme
X. By Proposition , any such Y is normal and locally noetherian
too. We may assume that X and Y are connected, and hence integral by
Lemma :>. For simplicity, we also restrict to the case where
Y — X is separated; otherwise, we could get more étale X-schemes by
doubling some closed points of Y, for example.

Theorem 3.5.52. Let X be a normal connected locally noetherian scheme.

Let K = k(X).

(a) Let K' be a finite separable extension of K. Let X' be the normalization
of X in K'. Then X' — X is finite.

(b) Let X' — X be as in (a)). Let U' C X' be a nonempty open subscheme. If

U’ is unramified over X, then U’ is a separated connected étale X -scheme

(“separated” here means “separated over X 7).
UI open X/ K/

finite separable extension

X K
(¢) Ewvery separated connected étale X -scheme Y arises as in (]ED
(d) An étale X-scheme U’ as in (b). is finite over X if and only if U' = X'.

7 \Lnormalization
étale? "y

Proof.

(a) The question is local on X, so assume that X is affine. Now this is
[Ser79| 1.§4, Proposition §|.

(b) For the proof that U’ — X is étale, see [SGA 1, 1.9.11]|. The composition
U’ — X’ — X of an open immersion and finite morphism is separated.
Since U".is a nonempty open subscheme of the integral scheme X', it is
connected.

(¢) An étale morphism is locally quasi-finite, so this follows from Zariski’s
main theorem; see [EGA IV3) 8.12.11].

(d)If U" = X', then U’ is finite over X by (a)). Conversely, if U’ is finite
over X, then U’ is finite over X', and hence proper over X', so the open
subscheme U’ is closed in X’. Since X’ is connected, U’ = X’. O

Definition 3.5.53. In the context of Theorem [3.5.52|fal), call K’ 2 K un-
ramified above X if the normalization X’ — X is unramified.

Corollary 3.5.54 (Fundamental group of a normal scheme). Let X be a
normal connected locally noetherian scheme. Let K = k(X). Let Q be a
separably closed field containing K. Let n: Spec — X be the associated
geometric point. Let L be the compositum of all finite separable extensions
of K in Q that are unramified above X. Then m$'(X,n) ~ Gal(L/K).
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Proof. By Theorem [3.5.52f|clid]), the finite étale X-schemes are the normal-
izations of X in finite separable extensions K’ of K, so n$'(X,n) is the
inverse limit of the groups Gal(K’/K) for the finite Galois extensions of this
type. O

Example 3.5.55. Let k£ be a field. A choice of separable closure gives a
geometric point n: Spec ks — Speck, and 1 (Speck,n) ~ Gal(ks/k).

Example 3.5.56. Let Ok s be a ring of S-integers in a global field K (Def-
inition . Fix a geometric point 1: Spec Ks — Spec Ok g. In this case,
the field L C K of Corollary is classically called the maximal Galois
extension of K unramified outside S. Then 7§*(Spec Ok g,1) ~ Gal(L/K).

The following will be used in Section [8.4.6}

Lemma 3.5.57 (cf. [Har00, proof of Lemma 5.2(1)]). For a normal geo-
metrically integral k-variety X with a k-point x, the following are equivalent:

(i) Xp, is not algebraically simply connected; i.e., m$"(X,, x) # {1}.

(ii) Xk, has a nontrivial connected finite étale cover.

(i) Xk, has a nontrivial geometrically integral finite étale cover.
)

(iv) X has a nontrivial geometrically integral finite étale cover.

Proof. For each finite separable extension L D k, the variety X, is normal
by Proposition . 50 Xk, is normal too.

:>: If Y — X is a nontrivial geometrically integral finite étale
cover, then so is Yy, — Xj,.

:: Geometrically integral implies connected.

<:>: This is the definition of algebraically simply connected.

:>: We show that every connected finite étale cover YV — X is
geometrically integral. First, ) is integral by the arguments preceding The-

orem [3.5.52] so ) is geometrically irreducible by Proposition 2.2.19:.

On-the other hand, ) is étale over the reduced variety Xz, so V¢ is reduced
by Proposition 3.5.51. Thus ) is geometrically integral.

:>: By Theorem [3.5.52|(cl{d)), nontrivial connected finite étale cov-

ers of X are the normalizations of X in the finite separable extensions of
k(X) unramified above X, and likewise for Xy . Let Y — Xj_ be a nontriv-
ial geometrically integral finite étale cover. By replacing k())) by its Galois
closure over k(X), and Y by the corresponding normalization of X, we may
assume that k() is Galois over k(X); by the proof of (ii)=-(ii), Y is still
geometrically integral.

We claim that )} — Xj,_ is the base change of a geometrically integral
finite étale cover Y — X. To construct ¥ — X, we will construct k(Y")
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and then take the normalization of X in k(Y). First, the tower of fields
k(Y) 2 k(X)) C k(X) yields an exact sequence
(3.5.58)

1 — Gal(k(Y)/k(Xk,)) — Gal(k(Y)/k(X)) — Gal(k(Xg,)/k(X)) — 1.

Define the fiber ), as the set of points in )(ks) above x. The group
Gal(k())/k(X)) acts on V., and its subgroup Gal(k())/k(Xx,)) acts sim-
ply transitively since Y — X, is Galois étale. Therefore a choice of y € Y,
splits (3.5.58): the stabilizer S := Stabgaik(y)/k(x))(y) maps isomorphi-
cally to Gal(k(Xk,)/k(X)). Thus the extension k()) D k(X},) arises from
k()% 2 k(Xy,)® = k(X) by base change, i.e., by applying ®xyk(Xj,) or,
equivalently, ®iks. Taking normalizations of X in these fields shows that
Y — Xy, is the base change of some Y — X. Since  — Xj_ is finite étale
and nontrivial, so is Y — X. Since ) is geometrically integral, so is Y. [

3.5.12. Definition 3 of smooth: The infinitesimal lifting property.
Here is yet another equivalent definition of smooth:

Definition 3.5.59. |[EGA IV, §17.1.1, 17.3.1]. A morphism f: X — S'is
smooth if and only if both of the following hold:

(i) f is locally of finite presentation; and

(ii) for every affine scheme Spec A equipped with a morphism to S and
for every nilpotent ideal I © A, the natural map X(A) — X(A/I) is
surjective.

(Here we think of X, Spec A, and Spec A/I as S-schemes, so for instance,
X (A/I) should be interpreted as Homg(Spec A/I, X). To say that I is
nilpotent means that I = 0 for some n.)

For a proof that Definition [3.5.59 is equivalent to Definition see
[BLR90, §2:2, Proposition 6] or [EGA IVy, §17.5.2].

Remark 3.5.60. Property is called the infinitesimal lifting property,
and a.morphism satisfying it alone is called formally smooth. One gets an
equivalent condition if one allows only ideals I for which I? = 0.

Example 3.5.61. Let k be a field, and let X be the k-variety zy = 0 in AZ.
We will show that X does not satisfy property , and hence is not smooth.
Take A = kle]/(¢3) and I = (¢2) C A, so A/I = kle]/(€?). Then the point
(€,€) € A%2(A/I) lies on X (A/I), but there is no way to lift this to a point
in X (A): such a lift would have to be of the form (e + a€?, € + be?) for some
a,b € k, but (e + ae?)(e + be?) = €2 # 0 in A.

This example can be interpreted geometrically. Let A, := k[e]/(€").
Giving an element of X (As), i.e., a morphism Spec Ay — X, is the same
as giving a point P € X (k) with a tangent vector at P. More generally,
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Figure 5. Failure of the infinitesimal lifting property: a tangent vector
to zy = 0 that does not extend to a higher order jet; see Example [3:5.61]

for any n, morphisms Spec A,, — X are called jets. Let P be the origin
(0,0) € X(k); then the tangent space T'x, p = T2 p is 2-dimensional. The
element (€,¢) € X(Az) corresponds to a tangent vector at P pointing along
the line y = z; see Figure [} Such a tangent vector, lying along neither of
the two branches of X at P, will not extend to'a higher order jet in X.

Remark 3.5.62. If one replaces “surjective”in Theorem[3.5.59| by “injective”
or “bijective”, one gets equivalent definitions for the concepts of G-unramified
or étale morphisms, respectively |[EGA IV, §17.1.1, 17.3.1].

Theorem 3.5.63 (Hensel’s lemma). Let A be a complete noetherian local
ring with mazimal ideal m.

(a) If X is smooth over Spec A, then the reduction map X(A) — X(A/m)
18 surjective.

(b) If X is étale over Spec A, then the reduction map X(A) — X(A/m) is
bijective.

To see what Theorem [3.5.63 has to do with the Hensel’s lemma in alge-
braic number theory, see what it says when A = 7Z,, and X = Spec Z,|[t]/(f)
where f € Z,[t] is a monic polynomial such that f modulo p is a separable
polynomial in [, [¢].

Proof of Theorem [3.5.63l If X is smooth (resp. étale) over Spec A, then
by the infinitesimal lifting property, X (A/m"™!) — X (A/m") is surjective
(resp. bijective) for each n > 1. The theorem will follow if we can verify the
technical point X (A) = Jim X (A/m™). (The reader is invited to skip the rest
of this proof.)

For any local ring A and scheme X, there is a bijection

morphisms — (2, 0) x € X, and ]
SpecA — X [ v ¢: Ox, — Ais alocal homomorphism |’
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given a morphism Spec A — X, the image of the closed point of Spec A in
X is the point z in the associated pair (z,¢) |[EGA I, 2.4.4]. Thus, for our
A-scheme X,

x € X, and
¢: Ox, — Ais alocal A-algebra homomorphism |’

and

x(afm ={ (.0

for any n > 1. This, together with the fact that A is the projective limit of
A/m™ in the category of rings, implies that the natural map
X(4) — lim X (4/m")

is bijective. ([l

x € X, and
¢: Oxy — A/m" is a local A-alg. homomorphism

3.5.13. Smooth varieties over a field.

Proposition 3.5.64. The smooth locus of a geometrically reduced k-variety
X is open and dense in X.

Proof. Openness was proved in Proposition For the denseness, see
[BLR90, §2.2, Proposition 16]. O

Example 3.5.65. Here we show that the “geometrically reduced” hypothesis
in Proposition cannot be dropped. Let k be the imperfect field [, ().
Let X be the curve 2 — ty? = 0 in Az. The Jacobian matrix is identically
zero, so X Smooth — ¢

Proposition 3.5.66. Let k be a field, and let X be a k-variety. Suppose
that X is smooth at the point x € X (k), and let t1, ..., t, be local coordinates
at x. Replace t; by t; — t;(x) to make each new t; vanish at x. Then the
natural map k[[t1,...,t]] — 5)(,5,; from the formal power series ring to the
completion of the local ring of X at x is an isomorphism.

Proof. The local ring Ox , is a regular local ring of dimension r containing
its residue field k. Therefore its completion Ox , is too, and the Cohen
structure theorem implies Ox , >~ k[[t1, ..., t,]] (see [Mat80, Corollary 2 to
28.J].) O

Proposition 3.5.67. If a k-variety is smooth and geometrically connected,
then it is geometrically integral.

Proof. Let X be the variety. By Proposition 3.5.22, smooth is equivalent
to geometrically regular, so Corollary applies to Xz. U
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For convenience, we make the following definition:

Definition 3.5.68. A k-variety is nice if it is smooth, projective, and geo-
metrically integral.

Remark 3.5.69. The literature contains many theorems about varieties
that are “smooth, projective, and geometrically connected”. These hypothe-
ses look weaker than “nice”, but in fact they are equivalent, by Proposi-
tion [B.5.671

3.5.13.1. Separably closed fields.

Proposition 3.5.70. If X is a smooth k-variety over a separably closed field
k, then X (k) is Zariski dense in X .

Proof. The question is local on X, so by Proposition [3.5.48] we may assume
that there is an étale morphism g: X — Aj. We may also assume that X is
nonempty. It suffices to prove X (k) # (), since then we can apply the same
argument to each dense open subscheme of X.

By Proposition g(X) is open in Aj. Since separably closed fields
are infinite, A"(k) is dense in Aj. In particular, there is a k-point v in
g(X). The nonempty étale k-scheme g~'(v) is a disjoint union of k-points
by Proposition Thus X has a k-point. O

The hypothesis of Proposition can be weakened slightly:

Corollary 3.5.71. If X.is.a geometrically reduced k-variety over a separably
closed field k, then X (k) is Zariski dense in X .

Proof. Combine Propositions [3.5.64] and [3.5.70] ([

Example 3.5.72. Here we show that the “geometrically reduced” hypothesis
in Corollary cannot be dropped. Let k be an imperfect separably
closed field. Choose t € k—kP. Let X be the curve 2P —ty? = 0 in Az. Then
X (k) consists of the single point (0,0), and hence X (k) is not Zariski dense
in X.

3.5.13.2. Local fields.

Proposition 3.5.73. Let k be a local field. Let f: Y — X be a morphism
between k-varieties.

(i) If f is étale, then the induced map of topological spaces Y (k) — X (k)
is a local homeomorphism (for the analytic topology).
(ii) If f is smooth, then the map Y (k) — X (k) is open.

Proof.
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(i) By Proposition we may assume that f: Y — X is a standard
étale morphism Spec(A[t]/(p))[g~!] — Spec A as in Definition
where A is a quotient of a polynomial ring R := k[xi,...,z,]. Lift
p € At] to some p € R[t]. Then there is an affine open subset of
Spec R[t]/(p) whose projection to Spec R = A" is a standard étale
morphism whose restriction above Spec A is f. So we reduce to the
case of a standard étale morphism ¥ — X = A™. The result now is a
special case of the implicit function theorem over k.

(ii) Proposition [3.5.48| lets us reduce to proving openness for étale mor-
phisms and projections X x A™ — X. The étale case follows from ,
and the projection case follows from the definition of the product topol-
ogy. [l

The classical Krasner’s lemma [Lan94, II, §2, Proposition 3| is a state-
ment about local fields k that implies that if the coefficients of a monic
separable polynomial are perturbed, then the multiset of zeros varies contin-
uously, irreducibility is locally preserved, and the field extension generated
by the zeros is locally constant |[Lan94, II, §2; Proposition 4|. Since any
monic separable polynomial in Q,[x] can be approximated by monic poly-
nomials in Q[z], this implies that any degree d extension of Q, is Q,(«) for
some « that is algebraic of degree d over Q. In particular, the copy of Q in
Q, is dense, and the homomorphism Gal(Q,/Q,) — Gal(Q/Q) sending o to
0|@ is injective (its image is a.decomposition group).

The following is a generalization of the statement above that the field
extension generated by the zeros is locally constant.

Proposition 3.5.74 (Krasner’s lemma). Let k be a local field. Let f: Y — X
be a finite étale-morphism of k-varieties. Then the isomorphism type of
the étale k-scheme f~'(z) is locally constant as x varies over X (k) in the
analytic topology.

Proof. We may assume that X is connected, so that f has constant degree,
say d. Let g € X (k). Let L D k be a finite Galois extension over which
f=Yxo) splits, say into points y1,...,y4 € Y(L). Let f: Y (L) — X (L)
be the map on L-points. By Proposition , there exist open neigh-
borhoods Y; C Y(L) of y; and U; C X(L) of zp such that fr restricts
to a homeomorphism Y; — U;. We may assume that oY; = Y; whenever
o € Gal(L/k) and oy; = y;. By shrinking the U; (and correspondingly the
Y;), we may assume that the Y; are disjoint and that the U; are all equal, say
to U. The disjoint union of the homeomorphisms fr|y,: Y; = U ~ U x {y;}
is a Gal(L/k)-equivariant homeomorphism h: |JY; — U x f; (o) of de-
gree d covers of U. Thus if w € U N X (k), then restricting the domain and
codomain of h to the fibers above u yields an isomorphism of Gal(L/k)-sets,
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so the corresponding étale k-schemes are isomorphic too; these are f~!(u)
and f~1(xg) since both have degree d. O

Proposition 3.5.75. Let k be a local field. Let X be an irreducible k-variety.
If X has a smooth k-point x, then X (k) is Zariski dense in X.

Proof. By Proposition [3.5.48] we may replace X by an open subscheme
to assume that there is an étale morphism 7: X — A7. By Proposi-
tion [3.5.73)(ii), the image 7(X (k)) is a nonempty open subset of A" (k). No
nonzero polynomial can vanish on such an open subset, so (X (k)) is Zariski
dense in A}. So if Y is the Zariski closure of X (k) in X, then dimm(Y") = r.
This implies dimY > r,so Y = X. U

Remark 3.5.76. One can strengthen the conclusion of Proposition to
assert that any open neighborhood U of x in X (k) contains k-points outside
any given countable union of closed subvarieties Y;-C . X. To prove this,

after reducing to the case X = A" as before, one can proceed in any of the
following ways:

e apply the Baire category theorem to the nowhere dense subsets Y;(k) of
X(k);

e equip A" (k) with Haar measure and observe that U has positive measure
while each set Y;(k) has measure 0; or

e use induction on r, by fibering A"(k) into lines and using the uncount-
ability of any nonempty open subset of each line A!(k).

This strengthening will be used in the proof of Theorem [7.7.4]

3.5.14. Good reduction.

3.5.14.1. Discrete valuation rings.

Definition 3.5.77. Let R be a discrete valuation ring, and let K = Frac R.
Let X be asmooth proper K-variety. We say that X has good reduction if
there exists a smooth proper R-model of X.

In this case, the special fiber is a smooth proper variety over the residue
field.

Example 3.5.78. The K-variety in Example has good reduction, be-
cause the scheme Proj Z[z,y, z]/(xy — 2%) is a smooth proper R-model.

@ Warning 3.5.79. Let X be a smooth proper K-variety. Let R and K
denote the completions of R and K, respectively. If Xg is a smooth proper
R-model of K, then Xp xg R is a smooth proper R-model for Xp. Soif
X has good reduction, then so does X. But the converse can fail, as we
now explain by modifying [Mat15, Example 5.3]. Let p,a,b,c, F be as in
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[Mat15, Example 5.3|, except with ¢ a nonsquare integer that becomes a
square in Z,. Let R = Z,. Let X = ProjZy, [z, y, z,w]/(F). Then

(i) the generic fiber is a smooth quartic surface X C ]P’(?@ (a K3 surface)
with Pic X ~ Z;

(ii) the special fiber is a singular quartic surface over I, whose singularities
are ordinary double points; and

(iii) there are non-Cartier Weil divisors C; and C_ on A7z, (defined, in fact,
on Xy ol ﬁ]) such that blowing up either results in a smooth ‘proper
scheme over Zj,.

Facts ([if) and imply that X does not extend to a smooth proper scheme
over Z,), by the argument in [Art74, p. 330]. Fact says that Xg, does
extend to a smooth proper scheme over Z,,.

Remark 3.5.80. In the context of Definition [3.5.77} it can happen that X
does not extend to a smooth proper R-scheme but does extend to a smooth
proper R-algebraic space |Art74]. In fact, the notion of good reduction
would have better properties if it were defined in terms of algebraic spaces;
see [Mat15| for more examples of this.

3.5.14.2. Dedekind domains.

Definition 3.5.81. Let R be a Dedekind domain, and let K = Frac R. Let p
be a nonzero prime of R. A smooth proper K-variety X has good reduction
at p if X has a smooth proper Ry,-model. And X has good reduction if it
has good reduction at'every p.

3.5.15. Regular proper models. When a smooth proper model does not
exist, one can seek models with weaker properties.

For example, if R is a complete discrete valuation ring and X is a nice
K-curve; then X always has a regular proper R-model. Let us sketch a
construction. Choose an embedding of X in P} for some n. We have
P} — P}, and the Zariski closure of X in P%, is a proper R-model X},
of X. But X}, need not be smooth. The normalization of X}, is finite over
Xg, so it is another proper R-model X7, but now it is regular except at
isolated closed points. By resolution of singularities for arithmetic surfaces,
alternately blowing up singularities and normalizing eventually produces a
regular proper model. (In fact, it is even projective.) See |Art86b| for an
exposition of Lipman’s proof of an even more general version.

If moreover X has genus > 1, then among all regular proper R-models,
there is a unique one satisfying a certain minimality property; see Sec-

tion [9.3.1.6L It is called the minimal regular proper model. This result
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is analogous to the theory of minimal models for surfaces over fields, which
is discussed in |[Har77, pp. 418-419|.

It is conjectured that a nice K-variety X of any dimension has a reg-
ular proper R-model. This conjecture is a version of what could be called
resolution of singularities for arithmetic schemes.

3.5.16. Néron models.
(References: [BLR90|, |[LT16])

Let R be a discrete valuation ring. Let K = Frac R. Let X be a nice
K-variety. If X has good reduction, i.e., X has a smooth proper.R-model X,
then X'(R) ~ X (K) by the valuative criterion for properness. But even if X
has bad reduction, it might have a smooth not-necessarily-proper R-model
N satisfying N(R) ~ X(K). To determine N uniquely, we would want
to specify not just N'(R), but the whole functor of points. Actually, if we
insist that N be smooth over R, then it suffices to-specify its functor of
points restricted to smooth R-schemes, by Yoneda’s lemma (Lemma
applied in the category of smooth R-schemes. This motivates the following
definition, which we give in the more general context of Dedekind domains
(and which could be generalized further to integral Dedekind schemes):

Definition 3.5.82. Let R be a Dedekind domain. Let K = Frac R. Let
X be a smooth K-variety. A Néron model of X is a smooth R-scheme N
with an isomorphism N ~ X such that for every smooth R-scheme T', the
induced map N(T) — X(Tk) is a bijection. (Some authors write “Néron
Ift-model” for the above, and write “Néron model” only if N is also of finite
type |[LT16|; here 1ft stands for “locally of finite type”.)

As mentioned above, Yoneda’s lemma implies that N\ is unique if it exists.
Moreover, if X is a group scheme (see Section and A exists, then the
functor of points of N factors through Groups, so N is a group object in
the category of smooth R-schemes; that is, A/ is a smooth group scheme over

R.

Néron has his name attached to the concept because in 1964 he proved
that AV exists when X is an abelian variety over the fraction field of a discrete
valuation ring; see Section [5.7.5] Here is a more recent result, in a different
direction:

Theorem 3.5.83 (Liu and Tong). Let S be an integral Dedekind scheme.
Let K =k(S5). Let X be a nice curve over K of positive genus. Let X — S
be the minimal regular proper model of X (see Section . Then the
smooth locus XM of X — S is a Néron model of X .

Proof. See |[LT16|, Theorem 1.1]. O
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3.6. Rational maps

3.6.1. Rational maps and domain of definition.

(Reference: |[EGA T, §7])

Definition 3.6.1 (JEGA I, 7.1.2]). Let X and Y be S-schemes. Consider
pairs (U, ¢) in which U is a dense open subscheme of X and ¢: U — Y is an
S-morphism. Call pairs (U, ¢) and (V, %) equivalent if ¢ and 1 agree on a
dense open subscheme of UNV. A rational map X --» Y is an equivalence
class of such pairs. In other words,

{rational maps X --» Y} := lim Homg (U, Y),
U

where U ranges over dense open subschemes of X ordered by reverse inclu-
sion.

Definition 3.6.2 ([EGA I, 7.2.1]). The domain of definition of a rational
map is the union of the U as (U, ¢) ranges over the equivalence class. It is
an open subscheme of X.

Definition [3.6.2] is useful mainly when X is reduced and Y is separated:

Proposition 3.6.3. Let W be.the domain of definition of a rational map
X --» Y, where X is reduced andY is separated. Then there is a unique
&:W =Y such that (W, &) belongs to the equivalence class.

Proof. If (U, ¢) and (V;4) are equivalent, so ¢ and 1) agree on a dense open
subscheme of U NV then by Corollary [2.3.23| they agree on all of U NV.
Therefore all the (U, ¢) can be glued to give (W, £). O

Remark 3.6.4. One can drop the hypothesis that X is reduced in Propo-
sition [3.6.3] if one replaces “dense” by the stronger property “scheme-theo-
retically dense” everywhere in Definition [3.6.1] This leads to the notion of
pseudo-morphism, a variant of the notion of rational map; see [EGA IV,
20.2.1]

3.6.2. Rational points over a function field.

Proposition 3.6.5. Let X be an integral k-variety, and let Y be an arbitrary
k-variety. Let K = k(X).

(a) The natural map
{rational maps from X to Y} — Y (K)

[¢: U — Y] —— (the composition Spec K — U 2 Y)

s a bijection.



3.6. Rational maps 91

(b) If moreover X is a reqular curve and Y is proper, then we get bijections

Homg(X,Y) = {rational maps from X to Y} = Y(K).

Proof.

(a) Every dense open subscheme of X contains a dense affine open sub-
scheme; i.e., the inverse system (Spec A;) of dense affine open subschemes
of X is cofinal in the system of all dense open subschemes. Thus we have
bijections

{rational maps from X to Y} = lim Y'(U) (by definition)
U

o~ hqu(Ai) (by cofinality)
o~ Y(hg Aj) (by Remark
=Y(K) (since lim A; = K).

(b) The first bijection comes from the valuative criterion for properness: The

map Y (X) — Y(K) is bijective by Remark3.2.14] The second bijection
was given already in @ ([l

3.6.3. Dominant rational maps.

Definition 3.6.6. A rational map-X --» Y is dominant if and only if for
some (or equivalently, for each) representative (U, ¢), the image ¢(U) is dense
inY.

Corollary 3.6.7 (cf. [Har77, Theorem 1.4.4]). The functor
{ integral k-varieties, } {ﬁnitely generated field extensions of kj,}Opp

dominant rational maps k-algebra homomorphisms

X —  k(X)

is an equivalence of categories.

Proof. A rational map X --+ Y is dominant if and only if it maps the
generic point of X to the generic point of Y'; thus we have a functor from
left to right. Restricting the bijection in Proposition @ to the dominant
rational maps X --+ Y shows that the functor is fully faithful. Every finitely
generated field extension of k is isomorphic to the function field of an integral
k-variety (cf. Proposition; i.e., the functor is essentially surjective. [J

Definition 3.6.8. If X is an integral k-variety, the set of birational maps
X --» X forms a group Bir X. By Corollary Bir X is isomorphic to
the group Aut(k(X)/k) of automorphisms of the function field over k.

Example 3.6.9. The group Bir P" is also called the Cremona group.
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Definition 3.6.10. If 7: X — Y is a dominant rational map between inte-
gral k-varieties of the same dimension, then k(X) may be viewed as a finite
extension of k(Y'), and we define the degree of 7 as deg 7 := [k(X) : k(Y)].

3.6.4. Lang—Nishimura theorem. If 7: X — Y is a morphism of k-
varieties and X has a k-point z, then Y has a k-point, namely 7(x). If 7 is
only a rational map, this argument fails, since 7 might be undefined at x,
but surprisingly the same conclusion can be drawn, under mild hypotheses.
The following theorem is due to Lang |Lan54| and Nishimura |[Nis55|.

Theorem 3.6.11 (Lang—Nishimura theorem). Let X --+ Y be a rational
map between k-varieties, where Y is proper. If X has a smooth k-point, then
Y has a k-point.

Proof. Let = be the given smooth k-point on X. Replacing X by an open
neighborhood of z, we may assume that X is integral. Let n = dim X.
Proposition [3.5.66] gives the isomorphism in the chain of embeddings

Oxo—r Oxo = K[[t1,... ta]] = F = k((t1))((t2)) - ((tn)).
Since F is a field (an iterated formal Laurent series field), the fraction field
Frac Ox , = k(X) embeds in F'. By Proposition [3.6.5(la)), the rational map

gives an element of Y (k(X)), and hence an element of Y (F'). Applying
Lemma [3.6.12| n times shows that Y has a k-point. O

Lemma 3.6.12. Let Y be a proper k-variety. Let L be a field extension
of k, and let L((t)) be the formal Laurent series field over L. If Y has an
L((t))-point, then Y has an L-point.

Proof. By the valuative criterion for properness (Theorem [3.2.12)), the ele-
ment of Y (L((t))) extends to an element of Y (L[[t]]), which reduces modulo
t to an element of Y (L). O

Remark 3.6.13. The Lang-Nishimura theorem can be explained geomet-
rically as follows. If dim, X > 0, then one can show that X contains an
integral curve C' such that

e 1 is a smooth point of C, and
o (' meets the domain of definition of the rational map ¢.

The valuative criterion for properness shows that ¢|c: C' --» Y extends to
be defined at z. It maps x to a k-point of Y. (The reason that we did not
present the proof this way is that the existence of C' is not immediate.)

Remark 3.6.14. For another proof of Theorem [3.6.11] see Exercise [3.11

Remark 3.6.15. In Theorem [B.6.11] one cannot conclude that Y has a
smooth k-point.
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The Lang—Nishimura theorem implies that the property of having a
k-point is a birational invariant of smooth, proper, integral k-varieties:

Corollary 3.6.16. Let X and Y be smooth, proper, integral k-varieties that
are birational to each other. Then X has a k-point if and only if Y has a
k-point.

3.7. Frobenius morphisms

(Reference: |[SGA 5, XV]|)

Let p be a prime number. Let X be a scheme of characteristic p, i.e.,
a scheme with p&x = 0. Then the absolute Frobenius morphism is the
morphism of schemes Fx: X — X that is the identity on topological spaces
and that induces the pth-power homomorphism f — fPon each ring Ox (U).
Now let S be a scheme of characteristic p, and let X be an S-scheme.

Let X® be the base extension of X by Fg. Then the universal property
of the fiber product gives a morphism Fy,g: X — X® called the relative

Frobenius morphism:
Fx
Fx/s
X

xb) > o x

| .|

S—5-.8

X

(3.7.1)

As the diagram shows, Fx/g is an S-morphism, but Fx is generally not an
S-morphism because it lies over Fg: S — S instead of the identity 1g.

Example 3.7.2. Let k£ be a field of characteristic p. Let S = Speck, and
let X be ak-variety. Then X® is the k-variety obtained by replacing the
coeflicients in the equations defining X by their pth powers. We then write
Fxp.= Fx/s. On regular functions, the three morphisms along the top of
(3.7.1)) act as follows:
Fx/i, + identity on elements of k, raises variables to the pth power;
« : raises elements of k to the pth power, identity on variables;
Fx : raises everything to the pth power.

Of these three morphisms, usually only F'x/; is a morphism of k-varieties; it
is a finite morphism.

Remark 3.7.3. If X is an integral variety over a field k of characteristic p,
then the degree of Fx/: X — X®) i5 pdim X (see Definition [3.6.10). In
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particular, if dim X > 0, then Fy/ is not an isomorphism, and hence not
an automorphism even if X® ~ X over k.

Remark 3.7.4. If we specialize (3.7.1]) to the case where S = SpecF), then
Fg is the identity, so X?) ~ X as an F p-scheme via o

The following will be used later, in the proof of Proposition
Lemma 3.7.5. If X — S is an étale morphism of schemes of characteris-
tic p, then the diagram

x o x

.
S—>=5
is cartesian; that is, the upper left X is the fiber product of the rest of the

diagram.

Proof. By [SGA 5| XV, Proposition 2(c)(2)], Fx/g is an isomorphism. [J

Remark 3.7.6. Let ¢ = p™ for some n >1.-Under the same hypotheses as
above, one can define an absolute g-power Frobenius morphism X — X, a
scheme X (@ and a relative g-power Frobenius morphism X — X(@ over S
in the same way, by replacing p by q.

3.8. Comparisons

Given a collection of schemes (X;);ecr, we may glue the X; along their empty
subschemes to obtain the disjoint union scheme [ X;. Given a collection of
morphisms (X; = Y);cr, we may glue them to obtain a a single morphism

Definition 3.8.1. A Zariski open covering morphism is a morphism of
schemes || X; — Y obtained as a disjoint union of open immersions X; — Y’
whose images form an open covering of Y. (This terminology is not standard,
but it will be convenient to have.)

Proposition 3.8.2. Let f: X — Y be a morphism of schemes. FEach of the
following statements implies the next:

e f is a Zariski open covering morphism.

o f is étale and surjective.
o fis fppf.
o f s fpgc.

Proof. We leave this to the reader, as Exercise |3.13 [l
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Proposition [3.8.2] suggests that fpqc morphisms may be considered gen-
eralizations of open coverings. This point of view will prevail in Chapters []

and [6

3.1.

3.2.

3.3.

3.4.

Exercises

Let A be a commutative ring. Let I be an ideal in the polynomial ring
Alt1, ..., ty] for some n > 0. Prove that A[t1,...,t,]/I is a finitely
presented A-algebra if and only if I is a finitely generated ideal.

Which of the following morphisms are flat? Faithfully flat?
(a) SpecZ[1/2] — SpecZ.

(b) Spec (Z x %) — SpecZ.

(c) SpecClz,y]/(xzy — 1) — Spec Clz].

(d) SpecClz,y]/(xy) — Spec C[z].

(e) SpecClz,y]/(y? — 2°) — Spec Clx].

(f) X — AZ, where X is the blowup of AZ at the origin.

Give an example of an integral domain R and fraction field K such
that the natural map P*(R) — P!(K) is not a bijection.

Let k be a global field, and let Q, O s, ky, Op, and A be as in

Section Let. X be a k-variety.

(a) Prove that there is a finite subset S C €y, a separated scheme X
of finite type over Oy g, and an isomorphism X}, ~ X fix these.

(b) Explain why X' (O,) may be identified with a subset of X (k,) for
each v ¢ S.

(¢) Prove that there is a bijection

x(a) —I[_, (X(k), X(0.).

(Hint: Use Remark and prove the following.
Lemma. IfY is a quasi-compact and quasi-separated
A-scheme for some ring A, and (R;);er is a collection
of local A-algebras, then the natural map Y ([[ Ri) —
[1Y(R;) is a bijection.
Even with this hint, the problem is hard.)
(d) Prove that if moreover X is proper over k, then the natural map

X(A) — [ x(k)
vEQ
is a bijection.
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

Give an example of a prime p and a nice Qp-variety X with proper
Zy-models X and X’ such that their special fibers are isomorphic and
such that X is regular and X’ is not.

Let X be a variety over a field k. Show that it is possible to find
finitely many locally closed subvarieties Y; of X (i.e., open subvarieties
of closed subvarieties) such that each Y; is smooth and geometrically
integral and JY;(k) = X (k).

Give an example of a prime p and a geometrically integral curve X
over Q, such that X (Q)) consists of a single point.

Let R be a Dedekind domain, let K = Frac R, and let X bea smooth
proper K-scheme. Suppose that for each nonzero prime p of R, the
scheme X has good reduction at p. Prove that there is a smooth
proper R-model of X.

Let ¢: X --+ Y be a rational map from a regular k-variety to a proper
k-variety. Prove that there is a closed subset Z C X of codimension
> 2 in X such that ¢ extends to a morphism from X — Z to Y.

For a proper variety X over a global field k, explain why strong ap-
proximation with respect to @ is equivalent to weak approximation.

Give a proof of the Lang—Nishimura theorem by induction on dim X,
along the following lines: Blow up the smooth k-point on X and apply
the inductive hypothesis to the restriction of the rational map to the
exceptional divisor E. (This proof is due to Janos Kollar and Endre
Szab6 |[RY 00, Proposition A.6].)

Show that the Lang—Nishimura theorem can fail if either of the fol-
lowing changes is made:

(a) The assumption that Y is proper is dropped.

(b) The given k-point on X is not assumed to be smooth.

Prove Proposition [3.8.2] comparing Zariski open covering, étale and
surjective, fppf, and fpqc morphisms.

The inclusions k[z] < k[z, 27! and k[x] < k[[x]] define a morphism f
from the disjoint union X := Spec k[x, z~!]IISpec k[[z]] to the scheme
Y := Spec k[z]. Show that f is fpqc but not fppf.



Chapter 4

Faithfully flat descent

(References: |Gro95al and |[BLR90, Chapter 6])

Suppose that one wants to carry out a construction of a variety over a
base field k. Sometimes all one can do directly is-to construct its analogue
X' over some field extension k’. Then one is faced with deciding whether X’
is the base extension of some k-variety X, and if so, to construct X. This is
a special case of the problem known as descent.

Weil gave necessary and sufficient conditions for descending a quasi-pro-
jective variety over a Galois extension ¥’ D k. Later, Grothendieck noticed
that these conditions were analogous to the conditions for reconstructing an
object from local data by gluing; this led him to a common generalization.

4.1. Motivation: Gluing sheaves

4.1.1. A gluing problem. Let S be a topological space, and let {S;}icr
denote an open covering of S. Suppose we are given a sheaf .%; on S; for
each 7. Under what conditions is there a sheaf .# on S such that .#|g, >~ .%;?
(Cf..|Har77, Exercise 11.1.22].)

4.1.2. Solution: The gluing conditions. If .% exists, then the restric-
tions of F g, and F|g; to S;; := 5;NS; must be isomorphic (both isomorphic
to F|s;;). Thus we should at least insist that

(4.1.1) for all i and j, we are given an isomorphism ¢;;: Fils,, — Fjls,;

Can we then glue the .%; via the ¢;;?7 On a triple intersection Sjjp =
SiNS;NSk, the sheaves Fig, , , yj‘szjm ﬁk]gijk are identified in pairs by ¢;;,
¢k, and ¢y, forming a triangle of identifications. For these identifications

97
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to be compatible, we should insist that the composition of two sides of the
triangle gives the third, i.e., that we have the following “cocycle condition™

(4.1.2) for all 4, 7, k, we have ¢;;, 0 ¢;j = ¢, on Syjg.

In the case where .7 exists, each ¢;; is the identity, so these are automatically
satisfied. The gluing theorem states that given sheaves .%; on S;, if there
exist isomorphisms as in satisfying , then up to isomorphism
there exists a unique sheaf .# on S with isomorphisms ¢;: .#|s, — .%; such
that ¢; and ¢; identify the identity on Fg,, with ¢;.

Example 4.1.3. Let k£ be a field, and let § = P,li, which is covered by
two affine open subsets S; = Speck[t] ~ A} and S, = Speck[t™!] ~ Al
whose intersection is S1o = Speck[t,t™!] ~ Al — {0}. Let M; = k[t] and
My = k[t71] be free rank 1 modules over k[t] and k[t~1], respectively. Let
F = Ml and FH = Mg be the corresponding sheaves-on S; and Ss. Let
d € Z. The k[t,t~!]-module isomorphism

My k[ k[t7t71] = k[t,til] Ld) k‘[t,til] = M> k-1 k[t,til]
given by multiplication by t~% induces a sheaf isomorphism

P12: 91’512 — 3\2‘512_

Let ¢11 and ¢99 be the identity, and let ¢21 be <Z>1_21. Then 1} is trivially
satisfied, so we can glue to get a sheaf .# on Pi. In fact, .Z is 0(d).

Remark 4.1.4. One can also glue morphisms of sheaves, in the following
sense. Let S be a topological space, and let {S;};c; denote an open covering
of S. Let .# and ¢ be two sheaves on S. For each i € I, let ¢;: Fl|g, — Y|,
be a morphism of sheaves. If for every 7, j € I, the restrictions of ¢; and ¢;
to S;; are equal, then there exists a unique morphism ¢: .% — ¢ such that
¢|s, = ¢i for each i € I. (In fact, this statement holds very generally, for
sheaves on any site [SP, Tag 04TQ)].)

4.1.3. Rewriting the gluing conditions. We can restate the gluing con-
ditions by introducing the disjoint union S’ :=[[S;. Let w: 8" — S be the
“open covering morphism” that on each S; is the inclusion. To give the .%;
on all the S; is equivalent to giving a single sheaf .%’ on S’. The question
is whether there exists a sheaf .# on S such that the sheaf 7=1.% on $’ is
isomorphic to the given .#'.

The fiber product S” := S’ xS equals the disjoint union of S; xg S; =
S;NS; =: S;; over all ,j. Let p1: S” — S" and py: S — S be the two
projections. The sheaf pl_lﬂ " restricted to the piece indexed by ij corre-
sponds to the sheaf .#;|s,,. Thus, asking for isomorphisms ¢;; as in
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is equivalent to asking that
(4.1.5)
we are given an isomorphism ¢: pl_lﬁ "= py LZ' of sheaves on S”.

Let 8" := 5" x5S5" xg5". Let p13: S” — S” be the projection onto the first
and third coordinates, and so on. Then p1_31q§ is an isomorphism of sheaves
on S”. The cocycle condition (4.1.2)) can now be rewritten as

pi,)lgb = p531¢ © pf21¢-
4.2. Faithfully flat descent for quasi-coherent sheaves

The idea behind faithfully flat descent is that, in the context of schemes, in
place of the Zariski open covering morphisms S’ — S of Section one
can use the much more general fpqc morphisms defined in Sectlon L We
develop this first for quasi-coherent sheaves, by analogy with the condltlons
in Section m The operation p~! on sheaves is replaced by p*, which is
the appropriate operation for quasi-coherent sheaves.

4.2.1. Descent data. Let p: S’ — .S be an fpqc morphism of schemes.
Let .#' denote a quasi-coherent S’-module (that is, a quasi-coherent sheaf
of Ogi-modules). Define S” and S as in Section using fiber prod-
uct of schemes instead of fiber products of topological spaces. Define the
projections p1, p13, and so on as before.

Definition 4.2.1. With notation as in the previous paragraph, a descent
datum on .Z’ is an isomorphism ¢: pi.%’ — p5.Z’ of S”-modules satisfying
the cocycle condition

Pi3® = p33d 0 piad.
A morphism of quasi-coherent S’-modules with descent data (#',¢) —
(¢',4) is a-morphism of S’-modules f F' — 4’ such that

piF —> Py’

gl |v
péy/ 2 *g/

commutes.

Remark 4.2.2. There is an elegant reinterpretation of the notion of descent
datum in terms of simplicial schemes. See [SP) Tag 0248| for an introduction.

If % is a quasi-coherent S-module, then p*.%# has a natural descent
datum ¢4, consisting of the canonical isomorphism

pip*F) = (pop1)"F = (pop2)"F ~p5(p*F)
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4.2.2. The descent theorem for quasi-coherent sheaves. We now have
the main theorem of descent theory, in the context of quasi-coherent modules.

Theorem 4.2.3 (Grothendieck). If p: 8" — S is an fpgc morphism, then
the functor

{quasi-coherent S-modules} — {quasi-coherent S’-modules with descent data},
T — ("7, 07)

is an equivalence of categories.

The proof takes only a few pages. It reduces to a statement about mod-
ules over rings generalizing Theorem [1.3.11] See |Gro95a, Theorem 1| or
[BLR90, §6.1] for details.

4.3. Faithfully flat descent for schemes

We now consider the problem of descending schemes instead of quasi-coherent
sheaves. Let p: S’ — S be fpqc. Let X’ be an S”-scheme. Under what con-
ditions is X’ isomorphic to an S’-scheme of the form p*X for some S-scheme
X7? (We use the notation p*X = X xg5’.)

4.3.1. Descent data for schemes. The answer is almost the same as
for sheaves. A descent datum on an S’-scheme X’ is an S”-isomorphism
¢: pi X' — piX' satisfying the usual cocycle condition. The pairs (X', ¢)
are the objects of a category as before. If X is an S-scheme, then p*X
has a canonical descent datum ¢x. Call ¢ effective if (X', ¢) ~ (p* X, dx)
for some S-scheme X . Ideally every descent datum would be effective, as
happened for quasi-coherent sheaves, but this is not quite true for schemes;
see [IBLR90, §6.7] for a counterexample.

4.3.2. Open subschemes stable under a descent datum.

Definition 4.3.1. Let X’ be an S’-scheme, and let ¢: pi X' — p5X’ be a
descent datum. An open subscheme U’ C X’ is called stable under ¢ if
¢ induces a descent datum on U’, that is, if ¢ restricts to an isomorphism
piU — psU’ of S”-schemes.

The idea behind this definition is that the stable open subschemes of X’
are the ones that are supposed to be of the form p*U for an open subscheme
U of X, if X exists.

4.3.3. The descent theorem for schemes.

Definition 4.3.2 (JEGA II, 1.6.1]). A morphism f: X — S is affine if
f~18y is affine for each affine open subscheme Sy of S. In this case, we call
X an affine S-scheme.
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@ Warning 4.3.3. An affine S-scheme is not necessarily affine as a scheme;
“relatively affine” might be clearer terminology.

Definition 4.3.4 ([JEGA 1II, 5.1.1|). A scheme is quasi-affine if it is an open
subscheme of an affine scheme and is quasi-compact. A morphism f: X — S
is quasi-affine if f~15; is quasi-affine for each affine open subscheme Sy of

S.

Theorem 4.3.5. Let p: S’ — S be an fpqc morphism of schemes.

(i) The functor X — p*X from S-schemes to S’-schemes with descent data
is fully faithful.

(i1) The functor X — p*X from quasi-affine S-schemes to quasi-affine
S’-schemes with descent data is an equivalence of categories.

(iii) Suppose that S and S' are affine. Then a descent datum ¢ on an
S’-scheme X' is effective if and only if X' can be covered by quasi-
affine open subschemes which are stable under ¢.

Remark 4.3.6. Parts and hold also if “quasi-affine” is replaced by
“affine” everywhere. Part will be used primarily to show that certain
descent data are effective (the “if” part), so it is preferable to have the more
widely applicable criterion.

The proof of Theorem reduces to the proof of Theorem [£.2.3] See
|Gro95al, B.1, Theorem 2|, |[BLR90, §6.1, Theorem 6|, and |SP, Tag 0247]
for details.

4.3.4. Descending properties of morphisms. When an S-scheme X is
base extended to an S’-scheme X', we know that X’ inherits many properties
from X. Conversely, when an S’-scheme X’ is descended to an S-scheme X,
one hopes that X inherits properties from X’. Fortunately, this is the case
in-fpqc descent, for many properties.

Theorem 4.3.7. Let blah denote a property for which a positive answer is

listed in the “fpgc descent” column of Table[1] on pp.[303{303. Let S" — S
be an fpqc morphism. For any S-scheme X, let X' = Xg/.

(i) Let X be an S-scheme. If the base extension X' — S’ is blah, then the
original morphism X — S is blah.

(ii) More generally, if X — Y is a morphism of S-schemes and its base
extension X' — Y' by 8" — S is blah, then the original morphism
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X — Y s blah.
X’ > X
Wb \bfh?
Y’ >Y
s/ / fpqac s /
Proof.

(i) See the references in Table
(ii) Since the morphism S — S is fpqe, Table [1| implies that its base
extension Y’ — Y is fpqc. Now the result follows from . O

Remark 4.3.8. It is easy to understand why the surjectivity implicit in
fpqc is a hypothesis for a statement like Theorem . If 8" — S were
not surjective, the morphism X — S could have bad behavior above points
of S not in the image of S/, and this behavior would not be seen in the base
extension X’ — S’

4.4. Galois descent

Let k be a field, and let k' be a finite Galois extension of k. Let S = Speck
and S’ = Speck’. Then S’ —S is fpqc, so we can apply Theorem
to say something about descending k’-schemes to k-schemes.

Remark 4.4.1. This case was developed by Weil. Later Grothendieck gen-
eralized it to the fpqc descent we presented first.

Let G = Gal(k'/k). The left action of G on k" induces a right action of
G on S’; each o € G induces an automorphism o* of S’.

Proposition 4.4.2.

(i) Giving a descent datum on a k'-scheme X' is equivalent to giving a
right action of G on X' compatible with the right action of G on S,
i.e., to giving a collection of isomorphisms 6: X' — X' for o € G such
that

Xl o - X/
g AN g
commutes for each o € G and o1 = 75 for all o,7 € G.

(il) An isomorphism between k'-schemes with descent data is a k'-isomor-
phism that is equivariant for the G-actions in part .
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(i) An open subscheme U’ of a k'-scheme X' is stable under a descent
datum described as in part (i) if and only if 5(U') = U’ for all o € G.

Proof. Since k’/k is Galois, we have an isomorphism
Kok S ]
k oeqG
a®br (a-7b)occ-
This induces isomorphisms
(4.4.3) S~ H Speck’ =1 8 xG@,
oelG
"~ xS~ xS xG ~ §xGxG.
S S

Plugging these into the definition of descent datum-and doing some straight-
forward calculations yields the results. See [BLR90, §6.2B| for the de-
tails. O

The morphisms & are not morphisms of k’-schemes, since they lie over
the o* instead of the identity. If desired, we can rewrite the conditions in
Proposition in terms of &’-morphisms. Recall from Section that we
can transform a k’-scheme by an element o € G.

Proposition 4.4.4. Let X' be a k'-scheme.

(i) Giving a descent datum on X' is equivalent to giving a collection of
k' -isomorphisms fo: °X' — X' for o € G satisfying the “cocycle con-
dition” for = fo -7 (fr) for all o,7 € G.

(i1)“An isomorphism between varieties with descent data, say X' with
(fo)oca and Y with (9o )ocq, is a k'-isomorphism b: X' — Y’ such
that fo = b"1g,(7b) for all o € G.

(iii) An open subscheme U' C X' is stable under a descent datum described
as in part (i) if and only if f, (°U") = U’ for all o € G.

Proof. We will use Proposition

(i) Because of the isomorphism X" — X’ lying over ¢*, giving an isomor-
phism 6: X’ — X' over o* is equivalent to giving a k’-isomorphism
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fo: 7X' — X' fitting into the commutative diagram
X/

(4.4.5) °X —= X'

§ T
(Squares are cartesian, and we use dotted arrows to denote k’-mor-
phisms.) The diagram

X/
fo
Sl X — X!
A A 5
Rt Ir \
- O'TX/ TXI X/
ST Ly T
\_/

(o7)
shows that o7 = 747 is equivalent to fyr = f5 - 7 (fr).
(ii) A K'-isomorphism b:- X" — Y’ is G-equivariant if and only if for every
o € G, the 3-dimensional diagram formed by two copies of (4.4.5)), one

for X’ and one for Y/, connected by vertical isomorphisms given by
b: X' =Y’ and 7b: X’ — °Y’, commutes, or equivalently,

O'X/ fo - Xl
7b b
v v
O‘Y/ 9o - Y/
commutes.
(iii) The diagram (4.4.5) shows that ¢(U’) = U’ if and only if f, (U’) =
U'. O

Corollary 4.4.6. Let k'/k be a finite Galois extension of fields. Let X'
be a quasi-projective k'-scheme. Suppose that we are given k'-isomorphisms
fo: "X — X' for o € G satisfying for = f5 - (fr) for all o,7 € G. Then
X' = Xy for some k-scheme X.
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Proof. As in the proof of Proposition f.4.4] giving the f, is equivalent to
giving a right action of G on X’. By Theorem[4.3.5] it suffices to show that X’
can be covered by G-invariant quasi-affine open subsets. Fix an embedding
X" — P},. Given 2’ € X', we can choose a hypersurface H C P}, that
does not meet the G-orbit of 2’. (In fact, if £’ is infinite, then a hyperplane
suffices.) Let U’ = X' — H. Then (,c; 0(U’) is a quasi-affine open subset
of X’ containing 2. O

Remark 4.4.7. More generally, a finite and faithfully flat morphism- of
schemes p: S’ — S equipped with a finite group G of automorphisms of S’
as an S-scheme (acting on the right) is called a Galois covering with Galois
group G if the morphism S’ x G — S” given by (id, o) on the piece S’ x {c'}
for each o € G is an isomorphism of schemes (cf. (4.4.3))). Propositions [{.4.2]
and continue to hold in this setting. Corollary [4.4.6/holds too, provided
that we assume that S is affine (so that S’ is affine too); this condition is
used to construct the hypersurface H in the proof.

Remark 4.4.8. Sometimes the scheme X’ to be descended to k is over kg
instead of a finite Galois extension of k. In that case, assuming that X' is
finitely presented, we may use that ks is the direct limit of its finite Galois
subextensions to obtain X’ as the base extension of a scheme over a finite
Galois extension of k before applying Galois descent.

4.5. Twists

(Reference: [Ser02, II11.§1])

Let X be a quasi-projective k-variety. Let k//k be a Galois extension of
fields, and let & = Gal(k'/k).

Definition 4.5.1. A k’/k-twist (or k’'/k-form) of X is a k-variety Y such
that there exists an isomorphism ¢: Xz = Y. A twist of X is a kg /k-twist
of X.

The set of k-isomorphism classes of k'/k-twists of X is a pointed set,
with neutral element given by the isomorphism class of X. The action of &
on k' induces an action of & on the automorphism group Aut Xj.

Theorem 4.5.2. There is a natural bijection of pointed sets
k' /k-twists of X ~
{K'/k-twists of X'} ~

k-isomorphism

Hl(ﬁ, Aut Xk;’)

@ Warning 4.5.3. It is the automorphism group of X/, not X, that appears.
Also, the group Aut Xz may be nonabelian, so it may be necessary to use
nonabelian group cohomology as in [Ser02, 1.§5].
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Proof of Theorem [4.5.2l We may assume that &’/k is finite, since at the
end we can take a direct limit of both sides.

For each o € &, we identify X}, with X;/. To give a k'/k-twist of X
is to descend X/ to a k-variety. By Theorem and the fact that Xp
is quasi-projective, this is the same as giving a descent datum on Xji. By
Proposition this is the same as giving a 1-cocycle & — Aut Xj/.

By Theorem [4.3.5(), two such twists are k-isomorphic if and only if the
descent data are isomorphic, which by Proposition holds if and only
if the 1-cocycles are cohomologous. O

Remark 4.5.4. Explicitly, given a k//k-twist Y, an associated. 1-cocycle is
constructed as follows: choose a k’-isomorphism ¢: X = Y}, and define

foi=0"1(¢) € AutX.

® Warning 4.5.5. Given an element of H'(&, Aut X)), one gets an isomor-
phism class of k’/k-twists, but there is no natural way to select a particular
twist in that isomorphism class. Thus, strictly speaking, it is incorrect to
speak of “the twist associated to a cohomology class”. To determine a twist,
one should select a cocycle representing that cohomology class.

Important Remark 4.5.6. Although we used quasi-projective k-varieties
in Theorem [4.5.2] an analogous result holds for twists of many other “k-
objects”, where Aut X,/ now denotes the automorphism group of X/ as a
k'-object. (To make thisprecise, one should specify a category of k-objects, a
corresponding category of k’-objects, a notion of base extension, etc., satisfy-
ing certain axioms.) To get injectivity of the natural map in Theorem m
one needs that G-invariant morphisms between base extensions of k-objects
descend. To get surjectivity, one needs that descent data on k’-objects be
effective. These conditions (especially the latter) can sometimes fail.

4.5.1. Severi—Brauer varieties.

Definition 4.5.7. A Severi—Brauer variety over k is a twist of the k-variety
IP)Z_I for some n > 1.

Example 4.5.8. The 1-dimensional Severi-Brauer varieties over k are ex-
actly the nice genus 0 curves over k.

Because Severi-Brauer varieties are twists, it is natural (but not neces-
sary |[Kol16|) to use cohomology to study them. First, Aut IPZ:l equals
PGL,(ks), which is also the automorphism group of the matrix algebra
M,,(ks). Applying Theorem and recalling material from Section
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we get

{(n — 1)-dimensional Severi-Brauer varieties/k}

|

HY(&, PGL,, (ks))C Brk.

|

{n%-dimensional Azumaya k-algebras}

Remark 4.5.9. One can show also that if X is a k-variety such that X7 ~
IP’%_I, then Xj, o~ ]P’ZS_1 already; i.e., X is a Severi—Brauer variety. This
can be viewed as a consequence of the triviality of the fppf cohomology set
H(ks, PGL,) (cf. Remark and Theorem ), or it can be related
to the fact that an Azumaya algebra over a separably closed field is split.

Proposition 4.5.10 (Chatelet). The following are equivalent for an (n—1)-
dimensional Severi—Brauer variety X over a field k:
. ~1
(i) X =P .
(ii) X is birational to Py L.

(iii) X (k) # 0.

Proof.
(i)=>(ii): Trivial.
(ii)=-(iii): This follows from the Lang-Nishimura theorem; see Corol-

lary

(iii)=(i): Choose x € X (k). Since X is a Severi-Brauer variety, there
exists an isomorphism X — Pz;l. Compose it with an automorphism
of IP’Z:I so that it maps x to the point P := (1 : 0 : --- : 0) € P" (k).
Then (X, 2) may be viewed as a twist of the pointed variety (P{"', P). The

automorphisms of (P}'~*, P) over ks are the automorphisms of }P’Zs_l that fix
P. They form a subgroup of PGL,, (ks):

¥ ok ... % 1

0 % --- =% 0
Aut(IP’Zs_l,P) = L | mod kX~

0 % --- % 0 * -+ x

The “forget the first row and column” map is a homomorphism from the
group on the right onto GL,_1(ks), and we obtain a &g-equivariant exact
sequence

0 — (k)" ' — Aut(P} ', P) — GLy,_1(ks) — 0.
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By Proposition m , the H' of the group at each end is trivial, so
in the middle H QSk,Au‘c IP’" lp ) is trivial too. Equivalently, by The-

e ’ the pointed Vamety (P~ 1. P) has no nontrivial twists. Thus
(X,z) ~ (IP’Z_I7 P). In particular, X ~ PZ_I. o

Theorem 4.5.11 (Chételet). Severi-Brauer varieties over global fields sat-
isfy the local-global principle.

Proof. Let X be the variety, and let = be the corresponding element of Br k.
Let n — 1 = dim X. By Proposition

Xk)#0 = XoP' = =0
The variety X, is a Severi-Brauer variety over k, corresponding to the
image x, of x in Brk,, so we similarly have

X(ky) #0 <= z,=0.
Thus the result follows from the injectivity of

Brk — @Brk‘v,

which was mentioned in Section [1.5.9. O

4.5.1.1. Rational maps between Severi—Brauer varieties.

Proposition 4.5.12. Let X ‘and Y be positive-dimensional Severi—Brauer
varieties over a field k. Let x,y € Brk be the corresponding Brauer classes.
Let f: X --»Y be a rational map. Let U C X be the domain of definition
of f. The composition

Z = PicYy, 1 PicUy, & Pic Xy, = Z

(in which the identifications at each end associate 1 to the ample generator
O(1) of the Picard group of each projective space over ks) is multiplication
by some nonnegative integer m. Then y = mux.

Sketch of proof. For any nice k-variety X, the exact sequences
k(X )~

00—
ko™

— Div X}, — Pic X, — 0,

k(X,)™
O—>I<:SX—>k(XkS)X—>(k’fj)—>0
S

define connecting homomorphisms
K (X, )

H%(&,, Pic X;,,) — H! (esk, w

) — H?(B, k™)
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whose composition is a homomorphism (Pic X}, )®* — Br k. Moreover, given
a rational map X --» Y, we obtain a commutative diagram

(Pic Yy, )% ——= Brk

(4.5.13) l
(Pic X3, )% —— Brk

Finally, in the case where X is a positive-dimensional Severi—Brauer variety
corresponding to an Azumaya algebra A, we have (Pic X}, )% ~ Z, and a
computation proves a theorem of Lichtenbaum stating that the class of &'(1)
(corresponding to 1 € Z) maps to the class of A in Brk; see |GS06] 5.4.10].

Chasing elements in diagram (4.5.13)) yields
l——y

|

m+—— max. O

@ Warning 4.5.14. The quantity m appearing in Proposition [4.5.12| acts
strangely:

e It is not directly related to the notion of degree in Definition [3.6.10}

e It is not multiplicative with respect to composition of rational maps.

e For a birational map, m need not be 1.

Example 4.5.15. If f: P? ~-5 P? is the quadratic transformation

1 1 1
) —r—r— ) = D2 ,
(x 1y :2) <x ; Z) (yz : 2w : y)
then m = 2. But f o f is the identity, which has m = 1.
Corollary 4.5.16. Let X and Y be Severi—Brauer varieties over a field
k. Let x,y € Brk be the corresponding Brauer classes. If X and Y are
birational, then x and y generate the same subgroup of Brk.

Remark 4.5.17. Amitsur [Ami55| conjectured a converse to Corollary
namely, that if X and Y are Severi—Brauer varieties of the same
dimension whose classes generate the same subgroup of Brk, then X and
Y are birational. For some partial results toward Amitsur’s conjecture, see
|[Roq64//Tre91|.

Remark 4.5.18. Integral varieties X and Y are called stably birational if
X xP™ and Y xP™ are birational for some m,n > 0. Even over C, stably bira-
tional varieties of the same dimension need not be birational [BCTSSD85|.
Exercise asks for a proof of the following weak form of Amitsur’s conjec-
ture: if X and Y are Severi-Brauer varieties of the same dimension whose
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classes generate the same subgroup of Brk, then X and Y are stably bira-
tional.

4.6. Restriction of scalars
(Reference: |BLR90, §7.6])

Let L O k be a finite extension of fields, and let X be an L-variety.
We want to construct a k-variety X whose arithmetic over k mimics the
arithmetic of X over L. In particular, we want a bijection X (k) ~ X (L).
But this condition is not enough to determine X uniquely.

Definition 4.6.1. Let L be a finite extension of-a field k£, and let X be
an L-variety. The restriction of scalars (also called Weil restriction) X' =
Resy,/,(X), if it exists, is a k-variety characterized by the existence of bijec-
tions X' (S) — X (S xy L) = Homp (S Xy L, X), for each k-scheme S, varying
functorially in S.

“Functorially in S” means that for any k-morphism f: S — T, the dia-

gram
X(T) —— X(T x; L)

I |

X(S) —— X(S xx L)
induced by f and its base extension fr: S Xy L — T X L commutes. In

other words, the restriction of scalars, if it exists, is a k-scheme representing
the functor S'+— X (S xy L).

If X is an affine L-variety, then X' := Resp,, X exists as an affine k-
variety, and can be described explicitly as follows. Write

X =SpecLlzy,...,zn)/(f1s--y fm)-

Choose a basis e1,...,es of L over k. Introduce new variables y;; with
1<i<nand1<j<s, and substitute

S
Ti= Zyijej
j=1
for all 7 into f, for each 7, so that

fr<3717 s 73777,) = Fr,lel +o T+ Fr,ses
for some polynomials F;.; € k[{yi;}]. Then X = Speck[{yi;}/({Fr¢})-
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Example 4.6.2. Let k = Q, let L = Q(v/2), and let X be the curve in A2
defined by 122 + (5 4+ 7v/2) = 0. Substituting

1 = y11 + y12V2,
T = Y21 + y22\/§7

we get
(y11y21 + 2y12922 + 5) + (Y1192 + y12y21 + V2 =0,
so X is the surface in A?Q defined by the system of equations

Y11Y21 + 2y12y22 + 5 = 0,
Y11Y22 + y12y21 + 7 = 0.

The fact that X'(Q) equals X (L) is almost a tautology. To show more gen-
erally that X(S) equals X (Sg) for any k-scheme S, one uses the fact that
Os, (S1) = Os(S) ®g L, which follows easily from the construction of the
fiber product.

For non-affine varieties, the restriction of‘scalars is harder to construct,
and sometimes it even fails to exist!

Proposition 4.6.3. Let L O k be a finite extension of fields, and let X be
an L-variety. If every finite subset of X is contained in some affine open
subset of X, then Resy , X exists.

Proof. This is a special case of |[BLR90, §7.6, Theorem 4|. The idea of the
proof is to take the restriction of scalars of each affine subvariety of X, and
then to use descent to show that they can be glued. O

Remark 4.6.4. To see why one must use affine open subvarieties containing

finite subsets instead of just affine open subvarieties forming a covering of
X, do Exercise [£.8

Important Remark 4.6.5. Any quasi-projective variety X over L satisfies
thehypothesis of Proposition [4.6.3

Restriction of scalars can often be used to reduce questions about vari-
eties over a large field to questions about (higher-dimensional) varieties over
smaller fields. For example, it is known |[Mil72, Theorem 1] that if L is
a finite separable extension of a global field £ and A is an abelian variety
over L, then the full Birch and Swinnerton-Dyer conjecture holds for A over
L (see Conjecture and Remark if and only if it holds for the
abelian variety Resy/, A over k. This lets one reduce the conjecture for
abelian varieties over global fields to the conjecture for abelian varieties over

Q and F(t).
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Remark 4.6.6. One can generalize the notion of restriction of scalars to
Resg//g where S’ is a finite and locally free scheme over a base scheme S.
(Our discussion corresponds to the special case S = Spec k and S’ = Spec L.)

Remark 4.6.7 (Greenberg transform). Let R be a discrete valuation ring,
with uniformizer 7 and perfect residue field k. Let R, = R/n"R. For
example, R, could be the ring W, (k) of length n Witt vectors (see [Ser79\
I1.8§6]). The level n Greenberg functor takes a scheme X locally of finite
type over R, and returns a k-scheme X, called the Greenberg transform;
see [BLR90, p. 276] for more details. The Greenberg transform acts very
much like the restriction of scalars, but cannot be considered as a-special
case even of the generalized restriction of scalars in Remark because
R, need not be a k-algebra.

Example 4.6.8 (Jet spaces). If X is a finite-type scheme over a field k& and
A = E[[t]]/(t"*1), then Res,, X4 exists as a finite-type k-scheme and is
called the nth jet space of X [BLR90| p. 276]. This could also be viewed
as a special case of the Greenberg transform, at least when k is perfect.

Exercises

4.1. (Field of moduli not a field of definition) Let ¢ € Gal(C/R) denote
complex conjugation.’ Let aqg,...,ag be complex numbers such that
Ta6_; = (—1)7Tla; for 0 < j < 6. Let f(x) = agz®+ -+ ap. Assume
that f(x) is a separable polynomial of degree 6. Let X be the smooth
projective model of the affine curve y?> = f(z) over C. Assume that
the only nontrivial automorphism of X is the hyperelliptic involution
t,.induced by the automorphism (x,y) — (x, —y) of the affine curve.
(a) Prove that X is isomorphic to X as a C-variety, where o is the

nontrivial element of Gal(C/R).
(b) Prove that X is not the base extension of a curve defined over R.
(c) Prove that the hypotheses of the problem can actually be satisfied!
(Hint: For a suitable choice of a;, prove Aut X = {1x,¢} by
using that any automorphism of X induces an automorphism of
X /1 ~ P! preserving the six branch points.)

4.2. (Twists of a superelliptic curve) Let k be a field, and let n be a positive
integer such that char k t n. Fix f(z) € k[z| such that y" — f(x) =0
defines a geometrically integral affine curve over k; let X be its smooth
projective model. Assuming that every automorphism of X7 fixes the
rational function x, describe the set of twists of X up to k-isomor-
phism.
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4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

(Rational points on a quadratic twist of an elliptic curve) Let k be a
field. Let E be an elliptic curve over k with equation y? = 3+ ax + b;
i.e., I is the projective closure of that affine curve, and E is smooth
(so chark # 2). Let d € k* \ kX2, let L = k(v/d), and let o be the
nontrivial element of Gal(L/k). Let E’ be the elliptic curve over k
with equation dy? = 2% + az + b. Prove that E’(k) is isomorphic to
the group {P € E(L) : °P = —P}.

Let k be a field. Let k(t) be the rational function field over k. Let E
be an elliptic curve over k with Weierstrass equation y? = 3 4 az + b.
Let E’ be the elliptic curve over k(t) with Weierstrass equation

(t3 + at +b)y? = 2° + ax + b.
Prove that E'(k(t)) ~ (End E) @ E[2](k) as abelian groups.

Let X be a nice genus 0 curve over a global field k. Use the description

of Brk to prove the following:

(a) The curve X has a k-point if and only if X has a k,-point for
every place v of k.

(b) The number of places v for which X (k,) = ) is finite and even.

Let X and Y be Severi-Brauer varieties of dimension n — 1 whose
classes in Brk generate the same subgroup. Prove that X x P!,
X x Y, and Y x P*~! are all birational to each other. (Hint: Use
Proposition 4.5.10})

Let L O k be a finite Galois extension of fields, with Galois group
G. Let X be an L-variety. Assume that the k-variety X' := Res/p X
exists. Prove that X7 ~ [], ., °X as L-varieties.

Let X = PL. Let U = X — {0} and V = X — {oo} be the standard
copies of A(%: whose union is X. Prove that the union of the open
subschemes Resc /g U and Resc/r V' does not equal Resc/r X.
(Inseparable restriction of scalars) Let L =F,(¢) and k = F,(t?). Let
X be the L-scheme Spec L[z]/(zP —t). Compute Resy, X. (The
answer may surprise you!)






Chapter 5

Algebraic groups

5.1. Group schemes

(References: |Vis05| §2.2|, [Wat79|)

5.1.1. Category-theoretic definition of groups. Let pt be an empty
product of sets; in other words, pt is a terminal object in the category Sets,
i.e., a one-element set.

A group can be interpreted as a set GG equipped with maps m: GXxG — G
(multiplication), i: G — G (inverse), and e: pt — G (identity) satisfying
the group axioms, namely the commutativity of the following diagrams, in
which 1: G — G is the identity on G.

e Associativity:
mXx1

GxGEGxG@—Gxd

| |

GxG—" G.

e Identity (left and right):

pthiLGxG and prttiG
\G \G.

115
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e Inverse (left and right):

(i,1) (1,4)
G——=Gx(d and G—=GxG

- -

pt G pt G.

The definitions of commutativity, group homomorphism, (right or left)
action of a group on a set (i.e., G-set), and G-equivariant map (i.e., morphism
of G-sets) are category-theoretic too.

5.1.2. Group objects. Let C be a category with finite products: i.e., for
any n > 0 and for any objects Gy, ..., G, of C, there is an.object G equipped
with a morphism to each G; such that any other object H equipped with a
morphism to each G; admits a unique morphism to G compatible with the
morphisms G — G;. For n = 0, an empty product is the same thing as a
terminal object of C.

Then a group object in C is an object G equipped with morphisms m, i, e
satisfying the group axioms listed in Section [5.1.1

Example 5.1.1. A group object in Sets is a group.

Example 5.1.2. A group object in the category of topological spaces with
continuous maps is a topological group. (Actually, many authors require a
topological group to be Hausdorff; if one wants this, one should start with
the full subcategory of Hausdorff topological spaces.)

The definitions of commutative group object, homomorphism of group
objects, action of a'group object G on an object, and G-equivariant morphism
are defined by the same diagrams used for Sets. In particular, the group
objects in C form their own category.

5.1.3. Group schemes.

Definition 5.1.3. A group scheme G over a scheme S is a group object in
the category of S-schemes.

In the category of S-schemes, products are fiber products over S, and
the terminal object is the S-scheme S. So, for example, a homomorphism
of group schemes G — H over S is an S-morphism respecting the multipli-
cation morphisms mg and myy, that is, an S-morphism ¢: G — H making

mag

GxsG G

(d%(b)i l¢

Hxg H H
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commute.

Remark 5.1.4. If S = Spec R, and G = Spec A is an affine group scheme
over R, then m, i, e correspond to R-algebra homomorphisms with their own
names,

A:A— ARr A (comultiplication),
S:A— A (antipode),
e:A—R (counit),

satisfying opposite axioms. Together with the R-algebra structure on A,
given by the structure homomorphism R — A and multiplication AQr A —
A, this makes A into a commutative Hopf algebra over R. In fact, the
axioms defining commutative Hopf algebra are such that one obtains an
equivalence of categories

{affine group schemes over R}°"P — {commutative Hopf algebras over R}.

Definition 5.1.5. A subgroup scheme of- a group scheme G is a group
scheme H that is also a closed subscheme of G, and for which the inclusion
H — @G is a homomorphism.

Definition 5.1.6. If & is a field, a group variety over k is a group object in
the category of k-varieties.

Group varieties form a full subcategory of the category of group schemes.

5.1.4. Functor of points of a group scheme. Intuitively, to make a k-
variety G into a group scheme, one would want a morphism G x G — G
giving the set G(k) the structure of a group; this is a valid description if k
is algebraically closed and G is reduced. More generally, to describe a group
law on an S-scheme G, one should use the whole functor of points instead
of just G(S). This leads to an equivalent definition of group scheme that is
perhaps closer to geometric intuition:

Proposition 5.1.7. Let G be an S-scheme. Equipping G with the structure
of a group scheme over S is equivalent to equipping the set G(T') with a group
structure for each S-scheme T such that for any S-morphism T' — T, the
map of sets G(T) — G(T") is a group homomorphism. Equivalently, making
G a group scheme over S is equivalent to giving a functor G: Schemesg™ —
Groups completing the commutative diagram

ha
Schemes™ Sets.

~ /
g "~ N forgetful

Groups
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Proof. This is just Yoneda’s lemma (Lemma [2.3.4): To give compatible
multiplication maps G(T) x G(T') — G(T') is to give an S-morphism GxG —
G, and so on. O

Homomorphisms of group schemes, group scheme actions, and equivari-
ant morphisms can be described similarly. For example, giving a right action
of a group scheme G on an S-scheme X is equivalent to giving a collection
of compatible group actions X (7") x G(T') — X (T') (in the category of sets),
one for each S-scheme T. Such an action is faithful if for every S-scheme
T and g € G(T) not equal to 1, there exists T/ — T and = € X (T") such
that gz # x (here gz is defined by mapping g to an element of G(T”) before
acting).

® Warning 5.1.8. If G acts faithfully on X, it does not follow that G(T')
acts faithfully on X (T') for each T'. A group scheme G acting on a nontrivial
torsor X gives a counterexample (see Definition [5.12.3]).

Various properties of a group scheme are also conveniently described in
terms of its functor of points. For instance; a subgroup scheme H of G is
normal if and only if H(T') is a normal subgroup of G(T') for every S-scheme
T.

5.1.5. Examples of group schemes.

(1) The additive group scheme G, over a ring A is A = Spec A[t] with
m: G, x G, = G, given in coordinates by (t1,t2) — t1 + t2; that is, m
corresponds to the A-algebra homomorphism

Alt] = Aft1] ®4 Alto]
t—=t1®014+1®1.

Similarly 4 is given by t — —t, and e corresponds to the ring homomor-
phism ‘A[t] — A mapping ¢ to 0.

(2). The multiplicative group scheme G,, over A is defined the same way,
but using Spec A[t,t~1] with m given in coordinates by (t1,t2) — t1t2,
and so on.

(3) For each n > 0, the group scheme GL,, over a ring A is
Spec A[x11,x12, ..., Tnn, 1/ det],

where det is the determinant of the n X n matrix with indeterminate
entries Z11,...,Tny. (One defines m, 4, and e in the obvious way.) One
has GL; ~ G,,.

(4) Similarly, the group scheme SL,, over a ring A is
Spec A[x11, T12, - . ., Tny]/(det —1).
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(5) Let U, be the closed subgroup scheme of GL,, such that for every scheme
S, the set U, (S) is the set of upper triangular matrices in GL,,(S) with
every diagonal entry equal to 1.

(6) When one has a group scheme over Z, one can base extend to get a
corresponding group scheme over any scheme S. Thus for instance, one
can define G, g, SL;, g, and so on.

(7) Let G be a group, and let S be a scheme. For each o € G, let S, be
a copy of S. Then [[ .S, can be made a group scheme over S, by
letting m map S, Xg Sr isomorphically to S,, for each o,7°€ G. This
is called a constant group scheme.

(8) An elliptic curve over a field k is an example of a group scheme of finite
type over k.

Definition 5.1.9. If G is a group scheme over S such that ¢ is locally free
of rank r as an Og-module, then the order of G is #G = r.

Example 5.1.10. If Gg is the constant group scheme over S associated to
a finite group G, then #Gg = #G.

Example 5.1.11. If G is a finite group scheme over a field k, then G =
Spec A for some finite-dimensional k-algebra A, and #G = dimy, A.

5.1.6. Kernels.

Definition 5.1.12. The kernel K of a homomorphism of group schemes
¢: G — His ¢~ '(e), where e: S — H is the identity of H. More explicitly,
ker ¢ is the S-group scheme G x .S, where the S in the fiber product is viewed
as an H-scheme via e. The m, i, e for ker ¢ are induced from the m,i,e of G
by base extension. Alternatively, one can describe K as the group scheme
whose functor of points is given by K(7T') := ker (G(T') — H(T')). Sometimes
one thinks of the kernel as the inclusion morphism from K into G, instead
of as a group scheme in isolation.

Example 5.1.13. Let G,, be the multiplicative group scheme over Z. Let
n € Zso. Then we have an endomorphism [n]: G,, — G,, given in coordi-
nates by t — t". Its kernel is called p,,. As ascheme, u,, = SpecZ[t]/(t"—1).
The multiplication is given by (¢,u) — tu, as for G,,. For any commutative
ring R, the group p,,(R) is {r € R : r" = 1} under multiplication.

Let G be a group scheme over a field k£ of characteristic p. Then the
relative Frobenius morphism Fg /. G — G® is a homomorphism of group
schemes over k. If G is the base change of a group scheme over F,, then
GP) ~ @G, so Fg i, can be viewed as an endomorphism of G, the Frobenius
endomorphism.
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Example 5.1.14. Let k be a field of characteristic p. Let G, be the additive
group scheme over k. The Frobenius endomorphism G, — G, is described
in coordinates by t +— tP. Its kernel is called oy,. As a scheme, o) =
Speck[t]/(tP). The “multiplication” is given by (t,u) +— t + u. We have
#a, = p. For any k-algebra R, the group ay(R) is {r € R : r? = 0} under
addition.

5.1.7. Quotients and cokernels.

@ Warning 5.1.15. The notions of quotient and cokernel are trickier to define,
because even when A is a normal subgroup scheme of a group scheme B, the
functor T'— B(T)/A(T') might not be representable.

Example 5.1.16. Let G,, be the multiplicative group scheme over Q. The

squaring map G, 2 Gy, is scheme-theoretically surjective, so it should be
considered a surjective homomorphism, but it is certainly not true that every

q € G, (Q) = Q* is in the image of G,,(Q) 2 Gy, (Q). What is true is that

each ¢ € G,,,(Q) is in the image of G, (k) 2 Gin(k) for some finite extension
k 2 Q depending on ¢. Similarly, we want to-consider

1—>u2—>Gm3>Gm—>1

to be exact, even though the resulting sequence of rational points is only
left exact. One can show that the functor T'+— G, (T")/po(T") is not repre-
sentable, but the quotient group scheme G, /p, should be defined so that it
is isomorphic to Gy,.

Important Remark 5.1.17. Over an arbitrary base scheme, fppf base ex-
tensions play the role of the finite extension of fields k O Q in Example[5.1.16)

Motivated by Example[5.1.16] we make the following definitions; we work
in the context of fppf group schemes over S (i.e., group schemes G over S
such that the structure morphism G' — S is fppf).

Definition 5.1.18. A homomorphism B — C of fppf group schemes over S
is surjective if for every S-scheme 7" and element ¢ € C(T'), there is an fppf
morphism 77 — T such that the image of ¢ in C'(7”) is the image of some
b€ B(T'). Call a sequence of homomorphisms of fppf group schemes

ALB 4
exact (at B) if g o f is the trivial homomorphism and the induced homo-
morphism A — ker g is surjective. If A is the kernel of a surjective homo-

morphism of fppf group schemes B — C, then define the quotient B/A to
be C, and call B an extension of C' by A; in this case,

1-A—-B—-C—1
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is exact. More generally, the cokernel of a homomorphism A — B of fppf
group schemes is an fppf group scheme C equipped with a homomorphism
B — C such that

A—-B—-C—1

1s exact.

% Warning 5.1.19. For a homomorphism of group schemes to be surjective;
it is not enough that it induce a surjection on the underlying topological
spaces. For example, over a field of characteristic p, the homomorphism
from the trivial group scheme to p,, is not surjective.

@ Warning 5.1.20. As in Example a surjective homomorphism need
not induce a surjective map on rational points, and an exact sequence of
S-group schemes need not induce an exact sequence of their groups of S-
points. We will see in Chapter [6] that the obstruction can be measured by
cohomology.

5.2. Fppf group schemes over a field

(References: |Bor91|, [PR94|, [Spr98|)

Let k be a field. Flatness over k is automatic, and k is noetherian, so a
k-scheme is fppf if and only if itis-locally of finite type.

Definition 5.2.1. An algebraic group over a field k is a group scheme of
finite type over k.

@ Warning 5.2.2. Some authors require also that the group scheme be smooth
over k.

5.2.1. Connected component.

Definition 5.2.3. The connected component (or identity component) G°
of an fppf group scheme G over a field k is the connected component of G
containing the identity point 1.

Proposition 5.2.4. If G is an fppf group scheme over k, then G is a closed
and open normal subgroup scheme of G. Moreover, G° is of finite type (an
algebraic group) and is geometrically irreducible.

Proof. If any two irreducible components of G7 intersected, then there
would be some k-points in the intersection of two such components, and some

not, contradicting the fact that the group G(k) acts transitively by transla-

tions on G(k). Thus irreducible components of Gy are the same as connected
components of Gz. Since G has a k-point 1, Proposition [2.3.24| shows that

GV is geometrically connected, and hence geometrically irreducible by the
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previous sentence. In a scheme locally of finite type over a field, any con-
nected component is open and closed, and any irreducible component is of
finite type, so GO has these properties.

The proof of Proposition shows that GV x G° is connected, so the
multiplication m: G x G — G maps G° x G into the connected compo-
nent containing m(1,1) = 1, which is G°. Similarly, the inverse morphism
i: G — G restricts to a morphism G® — G, and 1 € G°(k). These make G
a subgroup scheme of G.

The conjugation action GxG — G sending (g, k) to ghg™! maps {g} x G°

into G for every g € G(k), and the same holds after arbitrary field extension,
so it maps G x G into GY. In other words, G is normal in G. O

Because of Proposition [5.2.4] the theory of fppf group schemes over a
field k is almost the same as the theory of algebraic groups over k.

5.2.2. Quotients.

Theorem 5.2.5 (Existence of quotient group schemes). If A is a closed
normal subgroup scheme of an fppf group scheme B over a field k, then the
closed immersion A — B fits in a uniquely determined exact sequence of fppf
group schemes

1-A—-B—->C—1.

Proof. This is a special case of [SGA 31, VIp 3.2]. One constructs C
by first constructing its functor of points he as the fppf sheafification (see
Definition [6.3.21)) of the functor T'— B(T")/A(T') on k-schemes. O

Remark 5.2.6. One can generalize Theorem to the case where the
subgroup scheme A is not normal in B. Then the quotient C' := B/A
is not a group scheme, but only a k-scheme with a left B-action, a left
homogeneous space of B with a k-point; see Remark for the definition
of homogeneous space.

Proposition 5.2.7. Let 1 - A — B — C — 1 be an exact sequence of fopf
group schemes over a field k. Then

(a) (Properties inherited by quotients) For any of the following properties,
if B has it, so does C: connected, reduced, finite type, smooth, étale,
unramified, finite, affine.

(b) (Properties inherited by extensions) Let blah be a property that is sta-
ble under composition, base extension, and fpgc descent (see Table|1] on

Pp. 305). If A and C' are blah (over k), so is B.

Proof.
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(a) Any image of a connected space is connected. For reduced, see [SGA 3y,
VIg 9.2(ix)|. For finite type, smooth, étale, unramified, and finite (which
over a field is equivalent to quasi-finite), see [SGA 3y, VIg 9.2(xii)|. For
affine, see [SGA 3y, VIg 11.7].

(b) The diagram

A< _AxB—">B
wl e
Speck B fpac C
l blah
Speck

is cartesian (for the square on the right, check on T-valued points). If
the first vertical arrow A — Speck is blah, then so are the second (base
extension) and the third (fpqc descent). If C'— Speck is blah too, then
the composition B — C' — Speck is blah. U

Definition 5.2.8. Let G be an algebraic group. A (finite) composition
series of GG is a chain of subgroups
}=Go<Gi1 < <G =G

in which G; is a closed normal subgroup scheme of G;11 for 0 < ¢ < n.
The groups G;+1/G; are called the successive quotients of the composition
series.

5.2.3. Quotients and homomorphisms.

Theorem 5.2.9. Let f: G — H be a homomorphism of algebraic groups.
Then f factors into homomorphisms

G Y iy
ker f ’
where q is the canonical quotient homomorphism, and © is a closed immer-
ston.
Proof. See |Gro62, page 212-17, Corollary 7.4]. O

Corollary 5.2.10. Let f: G — H be a homomorphism of algebraic groups.
Then ker f is the trivial group scheme if and only if f is a closed immersion.

Proof. If ker f is trivial, then f equals the closed immersion ¢ in Theo-
rem Conversely, if f is a closed immersion, then f: G(S) — H(S) is

injective for every k-scheme S, so ker f is trivial. U
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Definition 5.2.11. A homomorphism satisfying the equivalent conditions
of Corollary [5.2.10]is called an embedding of algebraic groups.

Theorem 5.2.12. The category of commutative algebraic groups over a
field k (a full subcategory of the category of group schemes over k) is an
abelian category.

Proof. This is a consequence of Theorem see |[SGA 3i, VIp 5.4,
Théoréme)|. O

5.2.4. Center, centralizer, and normalizer. Let k be a field. Let H be
a subgroup scheme of an fppf group scheme G over k. Let .S be a k-scheme.
Let g € G(S). If T is an S-scheme and ¢’ € G(T), we interpret gg' € G(T)
by mapping ¢ into G(T') before multiplying. Say that g centralizes H if for
every S-scheme T' and every h € H(T'), the identity gh = hg holds in G(T).
Say that g normalizes H if for every S-scheme T and every h € H(T), we
have ghg~! € H(T). Let Cg(H) be the functor sending a k-scheme S to
{g € G(S5) : g centralizes H}. Let Ng(H) be the functor sending a k-scheme
S to {g € G(S) : g normalizes H}.

Theorem 5.2.13. The functors Cq(H) and Ng(H) are represented by closed
subgroup schemes of G, called the centralizer of H in G and the normalizer
of H in G.

Proof. See [SGA 3p1, VIIL6.7]. O

The center of G is the closed subgroup scheme Z := Cq(G).

® Warning 5.2.14. The group Z(k) might be smaller than the center of G(k);
see Exercise [5.1]

Remark 5.2.15. Because centralizers, normalizers, and centers are defined
functorially, their formation automatically respects base field extension.

5.2.5. Smoothness.

Theorem 5.2.16. For an fppf group scheme G over a field k, the following
are equivalent:

(i) G is smooth over k.
(i)
)
)

(iii
(iv) Either chark =0, or chark =p >0 and Fg/,: G — G®) s surjective.

G is geometrically reduced.

The local ring of G at the identity is reduced.
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Proof. None of the conditions are affected by base field extension, so assume
that k is algebraically closed.

(i)=(ii): Smooth implies reduced by Proposition [3.5.51fi).

(ii)=>(iii): Trivial.

(iii)=-(ii): Translating by elements of G(k) shows that the local ring of
G at each k-point is reduced. For algebraically closed k, this implies that G
is reduced.

(ii)=-(i): By Proposition [3.5.64] the smooth locus is open and dense. In
particular, G is smooth at some k-point. By translation, G is smooth at
every k-point. Since k is algebraically closed, the only open subscheme of G
containing G (k) is G itself.

(i)e(iv): See [SGA 3g, VII4 8.3.1]. O

Remark 5.2.17. In , one could replace the relative p-power Frobenius
morphism by the relative g-power Frobenius morphism for any power ¢ of p.

Corollary 5.2.18 (Cartier). Every fppf group scheme over a field of char-
acteristic 0 is smooth.

More generally:

Proposition 5.2.19. Any fppf group scheme G over a field k is an extension
of a smooth group scheme by a finite group scheme.

Sketch of proof. If chark = 0, the result follows from Corollary
Therefore, assume that chark = p > 0. Let F,: G — G®") denote the
relative p”-power Frobenius morphism, which is a homomorphism. Then
the group scheme ker F), is finite, and one shows that G/ ker F,, is smooth
for sufficiently large n: for G is of finite type, this is [SGA 3y, VII 8.3],
and in general one may replace G by its connected component G°, which is
of finite type by Proposition [5.2.4 O

5.2.6. Quasi-projectivity.

Theorem 5.2.20. Every algebraic group over a field k is quasi-projective.

Proof. Chow proved that smooth algebraic groups (and even their homo-
geneous spaces) are quasi-projective [Cho57|. This can be extended to ar-
bitrary algebraic groups G by using Proposition [5.2.19; see |Con02| Corol-
lary 1.2]. O

Because of Theorem [5.2.20 fpqc descent involving algebraic groups is
automatically effective.
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5.3. Affine algebraic groups

An algebraic group whose underlying scheme is affine is also called a linear
algebraic group, because of the following.

Theorem 5.3.1. An algebraic group G is affine if and only if it embeds in
GL,, for somen > 0.

Proof. Since GL,, itself is affine, any closed subgroup of GL,, is affine.

Conversely, suppose that G is affine, say G = Spec A. Let A* be the space
of k-linear functionals A — k. Below, fiber products and tensor products
are over k. For any k-vector space V and k-algebra R, let Vg = V.® R. The
proof will proceed in three steps.

1. Find a finite-type affine k-scheme X = Spec B with- a faithful right G-
action. Let X be G with the right translation action. For later use, note
that we have the translation action of G(k) on A and B, and the induced
action on A*.

2. Show that each b € B is contained in a finite-dimensional G-invariant
subspace V. C B; here “G-invariant” means that for each k-algebra R,
the G(R)-action on Br preserves Vr. The action morphism X x G — X
corresponds to a homomorphism B.— A® B, which induces A*® B — B.
Let V' be the image of the composition

(5.3.2) A, Ar 9B B.

Let each g € G(k) act as g® 1 on A® B and A* ® B. The associative
axiom for the G-action on X shows that B — A® B is G(k)-equivariant,
so the maps in are G(k)-equivariant. Thus V is G(k)-invariant.
The construction of V' respects base change to any k-algebra R, and the
same argument shows that Vg is G(R)-invariant.

The identity in G(k) is a k-morphism Speck — G, so it corresponds
to a k-algebra homomorphism A — k, which may be viewed as an element
of \A*. It is mapped by tob. Thusbe V.

Concretely, if B — A® B maps b to ) a; ®b;, where the a; are chosen
to be k-independent, then V is the k-span of the b;, so V is finite-dimen-
sional.

3. Find a finite-dimensional subspace W C B such that G(R) acts faithfully
on Wg for all R. Let By be a finite set of generators for B as a k-algebra.
For each b € By, construct a V =V} as in step 2, and let W be their sum.
If g € G(R) acts trivially on Wpg, then g acts trivially on By and on the
R-algebra Bpg it generates, but G acts faithfully on X, so g = 1.

Yoneda’s lemma now produces a homomorphism G — GLgjmw. By Corol-
lary [5.2.10} it is an embedding. (I
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Remark 5.3.3. It is not known whether affine finite-type group schemes
over k[e]/(¢?) embed in GL,, over that ring.

5.4. Unipotent groups

5.4.1. Powers of the additive group. Algebraic groups isomorphic to
Gl := (G,)™ for some n € N are sometimes called vector groups or vectorial
groups.

Proposition 5.4.1. If k is a field of characteristic 0, then G} as an algebraic
group has no nontrivial twists.

Proof. An endomorphism of G, is a polynomial map ¢ — f(¢) such that the
polynomial f € k[t] satisfies f(t+u) = f(t)+ f(u) in k[t, u]. Since char k = 0,
the binomial theorem shows that the only such f are the homogeneous lin-
ear polynomials. In other words, End G, = k. Similarly, End G, 1, = ks.
Thus End Gy ;= M, (ks), and Aut Gy, = (My(ks))* = GLy(ks). Finally,
H' (&, GL,(ks)) = 0 by Remark [1.3.16] O

Remark 5.4.2. A more difficult argument shows that Proposition [5.4.1]
holds also for fields of characteristic p->0. This follows from [KMT74,
Theorem 1.5.1, proof of Lemma 2.1.1].

% Warning 5.4.3. There exists an inseparable extension of fields L D k and
an algebraic group G' # G, over k such that G ~ G, 1; see Exercise
and |[Rus70|. More generally, [KMT74, Section 2.6] classifies, over any
field k, all algebraic groups over k that become isomorphic to G} after base
extension to k.

5.4.2. Unipotent elements.

Definition 5.4.4. Let k be a field. An element u of GL,, (k) is called unipo-
tent if it satisfies one of the following equivalent conditions:

o The eigenvalues of u are all 1.
e One has (u—1)" = 0.
e The element u is conjugate in GL, (k) to a matrix in U, (k).

More generally, if G is an affine algebraic group, an element u € G(k) is
called unipotent if for every n and every homomorphism Gy — (GLj, )z, the

image of u in GL, (k) is unipotent.

Remark 5.4.5. To check that an element u € G(k) is unipotent, it suffices to
check that its image under any one embedding G — (GLy)z is unipotent.

This follows from the “multiplicative Jordan decomposition”; see [Spr98,
Theorem 2.4.8 and Corollary 2.4.9].
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5.4.3. Unipotent groups.

Definition 5.4.6. Let G be an algebraic group over k. Then G is called
unipotent if G admits a composition series in which each successive quotient
is isomorphic to a closed subgroup of G, 7 .

Examples 5.4.7.

(i) Any power of G, is unipotent.

(ii) For each n > 0, the algebraic group U,, in Section is unipotent.

)

)

(v) Suppose that chark = p. For n > 0, there is a connected algebraic
group (even a ring scheme) W,, over [, such that for each Fp-algebra
A, the group W, (A) is the additive group of length-n Witt vectors
with coordinates in A; see [Ser79, p. 44]. It is unipotent by induction
on n: there is a surjective homomorphism W, ; — W, with kernel
isomorphic to G, (not surprising, given that there is a surjective ho-

momorphism Z/p"*Z — 7Z/p"7Z with kernel isomorphic to F, as an
abelian group).

(iii) If chark = p > 0, then the constant group scheme Z/pZ is unipotent.

(iv) If char k = p > 0, then «,, is unipotent.

Theorem 5.4.8 (Characterizations of unipotent groups). The following
three conditions are equivalent for.an algebraic group G over a field k:

(i) The group G is unipotent.
i1) There is an embedding of G in U,, for some n > 0.
(i) 9
(iii) The group G admits a composition series (over k) such that
(a) if char k =0; then each successive quotient is G4; and
b) if chark =p, then each successive quotient is one of o, Gg, or a
P

twist of (Z/pZ)" for some n > 1.
These conditions imply

(iv)" Every element of G(k) is unipotent in the sense of Definition|5.4.4)

If G is smooth, then all four conditions are equivalent.

Proof.

(i)e(ii)<(iii): See |[SGA 3pr, XVII, Théoréme 3.5(i, ii, v)]. Stronger
statements about the composition series are available in |[SGA 3pf, XVII,
Théoréme 3.5(iii, iv)]. A standard specialization argument [SGA 3, XVII,
Proposition 1.2] shows that unipotence is unchanged by extension of the
ground field, so we now know that (iii) and (iv) are unchanged as well.

(iii)=(iv): If g € G(k) < U,(k), then g is unipotent by Remark

(iv)=-(iii) for smooth G: Since both (ii) and (iii) are unchanged by base
extension from k to k, we may assume that k is algebraically closed. Now see
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[Spr98, Proposition 2.4.12| (which applies only to smooth algebraic groups
over an algebraically closed field). ([

? Warning 5.4.9. Condition does not necessarily imply the others if
G is not smooth. For example, suppose that G is p, over a field k of
characteristic p > 0. Then G(k) = {1}, so holds. But G is a group
scheme of prime order, so G is simple, and therefore G violates .

Proposition 5.4.10. Ifchark = 0 and G is a commutative unipotent group
over k, then G ~ G} for some n > 0.

Sketch of proof. First of all, G must be connected, since otherwise it would
have a nontrivial finite quotient embedding in some GLj,, and the elements
of the image over k& would not be unipotent.

Let Lie G be the power of G, corresponding tothe tangent space of G
at the origin. For a unipotent group G < U,,, the exponential map gives an
isomorphism Lie G — G of varieties, the inverse being given by

u?  ud

14+ ur— log(l+u) ::u—?—i—?—--- ,
which is a finite series for any nilpotent matrix u. If G is also commutative,
then the exponential map and its(inverse are also homomorphisms of group

schemes. O

@ Warning 5.4.11. The hypothesis “commutative” in Proposition |5.4.10) is

necessary: consider Us.

@ Warning 5.4.12. The hypothesis “chark = 07 in Proposition is
necessary too. For example, the constant group scheme Z/pZ over F), is a
counterexample: it embeds in G, ~ Uy, so it is unipotent. One can also
give a connected counterexample: the underlying variety of the Witt group
scheme 'W,, is A", but if n > 2, then W,, is not isomorphic to G since the
group W, (F,) ~ Z/p™Z is not killed by p.

Trying to classify all unipotent groups up to isomorphism is like trying
to classify finite p-groups: hopeless.

5.5. Tori

(Reference: [Spr98| §3.2])

5.5.1. Homomorphisms between powers of the multiplicative
group.
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Lemma 5.5.1. Consider the multiplicative group scheme G,, = Speck[t,t 1]
over a field k. We have

EndG,, ~Z, Hom(G, 6 GV)~M,x,(Z), AutG), ~ GL,(Z),

computed in the category of k-group schemes.

Proof. An endomorphism of G, is given by t > f(t), where f € k[t,t71]*
satisfies f(tu) = f(t)f(u) in k[t,t~, u,u"!] (respecting the comultiplications
amounts to this identity). Elements of k[t,t~!]* are monomials, and the
only ones satisfying f(tu) = f(t)f(u) are f(t) = t" for some n € Z. Thus
End G,,, ~ Z. The other two claims follow from this: in particular, the unit
group of M,,(Z) is GLy(Z). O

5.5.2. Tori.

Definition 5.5.2. Let k be a field. A torus over k is a twist of G, (as
a group scheme) for some n € N. It is called a split torus if it is actually
1somorphic to GJ,.

Example 5.5.3. Let T be the affine variety 2% +2y% = 1 in A?Q. We secretly
think of a point (z,y) on T as representing x + yv/—2 and hence define
m: T xT —T
(x1,91), (T2,92) — (2122 — 241Y2, T1Y2 + Y172).
Then one can show that 7 is a nonsplit 1-dimensional torus over Q.

Example 5.5.4. If L' D k'is a finite separable extension of fields and T is a
torus over L, then the restriction of scalars Resy ;T is a torus over k.

Example 5.5.5. If L D k is a finite separable extension of fields, then the
norm homomorphism L* — k* is the map on k-points of a homomorphism

of tori Resy /i, G, X Gy, The kernel of N is a torus Res}:/k Gy, of di-

mension [L : k] — 1 over k. For example, Res(a( V=3)/0 Gy, is the torus T in
Example |5.5.3

5.5.3. Character groups.
Definition 5.5.6. The character group of a k-torus T is the Bx-module
X(T) = Homks-group schemes (Tks') Gm,ks) .

If T is an n-dimensional torus, then Lemma implies that X(T")
stripped of its &g-action is a free abelian group of rank n.

5.5.4. Classification of tori.
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Theorem 5.5.7. The functor
{tori/k} +— {B-modules that are free of finite rank over Z}°PP
T — X(T)

is an equivalence of categories.

Proof. If £k = kg, then the &j-action is irrelevant, and the result follows
from Lemma [5.5.1] For arbitrary k, equipping a finite-rank free Z-module
with a ®g-action corresponds to equipping a corresponding torus over kg
with a descent datum as in Proposition , since & acts trivially on
Aut Gy, -~ GLy(Z), so the result for k follows from the result from .
(Strictly speaking, Proposition is for a finite Galois extension, so it
would be better to proceed as in the proof of Theorem by first showing
that k-tori which split over a fixed finite Galois extension k' are classified
by Gal(k’/k)-modules that are free of finite rank, and then taking a direct
limit.) O

Remark 5.5.8. Here is another way of thinking about Theorem The-
orem gives a bijection

{n-dimensional tori/k}

= {twists of G}, }

= H' (&, AutG}}, ;. )

= HY (&, GL,(Z)) . (where &, acts trivially on GL,,(Z))

= Homeonts(Bx, GL, (Z)) /conjugacy

= {B;-modules that are free of rank n over Z},

where each set is really a set of isomorphism classes.

5.5.5. Rationality. Whether a given n-dimensional torus T is k-rational
(i.e., birational to projective space over k) is a subtle question. By enumer-
ating the possibilities for the action of &; on the character group, Voskre-
senskii proved that if n < 2, then T is k-rational [Vos67]. On the other
hand, Chevalley showed that there is a 3-dimensional torus over Q, that is
not Q,-rational, namely Res}( /Qy Gy, for any Galois extension K/Q, with
Gal(K/Qp) ~ Z/27Z x Z/2Z |Che54, §5|.

5.5.6. Groups of multiplicative type. The additive category of tori is
not an abelian category because, for instance, the squaring homomorphism
Gm 2 Gy, is an epimorphism that is not a cokernel of any homomorphism
T — Gy,. This motivates enlarging the category slightly.

Definition 5.5.9. A group of multiplicative type over k is an algebraic
group G that after base extension to kg is isomorphic to a product of groups
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each isomorphic to either G, or u,, for some n. (Some authors extend the
notion also to group schemes that are not of finite type.)

Groups of multiplicative type do form an abelian category; see [SGA 3y
IX, Corollaire 2.8| for a generalization. Moreover, one can define the charac-
ter group X(G) as for tori, and there is a generalization of the classification

theorem (Theorem [5.5.7)):
Theorem 5.5.10. The functor

®-modules that are }Opp

{groups of multiplicative type/k} {ﬁnitely generated as Z-modules

G — X(G)

is an equivalence of abelian categories.

Proof. See [SGA 31, X, Proposition 1.4]. O

Corollary 5.5.11. Each group G of multiplicative type contains a unique
mazimal torus T of the same dimension.

Proof. Theorem [(.5.10] translates this into a statement about character
groups. The torus 7" is the one for which X(7') = X(G)/X(G)tors- O

Over a separably closed field, groups of multiplicative type are exactly
the algebraic groups that for some n embed into the torus in GL,, consisting
of diagonal matrices.

5.5.7. Maximal tori. Every algebraic group G contains a maximal torus
T (usually not normal in G); moreover, any such 7' remains maximal after
base field extension. Call G split if G contains a split maximal torus.

5.6. Semisimple and reductive algebraic groups

(Reference: |Kne67]|)

5.6.1. Radical and unipotent radical.

Definition 5.6.1. The commutator subgroup [G, G] of an algebraic group
is the intersection of all algebraic subgroups containing the (scheme-theoret-
ic) image of the morphism G x G — G sending g,h € G(T) to ghg 'h~! €
G(T) for each k-scheme T.

Definition 5.6.2. Let G be a smooth affine algebraic group. The derived
series of GG is the sequence of algebraic subgroups

CG=G"p>G >G>,
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each normal in the preceding one, defined by G° := G and G**! := [G*, GY]
for ¢ > 0. Call G solvable if G™ is trivial for some n. (It turns out that
this condition is equivalent to solvability of the abstract group G(K) for any
algebraically closed field K containing k [SGA 31, VIg 8.3(i)< (iii)].)

Let G be a smooth affine algebraic group. One can show that G contains
a unique maximal smooth connected solvable normal subgroup Z(G), called
the radical of G. Also, G contains a unique maximal smooth connected
unipotent normal subgroup %, (G), called the unipotent radical of G.

Remark 5.6.3 (Radicals under field extension). For any field extension
L D k, by definition Z(G)r, C Z(GL). If L is a separable algebraic extension
of k, then descent theory shows that equality holds. On the other hand,
equality sometimes fails if L is inseparable over k. Analogous statements
hold for the unipotent radical %Z,(G).

5.6.2. Semisimple and reductive groups.

Definition 5.6.4. Let G be a smooth affine algebraic group over a field k.
Call G semisimple if Z(Gy) = {1}. Call G reductive if #Z,(G%) = {1}.

?2 Warning 5.6.5. Many authors also require a semisimple or reductive group
to be connected.

?2 Warning 5.6.6. Definition uses the geometric radicals, i.e., the radical
or unipotent radical of Gz instead of G. Remark shows that this makes

no difference if k is perfect. But if k is imperfect, it matters; see Section|5.9.3

By Theorem [5:4:8] smooth connected unipotent groups are solvable, so
the unipotent radical is contained in the radical. In particular, semisimple
groups are reductive.

Example 5.6.7. The algebraic group SL, is semisimple.

Example 5.6.8. The algebraic group GL,, is reductive but not semisimple.
Its radical is a copy of Gy, consisting of the scalar multiples of the identity.

Remark 5.6.9. Although GL,, contains nontrivial smooth connected unipo-
tent subgroups (e.g., U,), they are not normal. Similarly, SL,, contains non-
trivial smooth connected solvable subgroups (e.g., the torus consisting of
diagonal matrices of determinant 1), but they are not normal.

5.6.3. Center of a reductive group.

Theorem 5.6.10. The center of a connected reductive group is a group of
multiplicative type.
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Sketch of proof. Let G be a connected reductive group over k. For any
maximal torus T < G, we have Cq(T) = T |[SGA 31, XIX, 2.8]. The
center Z of G is a closed subgroup of Cg(T) = T, so Z is of multiplicative
type. O

Corollary 5.6.11. The center of a connected semisimple group is a finite
group of multiplicative type.

Proof. Let G be a connected semisimple group. Let Z be its center.' By
Theorem [5.6.10] Z is a group of multiplicative type. Let T be the maximal
torus in Z given by Corollary [5.5.11} Since T' C Z, the group 7T is normal
in G, so T C Z(G) = {1}, since G is semisimple. Hence 7' = {1}. Now
dim Z = dimT = 0, so Z is finite. O

Example 5.6.12. The center of the reductive group Gl is Gy,.
Example 5.6.13. The center of the semisimple group,SL,, is u,,.

5.6.4. Isogenies. An isogeny between connected algebraic groups is a sur-
jective homomorphism G — H whose kernel is finite. If the kernel of an
isogeny is (scheme-theoretically) contained. in the center of G, then it is
called a central isogeny, and G is called a central cover of H.

Example 5.6.14. Let n > 1. The inclusion SL,, — GL,, is not surjective,
S0 it is not an isogeny. The projection GL,, - PGL,, has a kernel that is
not finite, so it is not an isogeny. But their composition SL,, — PGL,, is a
central isogeny with kernel p,,.

Proposition 5.6.15. FEvery isogeny whose kernel is étale is central. In
particular, every isogeny over a field of characteristic 0 is central.

Proof. Let f: G — H be an isogeny with étale kernel K. We may assume
that k is algebraically closed, so K consists of a finite disjoint union of
points (Proposition . The conjugation action of G on K defines a
homomorphism from G to a finite group Aut K, but G is connected, so this
homomorphism must be trivial. In other words, K is contained in the center

of G. |

Example 5.6.16. If G is a smooth connected algebraic group over a field k of
characteristic p > 0, then the relative Frobenius morphism F/p: G — G
is an isogeny, but not necessarily a central isogeny.

5.6.5. Simply connected and adjoint groups. Call a central cover
G L @ trivial if f is an isomorphism.

Definition 5.6.17. A connected semisimple group G is called simply con-
nected if G has no nontrivial central cover.
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@ Warning 5.6.18. Let G be a connected semisimple group over a separably
closed field k. If chark = 0, then G is simply connected in the sense of
Definition [5.6.17] if and only if G is algebraically simply connected in the
sense of Definition But if chark = p > 0, the notion of simply
connected is more restrictive. For example, PGL,, is algebraically simply
connected but not simply connected: it has no nontrivial finite étale cover,
but SL, — PGL,, is a nontrivial central cover with kernel p,,.

Proposition 5.6.19. Let G be a connected semisimple group.. Then the
following are equivalent:

(i) The group G is not a nontrivial central cover of any other group G'.

(ii) The center Z of G is trivial.

Proof. If G i) G’ is a nontrivial central cover, then {1} # ker f C Z, so Z
is nontrivial. Conversely, if Z is nontrivial, then G — G/Z is a nontrivial
central cover. O

Definition 5.6.20. A connected semisimple group G is called adjoint if it
satisfies the conditions of Proposition [5.6.19}

Proposition 5.6.21. Let G be a connected semisimple group.

(a) Among all connected semisimple groups that centrally cover G, there is
a mazimal one G ‘that centrally covers all others. This G is unique up
to isomorphism (as a group equipped with a central isogeny to G) and is
simply connected.

(b) Among all connected semisimple groups that G centrally covers, there is
a manimal one G* that is centrally covered by all others. This G* is
unique up to isomorphism (as a group equipped with a central isogeny
from G to it) and is adjoint. If Z is the center of G, then G™ ~ G/Z.

The formation ofé and G*d commutes with base field extension.

Proof.

(a) See |[CGP10, Corollary A.4.11].
(b) By Corollary |5.6.11, Z is a finite group of multiplicative type, so the

connected semisimple groups centrally covered by G are the quotients
G/Z' for Z' < Z. In particular, G/Z is the minimal such quotient. By
[SGA 311, XXII, Proposition 4.3.5], the center of G/Z is trivial. O
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simply connected SL,

\\

# central isogeny with kernel u,,

|

N
G4 adjoint PGL,

Example 5.6.22. The connected semisimple group SL,, is simply connected.
Its center is u,,, and the quotient (SL,)* = SL,, /u,, is isomorphic to the
adjoint group PGL,,.

Corollary 5.6.23. For a connected semisimple group, the properties of being
simply connected or adjoint are unchanged by base field extension.

Remark 5.6.24. Let us explain how the use of the word “adjoint” here
relates to other uses of the word. Each g € G(k) induces an automorphism
x +— grg~! of G, which in turn induces an automorphism of its Lie algebra
g. This construction works with S-valued points as well as k-valued points,
so we get a homomorphism of algebraic groups Ad: G — GL(g), called the
adjoint homomorphism. The kernel of Ad turns out to be the center Z of
G, so the image G* of Ad is isomorphic to G/Z.

Because of Proposition @, to classify all connected semisimple
groups, it suffices to classify the simply connected semisimple groups G; then
for each such G compute the center Z, compute the finitely many subgroup
schemes Z' C Z, and consider the quotients G/Z’.

5.6.6. Almost simple groups. A simple algebraic group is a connected
semisimple group G that has exactly two normal subgroup schemes, {1} and
G. If k.is an algebraically closed field of characteristic 0, then an algebraic
group G is simple if and only if the abstract group G(k) is simple.

It is not true that every connected semisimple group is a product of
simple groups. For example, if n > 2, then SL,, is not simple (it has p,, as a
normal subgroup scheme), but it is not a nontrivial product either. Therefore
we define a less restrictive concept: an almost simple algebraic group is a
connected semisimple group G such that the quotient G/Z of G by its center
Z is simple. (Recall that Z is finite; see Corollary [5.6.11})

Remark 5.6.25. What we call “simple” is what other authors might call
“k-simple”: the notion is relative to the ground field, and might be lost if the
base field is extended. The same applies to “almost simple”.
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Theorem 5.6.26 (Classification of almost simple groups). Fiz a separably
closed field k. Almost simple groups over k up to the equivalence relation
generated by central isogenies are in bijection with connected Dynkin dia-
grams. In particular, for each connected Dynkin diagram D, there is one
simply connected group and one adjoint group of type D.

Call G geometrically almost simple (or absolutely almost simple) if
Gy, is almost simple. For each field k, let . (k) be the set of isomorphism
classes of split geometrically almost simple simply connected groups over k.

Theorem 5.6.27. For any field extension L D k, the map . (k). — /(L)
is a bijection.

Thus among geometrically almost simple simply connected groups over k
of a given type D, there is exactly one that is split, and all others are twists
of that one.

5.6.7. Decomposition of a semisimple group.

Theorem 5.6.28. Fvery simply connected semisimple group is uniquely ex-
pressible as a product of almost simple groups.

By taking the quotients by the centers, we find that every adjoint semi-
simple group is uniquely expressible as a product of adjoint simple groups.

Example 5.6.29. For n > 1, embed pu,, diagonally in SL,, x SL,,, and let
G = (SL,, x SLy,)/p,,- Then G is not a product of almost simple groups, but

G =SL,, x SL,,, and G* = PGL,, x PGL,,.

Decompositions over k and over kg are related, as we now explain. Let
G be a simply connected semisimple group over k. Write Gy, = [[,c; G for
some almost simple groups G; over ks. The Galois group &, acts on Gy, and
hence also on I. For each 7 € I, the stabilizer of ¢ is G, < &}, for some finite
separable extension L; D k contained in kg, and G; descends to an algebraic
group H; over L;. For each &g-orbit J C I, the product [[,.; G descends
to an almost simple group G over k. Thus the decomposition of G over k
corresponds to the decomposition of I into &y-orbits. Finally, if ¢ € J, then
Gy ~ Resg, /i Hi. Thus the classification of simply connected groups reduces
to the classification of geometrically almost simple simply connected groups
over finite separable extensions.

5.6.8. Decomposition of a reductive group. The following theorem
says that a reductive group is almost a direct product of a semisimple group
and a torus.
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Theorem 5.6.30. Let G be a connected reductive group. Let T be the mazx-
imal torus in the center of G (see Corollary[5.5.11). Let G' = [G,G] be the
commutator subgroup. Then G’ is semisimple, and the multiplication map
G' x T — G 1s surjective with finite kernel isomorphic to G' N T.

Proof. We may assume that k is algebraically closed. In this case, the result
is contained in [PR94, Theorem 2.4]. O

Let us summarize how to build all reductive groups over a field k.

(1) Given a Dynkin diagram D and a finite separable extension L D k,
construct the unique split geometrically almost simple simply connected
group over L of type D.

(2) Use Galois cohomology to classify its twists over L; these are all geomet-
rically almost simple simply connected groups over L of type D.

(3) Apply Resp ;. to these twists (for all D and L) to obtain the almost
simple simply connected groups over k.

(4) Take a finite product to obtain the simply connected groups over k.

(5) Divide by a subgroup scheme of the center to obtain the connected semi-
simple groups over k.

(6) Take the product with a torus, and divide again by a subgroup scheme
of the center to obtain the connected reductive groups over k.

Remark 5.6.31. Semisimple and reductive groups can also be understood
in terms of reduced root data.

5.7. Abelian varieties
(Reference: |Mum?70, §3.2|)

Definition 5.7.1. An algebraic group over a field k is called an abelian
variety if it is smooth, proper, and connected.

Example 5.7.2. A 0-dimensional abelian variety is the same thing as the
trivial algebraic group. A 1-dimensional abelian variety is the same thing as
an elliptic curve.

Proposition 5.7.3. Abelian varieties are nice.

Proof. Let A be an abelian variety. By Theorem A is quasi-pro-
jective. Quasi-projective and proper imply projective. Since A has a k-
point (the identity), connected implies geometrically connected (Proposi-
tion . Smooth and geometrically connected imply geometrically inte-
gral (Proposition [3.5.67]). O
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Abelian varieties are also commutative; see [Mum?70, pp. 41-44]| for two
proofs.

Proposition 5.7.4. Let A be an abelian variety over a field k, and let m be
an integer such that chark f m. Then the multiplication-by-m map A 5 A
is étale.

Sketch of proof. Because of Theorem , we may assume that k is
algebraically closed. The set of points where the map is étale is open, so it
suffices to check that it is étale at each a € A(k). By translating; it suffices
to check that it is étale at ¢ = 0. One can show that its derivative at 0
equals multiplication-by-m as an endomorphism of the tangent space of A
at 0. If char k { m, then this linear map is invertible. (|

Definition 5.7.5. A semiabelian variety is an extension G of an abelian
variety A by a torus T

0—=-T—-G—=A—=0.

5.7.1. Jacobian varieties.
(References: |Mil86b|, [BLR90, Chapters 8 and 9], [Kle05])
Let X be a nice k-curve. Recall that there is a homomorphism
deg: PicX — Z
and that Pic® X is defined as. its kernel.

Theorem 5.7.6. Let X be a nice k-curve of genus g. Assume that X has
a k-point. Then there is a g-dimensional abelian variety J = Jac X, called
the Jacobian of X, such that J(k) ~ Pic’ X as groups, and more generally
J(L) ~ Pic® X, for every field extension L D k, functorially in L.

Proof. See [Mil86b]. O

Remark 5.7.7. In fact, |[Mil86b| contains a stronger version of Theo-
rem that specifies not only J(L) for field extensions L D k, but also
J(T) for every k-scheme T, i.e., the entire functor of points. This is needed
if one wants to determine the group scheme J uniquely up to isomorphism.
Under the hypotheses of Theorem [5.7.6] if 7: X x; 7' — T denotes the sec-
ond projection, X; denotes the fiber 7=1(¢) for each t € T, and .%; € Pic X;
denotes the restriction of an element .Z € Pic(X x; T) to X;, then

(5.7.8)

J(T)

1L €Pic(X x4 T) : for every t € T, we have deg &} = 0}

- 7 PicT )
Elements of J(T") can be thought of as families of degree 0 line bundles on X
parameterized by the points of T'; the pullback of a line bundle on T restricts
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to the trivial line bundle on each fiber since the map from a fiber to T factors
through a point.

Remark 5.7.9. In both Theorem and Remark the assumption
that X has a k-point can be weakened to the assumption that X has a
degree 1 divisor, or equivalently X has closed points of degrees whose ged
is 1.

@ Warning 5.7.10. If X does not have a degree 1 divisor, then the conclusions
of Theorem and Remark can sometimes fail. The problem is that
for any k-scheme J and for any Galois field extension L DO k, there is a
bijection J(k) — J(L)GE/k) but in general Pic® X — (Pic® X )Gl (E/k) is
only injective; see Corollary [6.7.8| for a related fact, and see Exercise [2.12] for
an example. In general, the Jacobian J still exists, but the correct description
of its points over a field L D k is J(L) ~ (Pic® X1 )% &/1) | functorially
in L. The correct generalization of this to T-valued points for an arbitrary
k-scheme T is that the functor of points of J is the fppf sheafification (see

Section [6.3.4)) of the functor on the right-hand side of (5.7.8).

Remark 5.7.11. The functor has a variant using Pic instead of Pic?. It
is represented by the Picard scheme Picy/;, a group scheme that is only
locally of finite type over k. It has countably many connected components
Pic’y Ik indexed by n € Z, and each Picy Jk is a nice k-variety. Moreover,

Picg( /k is isomorphic to the Jacobian J, and there is an exact sequence
0—J = Picx), = Z — 0,
where the Z on the right denotes a constant group scheme over k.
Remark 5.7.12. Even more generally, given an S-scheme X, the relative
Picard functor Picy g is defined as the fppf sheafification of the functor
T — Pic(X xgT)
on S-schemes T'. (The sheafification process automatically trivializes pull-

backs of line bundles on T', so it is not necessary to take the quotient as in
(5.7.8)).) Here are two criteria for representability of Picy /8"

o If X — S is flat, projective, and finitely presented with geometrically
reduced fibers, then Picx/g is represented by a scheme that is locally
of finite presentation over S.

e If X is a proper k-scheme, then Picx/;, is represented by a scheme that
is locally of finite type over k.

5.7.2. Albanese varieties.

(References: |Ser60|, [Wit10, §2 and Appendix Al)



5.7. Abelian varieties 141

The notion of Jacobian of a curve generalizes in two different ways to
higher-dimensional varieties, as we discuss in this section and the next.

Let X be a geometrically integral variety over a field k. Is there a mor-
phism to an abelian variety, f: X — A, such that every other such morphism
f'+ X — A’ factors uniquely as f followed by a homomorphism A — A’?
Not quite: for instance, if x € X (k) is such that f(z) = 0, and [’ is f
followed by a nonzero translation, then f’(x) # 0, but any homomorphism
A — A’ must map 0 to 0.

If a point x € X (k) is fixed, however, and we restrict attention to mor-
phisms that send z to 0, then the answer becomes yes. This can be refor-
mulated as follows:

Theorem 5.7.13 (Existence of Albanese varieties). Let Cx , be the category
of pairs (A, f), where A is an abelian variety over k, and f: X — A is
a morphism such that f(x) = 0; a morphism from (A, f) to (A, f) is a
homomorphism a: A — A’ making the triangle

x-t.24
f\«l“
A/

commute. Then Cx . has an initial object (Albx /i, ¢).

Proof. See [Ser60, Théoréme 5] for the case where k is algebraically closed,
and [Wit10, Appendix A] for the general case. O

Definition 5.7.14. The abelian variety Alby/ is called the Albanese va-
riety of X.

Remark 5.7.15. For a variant that does not require a k-point z, see Ex-

ample [5.12.11] It will follow from Exercise that Alby ; is independent
of x.

Remark 5.7.16. There is also a variant using semiabelian varieties instead
of only abelian varieties; see [Ser60, Théoréme 7] and [Wit08, Appendix A].

5.7.3. Picard varieties.
(References: |[Gro95b|, [Kle05|)

Let X be a nice k-variety. The group scheme Picg( /k is proper over k
|Gro95b|, Théoréme 2.1(ii)|, but in general it may happen that it is not
reduced and hence not an abelian variety. The Picard variety of X is the
associated reduced subscheme Pic())( Ve red-
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Theorem 5.7.17 (|Gro95b|, Corollaire 3.2]). The scheme Picg(/k’red is a

subgroup scheme of Picg(/k, and it is an abelian variety.

Sketch of proof. In general, for an algebraic group G over a field k of
characteristic p > 0, it can happen that G, .q is not a subgroup scheme;
see Exercise .11} But if GG is commutative, proper, and connected, then
Proposition and its proof imply that G is an extension of an abelian
variety A by a finite commutative connected group scheme F' of order p”
for some n; then it turns out that p"F = 0, so p"G (the scheme-theoretic
image of multiplication-by-p™) is isomorphic to p"A = A, so p"G is a closed
subgroup of G whose underlying scheme is Gyeq. Apply this to G.:= Picg( Ik

O

Remark 5.7.18. The group scheme Picg( /i 1S an abelian variety even before
passing to the reduced subscheme if any of the following hold:

e chark = 0;

e X is a curve; or

e X is an abelian variety.
But there exist nice varieties X of dimension > 2 over an algebraically closed

field k of characteristic p such that Picg( Jk is not reduced; see Example|5.7.22
for an example and [Kle05, Remark 9.5.15] for discussion.

Definition 5.7.19. If X is an abelian variety, then Picg(/k is called the dual
abelian variety.

Theorem 5.7.20 (Albanese—Picard duality). Let X be a nice k-variety.
Then Picg(/,”ed is the dual abelian variety of Albx .

Proof. See |Gro95b, Théoréme 3.3(iii)|. O

Remark 5.7.21. Let X be a nice k-variety. Let 0 be the identity point of
Picg( Ik and let Tj Picg( Jk be the tangent space there. Then it turns out that
T Pic% = HY(X, 0x). In particular, if dim Pic} i < dim HY(X, Ox),
then PicOX Jk is not smooth at 0, and hence not reduced (see Theorem [5.2.16|).

Example 5.7.22 ([Igub55|). Let k be a field of characteristic 2. Let E and
E’ be elliptic curves over k such that E has a k-point e of order 2. Let ¢ be
the order 2 automorphism of E x E’ given by (z,y) — (z + e,—y). Then ¢
has no fixed points, so the quotient variety X := (E x E’) /. is a nice surface.
One can show that Alby/, is the quotient of E by the subgroup generated
by e; in particular, dim Picg(/k = dim Albx/, = 1. On the other hand, it
turns out that dimH!(X, &x) = 2. Thus, by Remark , Picg(/k is not
reduced. (For other examples, see [Ser58, §20].)
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5.7.4. Abelian schemes.
(Reference: |[Mil86a, §20|)

Definition 5.7.23. A group scheme A — S is an abelian scheme if it is
smooth and proper and has connected fibers.

An abelian scheme over S may be thought of as a family of abelian
varieties parameterized by the points of S.

Remark 5.7.24. Let R be a discrete valuation ring, and let K = Frac R.
Let A be an abelian variety over K. If A has good reduction in the sense
of Section so there exists a smooth proper R-model A, then it turns
out that A — Spec R is automatically an abelian scheme. Thus A has good
reduction if and only if it is the generic fiber of an abelian scheme over

Spec R.

5.7.5. Néron models of abelian varieties.
(Reference: |BLR90])
Recall the notion of Néron model from Section 3.5.16]

Theorem 5.7.25 (Néron). Let R be a discrete valuation ring. Let K =
Frac R. Let A be an abelian variety over K. Then A has a Néron model N,
and N is of finite type over R.

Proof. See |Art86a, Theorem 1.2] or [BLR90, §1.3, Corollary 2]. O

Proposition 5.7.26. Let R, K, A,N be as in Theorem [5.7.25. Let T be
a smooth R-scheme. "Then any K-rational map Tk --+ A extends to an
R-morphism T > N .

Proof. According to [Wei48b, §2, No. 15, Théoréme 6|, any K-rational
map Tk --+ A is a K-morphism. Next, the Néron property says that any
K-<morphism Tx — A extends to an R-morphism T — N. O

Remark 5.7.27. Theorem [5.7.25| extends to the case where R is replaced
by an integral Dedekind scheme, and K is its function field. See [BLR90)
§1.4, Theorem 3|. For example, an abelian variety over Q has a Néron model
over Z.

Remark 5.7.28. Theorem B.7.25 can be extended also in a different di-
rection, to the case where A is a semiabelian variety over a discrete valua-
tion ring. See |Art86al Theorem 1.9] or [BLR90, §10.2, Theorem 2|. But
these Néron models are generally no longer of finite type. For example, if
A = Gy, k and m € R is a uniformizer, then A(K) = K* = R* x 7%, and
the Néron model A can be constructed by gluing copies of G,, r indexed by
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n € Z along their generic fibers, with the nth generic fiber glued to the Oth
by multiplication-by-7" on G, k; see [BLR90, §10.1, Example 5].

It is not yet known if Remarks [5.7.27] and [5.7.28 can be combined; see
[BLR90, §10.3].

5.7.6. Néron models of elliptic curves.
(References: [BLR90, §1.5], [Liu02, §10.2|, [Conl15|)

Here we describe in more explicit terms the Néron model of an elliptic
curve F, and we relate it to Weierstrass equations. Let R be a discrete
valuation ring, and let K = Frac R. Let v: K — Z U {oo} be the discrete
valuation.

Start with an elliptic curve E over K. If char K ismot 2 or 3, then F is
the closure in IP’%{ of an affine plane curve y? = 23 + Az + B with A,B € K
such that 443 4 2782 # 0. Without restriction on the characteristic, F is
the curve in P%- defined by a Weierstrass equation

(5.7.29) V22 + arzyz + azyz® = 2® + asx’z 4+ agxz® + ag®

such that a certain polynomial A in ay, as, as, a4, ag is nonzero [Sil09, I11.§1].
A Weierstrass model of E is a closed subscheme of P% cut out by an equa-
tion with a1, as, a3, a4, a6 € R whose generic fiber over K is isomor-
phic to E. Among all such models, any one that minimizes v(A) is called a
minimal Weierstrass model; cf. [Sil09, Chapter VII].

Let W be a minimal Weierstrass model, so W is a proper R-scheme. If
v(A) = 0, then W is an abelian scheme over R; this is the case in which E
has good reduction. If v(A) > 0, then the special fiber W}, has a nonsmooth
point, so W. — Spec R is not smooth, but W might be regular. In any case,
one can iteratively blow up nonregular points until one reaches a regular
proper model £, which in fact is the minimal regular proper model in the
sense of Section (usually constructing the minimal regular proper
model requires normalizations as well as blowups, and requires blowing down
some’ exceptional curves, but this turns out to be unnecessary for elliptic
curves; see the end of |[Conl5|). Although & is regular, it need not be
smooth over R. Removing from £ all nonsmooth points of the special fiber
&k (which may include removing entire irreducible components of & if they
are of multiplicity > 1) yields the smooth locus £5™°°h " Similarly, removing
from W the nonsmooth point of the special fiber Wy, (if there is one) yields
the smooth locus T¥/smeoth,

Theorem 5.7.30. Let R be a discrete valuation ring. Let K = Frac R. Let
E be an elliptic curve over K. Let W, £, and N be, respectively, a minimal
Weierstrass model, the minimal reqular proper model, and the Néron model.
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Let N° be the open subscheme of N obtained by removing the non-identity
components of the special fiber of N'. Then £t 5 N qnd Wemeoth 5 A0,

Proof. See [Con15, Theorems 5.4 and 5.5]. The morphisms come from the
Néron property. For example, the identity E — E extends to £5°°th — A/,
O

The first conclusion in Theorem [5.7.30] generalizes to higher genus; see

Theorem [B.5.83]

5.7.7. Arithmetic of abelian varieties.

Theorem 5.7.31 (Mordell-Weil theorem). Let A be an abelian variety over
a global field k. Then the abelian group A(k) is finitely generated.

Sketch of proof. Fix m € Zxy not divisible by char k. Theorem [5.7.31]
implies the “weak Mordell-Weil theorem” that A(k)/mA(k) is finite, but in
fact, all known proofs of Theorem involve proving the weak Mordell-
Weil theorem (or some variant) first. For a proof of the weak Mordell-
Weil theorem, see Theorem [8:4.9] Combining this with the theory of height
functions completes the proof; see [Ser97; 4.3]. O

Let A be an abelian variety over a global field k. To A one can attach
two objects that are conjecturally related to A(k):

e The Shafarevich-Tate groug] of A is
MI(A) :=ker(H'(k, A) » ] H'(kv, A)).
vEQ

Because III(A) is a subgroup of a Galois cohomology group, it is a
torsion abelian group.

e The L-function of A is
L(A,s):= [ det (1 —g;* Froby |[(VpA)™) ",
finite v
where ¢, is the order of the residue field, Frob, € &, is a Frobenius
element, V;A is as in Example and I, < &y, is an inertia group. It
turns out that the product converges for Re s > 3/2, and conjecturally
it has an analytic continuation to all of C [Tat95a, p. 216].

Conjecture 5.7.32 (Shafarevich-Tate conjecture [Tat63, Conjecture 4.1]).
For every abelian variety A over a global field k, the group I1(A) is finite.

1Or should we say Tate—Shafarevich group? In the Cyrillic alphabet, the first letter III of
Shafarevich comes after T.
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Conjecture [5.7-32] is open even for elliptic curves A over Q: this case has
been proved only under the additional hypothesis that the order of vanishing
of its L-function at s = 1 is at most 1.

Conjecture 5.7.33 (Birch and Swinnerton-Dyer conjecture, rank part). Let
A be an abelian variety over a global field k. Then ords—; L(A, s) = rk A(k).

Remark 5.7.34. The full Birch and Swinnerton-Dyer conjecture predicts
that the leading coefficient in the Taylor series of L(A,s) at s = 1 equals a
product of certain arithmetic invariants of A, including #III(A); it may be
considered an analogue of the Dirichlet analytic class number formula. The
conjecture was formulated for elliptic curves over Q by Birch and Swinnerton-
Dyer [BSD65,/[SD67| and generalized to abelian varieties over global fields
by Tate [Tat95al.

Conjecture [5.7.33] is known for all elliptic curves A over Q satisfying
ords—1 L(A,s) < 1.

5.8. Finite étale group schemes
A smooth algebraic group of dimension-Q over k is the same thing as a finite

étale group scheme over k.

A &p-group is a discrete group equipped with a continuous action of .
A &p-module is a discrete abelian group equipped with a continuous action
of By. A &p-group or Gp-module is finite if it is finite as a set. The following
gives a concrete way to study finite étale group schemes over k:

Theorem 5.8.1. The functors
{finite étale group schemes over k} <— {finite j-groups}
G — G(ks)
Spec Homges (A, ks)@’“ A

are inverse equivalences of categories, and they restrict to equivalences of
categories

{commutative finite étale group schemes over k} <— {finite &;-modules}.

Proof. The first equivalence arises from taking the group objects on both
sides of Theorem [1.3.2] and using the anti-equivalence between affine k-
schemes and k-algebras. Then imposing commutativity on both sides yields
the second equivalence. (Il

5.9. Classification of smooth algebraic groups

(Reference: |Kne67|)
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5.9.1. Classification over perfect fields. Let G be a smooth algebraic
group over a perfect field k. We will define a chain of smooth algebraic
subgroups in G, each normal in G.

The connected component Geonn = G° of G is a closed and open nor-
mal subgroup of G (Proposition , and G /Geonn 1s a finite étale group
scheme, called the component group of G (this holds even if k is not neces-
sarily perfect and G is not necessarily smooth). Next, Chevalley’s theorem
states that there is a unique exact sequence of smooth connected algebraic
groups

(5.9.1) 0 = Gafine = Geonn — A — 0,

where Gamine is affine and A is an abelian variety; in fact, Gagine is the
unique maximal smooth connected affine algebraic subgroup of Geonn (or
of G). As mentioned in Section , the radical Ggoly := Z(Gaffine) s the
unique maximal smooth connected solvable normal subgroup of Gafmne; the
quotient Gafmine/Gsolv 1S semisimple. As mentioned in Section the unipo-
tent radical Gunip 1= Zu(Gaffine) = Zu(Gsolv) is the unique maximal smooth
connected unipotent normal subgroup of Gagmine; then Goly/Gunip is a torus.

To summarize, we have the following chain of normal algebraic subgroups
of G:
G

finite étale
Geonn | Proper

abelian variety
Gaffine
semisimple
Gsoly | reductive

torus

Gunip

unipotent
{1}.

Each label between groups indicates the type of group that arises as the
quotient.

5.9.2. Functorial properties.

Proposition 5.9.2. If L D k is an extension of perfect fields, then the chain
for G, is obtained by base-extending each group in the chain for G.
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Proof. For Gcony it follows since Geonn is geometrically connected (Propo-
sition . For Gafmne it follows from the uniqueness of ((5.9.1]), since
base-extending yields a sequence with the same properties over L.
For Gy, this has been mentioned already in Remark [5.6.3} For Guuip
see |[CGP10, Proposition 1.1.9(1)]. O

Proposition 5.9.3. Let f: G — H be a homomorphism of smooth algebraic
groups. Then

(a) f restricts to a homomorphism Geonn — Heonn, and

(b) f restricts to a homomorphism Gagine — Haffine-

Proof.

(a) The image of Gconn is connected and contains the identity point 1 of H.
(b) Let I be the image of the compositition
Gaﬂine — Gconn — Hconn —% conn/Haﬂine-

By Theorem I is both a quotient of the smooth affine connected
group Gamne and a closed subgroup of the abelian variety Hconn/Haffine-
The former shows that I is smooth, affine, and connected (Proposi-
tion @), and the latter shows that I is proper. Thus [ is trivial. [

@ Warning 5.9.4. A homomorphism f: G — H of smooth algebraic groups
does not necessarily restrict to Gsory — Hsolv and Gunip — Hunip. (For a
counterexample, let f be the embedding U,, — SL,, for some n > 2.)

5.9.3. Imperfect fields.
(Reference: |CGP10])

A few aspects of the classification fail over imperfect fields k. Let G be
a smooth connected affine algebraic group.

e As in Remark if k is not perfect, the unipotent radical of G
need not descend to an algebraic group over k; thus %,(Gy) can be
strictly larger than %, (G)z. In fact, it can happen that %, (G) # {1}
while %Z,(G) = {1}; see Exercise [p.13] Call G pseudo-reductive if
#,(G) = {1} |CGP10, Definition 1.1.1]; this is weaker than being
reductive.

e There are similar issues with the radical Z(G). Moreover, it turns
out that semisimplicity condition #Z(Gz) = {1} implies [G,G] = G,
but the weaker condition Z(G) = {1} does not, so it is natural to
require [G,G] = G separately. Therefore call G pseudo-semisimple if
Z#(G) = {1} and |G, G] = G |CGP10, Definition 11.2.2].
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e Chevalley’s theorem above must be modified as follows: A connected
algebraic group G contains a smallest connected affine normal subgroup
scheme Giffine such that G/Gamne is an abelian variety. But Gagine
need not be smooth; see [BLR90, 9.2, Theorem 1]. In particular, the
formation of Gmne does not commute with inseparable base extension.

There is an alternative to Chevalley’s theorem that works over any field,
but is backward in that the affine group is the quotient instead of the sub-
group. Call an algebraic group A anti-affine if 0(A) = k. Anti-affine alge-
braic groups are smooth, connected, and commutative; see |[Bri09] and the
references listed there for these and more properties of these groups.

Theorem 5.9.5. A smooth connected algebraic group G over a field k fits
in an exact sequence of smooth connected algebraic groups

0A—-G—-L—0
in which A is anti-affine and L is affine.
Sketch of proof. Let L = Spec 0(G), and use the group structure on G to

define a group structure on L. See [DG70, 111, §3, no. 8| for the rest of the
proof. O

For cohomological purposes, Theorem [5.9.5] is superior to the original
Chevalley theorem in that the commutative group is on the left.

5.10. Approximation theorems

(References: |PR94, Chapter 7| and [Rap14])

Recall from Section 2.6.4.5 the notions of weak and strong approximation
for varieties over a global field.

5.10.1. Weak approximation. Recall from Section that for any va-
riety' X over R (or a subfield), the set X (R) can be equipped with the analytic
topology.

Theorem 5.10.1 (Real approximation theorem). Let G be a connected
affine algebraic group over Q. Then G(Q) is dense in G(R).

Theorem 5.10.1|is implied by the case k = Q of Theorem 5.10.4@ below.

g% Warning 5.10.2. The conclusion of Theorem |5.10.1| can fail if G is not
connected; see Exercise It can fail also if G is not affine: consider a
rank 0 elliptic curve over Q.

% Warning 5.10.3. There exists a connected semisimple algebraic group G
over Q such that G(Q) is not dense in G(Q2) [San81) Exemple 5.8].
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Theorem 5.10.4 (Weak approximation theorem). Let G be a connected
affine algebraic group over a number field k.

(a) There exists a finite set of finite places T of k such that G(k) is dense
in [ogr Gkv).

(b) The closure of G(k) in [[,cq, G(kv) is an open normal subgroup, and
the quotient is a finite abelian group.

(¢) If G is a simply connected or adjoint group, then G satisfies weak ap-
prozimation.

Proof.

(a) Let L D k be a finite Galois extension such that Gy, is split. Let T" be
the set of v € j for which a decomposition group of v in Gal(L/k)
is not cyclic. Thus T is a subset of the set of ramified finite primes
in the extension L D k. It turns out that T satisfies the conclusion
[San81, Corollaire 3.5(ii)]. The proof reduces to the case of tori, which
is attributed to Serre. (In general, a variety over a global field that
satisfies weak approximation away from finitely many places is said to
satisfy weak weak approximation!)

(b) See |San81, Corollaire 3.5(i)]. The quotient is called the defect of weak
approximation.

(c) See [PR94, Theorem 7.8]. O

Remark 5.10.5. If instead & is a global function field, still holds [Har67,
Satz 2.2.4], but (&) and can fail. For example, if p is odd, k = F,(t),
and G < G2 is defined by y? = taP + x over k, then G(k) is finite by
[Vol91, Theorem 3|, but G(k,) is infinite for every v by Proposition

For more on weak approximation in algebraic groups, see [PR94, §7.3].

5.10.2. Strong approximation.

Theorem 5.10.6 (Strong approximation theorem). Let G be a connected
semisimple algebraic group over a global field k. Let S be a finite set of places
of k. Then G(k) is dense in G(A®) if and only if G is simply connected and
for each almost simple factor G; of G, there exists v € S such that G;(ky,) is
noncompact.

Proof. See the original sources |[Kne66| Pla69, Pra77, Mar77|, or see
[PR94, §7.4]. O

See Theorem [8.4.10| for the reason for the simply connected hypothesis.
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Remark 5.10.7. If k is a number field, there is a more general statement,
applicable to any algebraic group G over k. Namely, G satisfies strong ap-
proximation if and only if G is connected and affine, the torus Ggoly/Gunip
is trivial, and the semisimple quotient G/Gyoly satisfies the criterion of The-
orem

5.11. Inner twists

Let G be a smooth algebraic group over k. The action of G on itself by inner
automorphisms defines a homomorphism

G(ks) = Aut Gy,.
This induces a map of pointed sets
(5.11.1) H!(k,G) — H(k, Aut Gy, )
The image of an element 7 € H!(k, G) under (or, more precisely, a

cocycle representing this image) defines a twist.G7 of the algebraic group G,
called an inner twist. It is another smooth algebraic group over k.

5.12. Torsors

(Reference: [BLR90, §6.4]|, Chapter 2 of [Sko01])

5.12.1. Warmup: Torsors of groups. Let G be a group.

Definition 5.12.1. A (right) G-torsor (also called torsor under G or prin-
cipal homogeneous space of G) is a right G-set isomorphic to

G with the right action of G by translation.

In other words, a G-torsor is a set X with a simply transitive G-action
(simply transitive means that X is nonempty and that for every z,2’ € X
there exists a unique g € G such that zg = z’).

If X is a G-torsor, then a choice of x € X determines an isomorphism of
G-sets

G— X
g — xg.

Example 5.12.2. If G is a subspace of a vector space V', and X is a translate
of G, then X is a G-torsor. Here X is not canonically isomorphic to G, but
a choice of x € X determines a translation isomorphism G — X sending 0
to z.
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5.12.2. Torsors under algebraic groups. Let k be a field. Let G be
a smooth algebraic group over k. The trivial G-torsor over k, which for
convenience we denote by G, is

the underlying variety of G' equipped with
the right action of G by translation.

Definition 5.12.3. A G-torsor over k (also called torsor under G or prin-
cipal homogeneous space of () is a k-variety X equipped with a right
action of G such that Xy equipped with its right Gy, -action is isomorphic
to Gy, (the isomorphism is required to respect the right actions of Gy ). A
morphism of G-torsors is a G-equivariant morphism of k-schemes.

Remark 5.12.4. The definition can be generalized to nonsmooth G, but
then one should use k instead of ks. We restrict to smooth G for now so
that Galois cohomology suffices in Section [5.12.4] For a generalization, see
Section [6.5]

Remark 5.12.5. If X is a G-torsor over k, then X (ks) is a G(ks)-torsor in
the sense of Section [5.12.1l

@ Warning 5.12.6. A k-variety X equipped with a right G-action making
X (ks) a G(ks)-torsor is not necessarily a G-torsor. For example, if G is a
smooth algebraic group over Fp, then X could be G with the action

XxG—X
(z,9) — x - F(g),

where F': G — G is the Frobenius endomorphism; this X is not a G-torsor
if dimG > 0.

Remark 5.12.7. The notion of torsor can be generalized to the notion of
homogeneous space. First suppose that G is a group. A right G-set X
decomposes as a disjoint union of G-orbits. If X consists of exactly one
G-orbit, then X is called a homogeneous space of G. If H is a subgroup
of G, then H\G is a homogeneous space; conversely, if X is a homogeneous
space, and H is the stabilizer of some x € X, then X ~ H\G as homogeneous
spaces.

Now suppose that G is a smooth algebraic group. A k-variety X equipped
with a right G-action is called a homogeneous space if there exists x € X (ks)
such that

Gks — st
g—rxg

is surjective, or equivalently if there exists a closed subgroup H < G, such
that X, ~ H\Gy, as ks-varieties equipped with right Gy -action.
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5.12.3. Examples.

Example 5.12.8. Let T be the torus 22 + 2y? = 1 of Example Then
the affine variety X defined by 22 4+ 2y?> = —3 in Aé can be viewed as a
T-torsor over Q. It is a nontrivial torsor, since X (Q) = 0.

Example 5.12.9. Let L D k be a finite Galois extension of fields. Let G be
the constant group scheme over k associated to Gal(L/k); see Section [5.1.5]
Then the left action of Gal(L/k) on L induces a right action of G on Spec L
that makes Spec L a G-torsor over k.

Example 5.12.10. Let A be a smooth closed subgroup of'a smooth algebraic
group B. Let ¢: B — C := B/A be the natural surjective morphism to the
quotient (which in general is only a k-variety, since we did not assume that
A was normal). Let ¢ € C(k). Then the closed subscheme ¢~!(c) C B is an
A-torsor over k.

Example 5.12.11 (Albanese torsor). Let X be a geometrically integral va-
riety over a field k. Let Cx be the category of triples (A, T, f), where A is
an abelian variety over k, and T is an A-torsor, and f: X — T is a mor-
phism; a morphism from (A, T, f) to (A", T", f') consists of a homomorphism
a: A — A’ and a morphism of varieties 7: T — T’ such that the diagrams

TxA—>T x-lor

(oz,T)i i’r and \ lT
f/

T x A —=T' T

commute. Then Cx has an initial object (Ale/k,Alb}(/k,L); see |Wit08,
Appendix Al.

The abelian variety Albx, is called the Albanese variety of X, and its
torsor. Alb%, /i 18 called the Albanese torsor of X. In the case that X has a
k-point z, the abelian variety Alby/, defined using Cx ; in Theorem
coincides with the abelian variety Alby/,, defined using Cx; see Exercise

As in Remark [5.7.16| there is a semiabelian variant: see |Wit08, Ap-
pendix A].

Example 5.12.12. Let X be a nice genus 1 curve, so Alby/, the Jacobian
of X, is a 1-dimensional abelian variety, an elliptic curve. One can show that
the morphism X — Albﬁ( Ik is an isomorphism, so X is a torsor under the
elliptic curve Alby .
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5.12.4. Classification of torsors. For any fixed smooth algebraic group
G over k, we have bijections

{ G-torsors over k } = { twists of G }
< HY(k, Aut Gy,) (by Theorems [£.5.2] and [5.2:20))
= H'(k, G(ks)) (see Exercise
= H'(k,G).

(the first two sets should really be sets of k-isomorphism classes). Given a
G-torsor X, let [X] denote its class in H'(k, G).

Remark 5.12.13. The cohomology class of a torsor can also be constructed
explicitly. Given a G-torsor X, choose x € X (ks), and define g, € G(ks)
by ¢ = x - g,; then ¢ — g, is a 1-cocycle representing the class of X in
HY(k,G).

A G-torsor is analogous to a coset of a group G in some larger group, or
to a translate of a subspace G in some larger vector space. To trivialize a
torsor T', one must choose a point in T' to be translated back to the identity
of GG, but such a point might not exist over the ground field. With this
intuition, the following should not be a surprise:

Proposition 5.12.14 (Trivial torsors). Let G be a smooth algebraic group
over a field k. Let X be a G-torsor over k. The following are equivalent:

(i) X is isomorphic to_the trivial torsor G.

(i) X (k) #0.
(iii) [X] € HY(k, G) is the neutral element.

Proof.
(i)<(iii): This is a general fact about twists.
(i)=(ii): The set G(k) contains the identity.

(ii)=-(iii): This follows from the explicit construction of a cocycle above.

O

Exercise [5.22] gives another way of thinking about torsors when G is
commutative.

5.12.5. Geometric operations on torsors. Throughout this section, G
is a smooth algebraic group over k. When G is commutative, H!(k, G) is an
abelian group. The group operations can be expressed in purely geometric
terms, as we now explain. In fact, some versions of the operations make
sense even when G is not commutative.
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5.12.5.1. Inverse torsors. Let G be the trivial right G-torsor. It also has a
left action of G := (G, so one says that G is a G-G-bitorsor:

90 G o°
The automorphism group scheme of the right G-torsor G is G acting on the
left.

Now let 7 € Hl(k,g). The left action of G on G does not commute
with the left action of other elements of G, so if we twist G by (a cocycle
representing) 7 to get the corresponding right G-torsor 7', then the left-action
of G must be twisted too. The result is that T is a G"-G-bitorsor, where G
is the inner twist (see Section :

ToT o

The same k-scheme T has a left action of G defined by ¢ -t := tg~! and
a right action of G7 defined by t - g := g~'t. The resulting G-G"-bitorsor is
denoted 77!, and is called the inverse torsor:

GO T—l OgT

Example 5.12.15. If G is commutative, then G7 = G and [T~!] = —[T] in
the abelian group H'(k, G).

5.12.5.2. Contracted products. Let T be a right G-torsor; let 7 € H(k, G)
be its class. Let X be a quasi-projective k-variety equipped with a left
G-action. This action defines a homomorphism G(ks) — Aut X, and hence
a map H'(k,G) — H(k, Aut X3, ). The image of (a cocycle representing) 7
under this map corresponds to a twist of X, called the contracted product

G
T x X. Geometrically, it is the quotient of 1" x; X by the G-action in which
g € G acts by (t,z) — (tg~ ", gz).
In a similar way, if T is a left G-torsor and Z is a quasi-projective variety

G
with a right G-action, then we can construct the contracted product Z x T

G
Example 5.12.16. If G is commutative and Z also is a G-torsor, then Z xT
G
is another G-torsor, and [Z x T| = [Z] + [T] in the abelian group H!(k, G).

Example 5.12.17. If Z is a right G-torsor, and T is a G-H-bitorsor, then

G
Z x T is a right H-torsor.

5.12.5.3. Subtraction of torsors. Let Z and T be two right G-torsors; let
¢, 7 € HY(k,G) be their classes. As in Section [5.12.5.1) 7! is a G-G"-

G
bitorsor. By Example |5.12.17, Z x T~ is then a right G™-torsor. If we fix
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T, then the “subtraction-of-7” map

H'(k,G) =% H'(k,G7)

G 1

[Z] — [Z x T™]
is a bijection, the inverse bijection being subtraction-of-[T~1].
Example 5.12.18. If GG is commutative, then G” = G and the class of the

G

right G-torsor Z x T~!is ¢ — 7 by Examples |5.12.15 and [5.12.16,

5.12.6. Torsors over fields of dimension < 1. The following theorem
shows that certain algebraic groups over certain fields have no nontrivial
torsors:

Theorem 5.12.19.

(a) (Lang) Let k be a finite field, and let G be a smooth connected algebraic
group over k. Then H'(k,G) = 0.

(b) (Steinberg) Let k be a perfect field. Then dimk < 1 if and only if
HY(k,G) = 0 for all smooth connected affine algebraic groups G over
k.

Proof.

(a) We follow the original proof of [Lan56|. An element of H'(k,G) corre-
sponds to a G-torsor X. By Proposition it suffices to show that
X has a k-point.

Fix z € X (k). Then every other point of X (k) is of the form xg
for some g € G(k), and to say that xg is a k-point is to say that it is
fixed by the Frobenius automorphism o € Gal(k/k). Thus we must find
g € G(k) such that %(xg) = zg, or equivalently 2% ¢! = x. Since X is
a totsor, there exists b € G(k) such that 2 b = z, so it suffices to show
the following:

(5.12.20) Every b € G(k) is of the form % g

(Alternatively, we could have reduced to proving by using the
definition of nonabelian H.)

Let ¢ = #k. Let F': G — G be the g-power Frobenius endomor-
phism; it acts on k-points in the same way as o. There is a left action

of G on T := G in which g acts as t — F(g)tg~'. Then (5.12.20) is

equivalent to b being in the G(k)-orbit of 1.

Fix t € T'(k) and define a morphism

g— F(g)tg™".
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The derivative of F' is everywhere 0, so the derivative of ¢ at g = 1
equals the derivative of the invertible morphism g — tg~!' at g = 1;
thus the derivative of ¢ at ¢ = 1 is invertible. If a morphism between
smooth varieties V' — W of the same dimension has invertible derivative
somewhere, its image contains a nonempty Zariski open subset of W.

Applying this to ¢: Gy — T3 shows that an arbitrary G(k)-orbit in
T(k) contains a nonempty Zariski open subset of G(k). Since also G
is connected, and hence geometrically connected, any two orbits will
intersect. But orbits are disjoint, so there can be only one. In particular,

b is in the G(k)-orbit of 1, as required.
(b) See [Ste65, Theorem 1.9], or the reproduction in Theorem 1’ of I11.§2
and ITI.Appendix 1 of [Ser02]. O

Remark 5.12.21. The same proof shows that Theorem 5.12.19@ remains
true jf the smoothness hypothesis is dropped and one interprets Hl(k, G) as
the Cech fppf cohomology set defined in Section

Corollary 5.12.22. A nice genus 1 curve X -over a finite field k has a
k-point.

Proof. Let E be the Jacobian of X. Asdiscussed in Example [5.12.12] X is
an E-torsor. By Theorem 5.12.19@, H(k,E) =0, so X is a trivial torsor.

By Proposition 5.12.14:>, X has a k-point. U

Remark 5.12.23. The first proof of Corollary [5.12.22| used the Riemann—
Roch theorem; see [Sch31) Satz 20|. Corollary [5.12.22| can also be viewed
as a consequence of the Hasse—Weil bound; see Corollary

5.12.7. Torsors over local fields.

Theorem 5.12.24. Let k be a local field.
(a) (Borel-Serre) Let G' be an affine algebraic group over k. If chark =0 or
G is connected and reductive, then H*(k, G) is finite.

(b) (Kneser, Bruhat-Tits) If k 2 R, and G is a simply connected semisimple
algebraic group over k, then H(k,G) = 0.

(c) (Tate) If A is an abelian variety over k, then
Hl(kv A) = Homconts(A(k)7 Q/Z)

Proof.

(a) See |BS64], Théoréme 6.1] and [Ser02, I11.§4.3, Remark 2].

(b) This was proved in [Kne65a, Kne65b| using the classification of such
groups when k is a finite extension of Q. It was extended to local fields
of characteristic p in [BT87|, which gave a classification-free proof.
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(c) See [Tat95b). O

@ Warning 5.12.25. With regard to Theorem @, it is not true that
H!(k, G) is finite for every affine algebraic group G over a local field k of char-
acteristic p, even if k is commutative and smooth. For example, H!(k, Z/pZ)
is infinite in this case, since if ¢t € k is a uniformizer, then each positive in-
teger n not divisible by p gives rise to a Z/pZ-extension k[y|/(y? —y —t™")
of k, and these are distinct because their discriminants are distinct. For a
connected pseudo-reductive example, see [CGP10, Example 11.3.3].

@ Warning 5.12.26. Theorem 5.12.24@ can fail if the affineness assumption
is dropped. For example, if A is a nonzero abelian variety, then Theo-

rem [5.12.24{(c) implies that H'(k, A) is infinite.
@ Warning 5.12.27. Theorem 5.12.24 is false for k. = R. For example,

#H(R, Spin,,) — 0o as n — 00, as can be deduced from the fact that the
number of isomorphism types of rank n quadratic forms over R grows with
n. Nevertheless, the group Hl(R, ) can be described explicitly for every
simply connected group over R |Bor88|.

For more results along the lines of Theorems [5.12.19] and [5.12.24], see
[Ser02| Chapter III].

5.12.8. Local-global principle for torsors. Let G be an algebraic group
over a global field k. Let X be a right G-torsor, and let [X] denote its class
in H'(k, G) (throughout this section, if char k = p and G is not smooth, then
interpret H!(k, @) as the Cech fppf cohomology set defined in Section .
By Proposition X has a k-point if and only if [X] is the neutral
element 0. Similarly, X has a k,-point if and only if the image [X}, ] of [X]
under H(k, G) — H'(k,,G) is 0. Thus the statement that X satisfies the
local-global principle is the statement

If [X] maps to 0 in H!(k,, G) for every v, then [X] = 0 in H!(k, G).

Hence the statement that all right G-torsors satisfy the local-global principle
is the statement that the kernel

T (k, G) := ker (H' (%, G) — [[H' (%0, G))

is trivial.
If G is noncommutative, then a stronger statement is that the map

(5.12.28) H'(k,G) — [[H' (k0. G)
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is injective. For each 7 € H!(k,G), we have an inner twist G7 of G, and
the subtraction-of-7 bijection H!(k, G) — H'(k, GT) of Sectioniden-
tifies the fiber of containing 7 with IIT'(k, GT). Thus injectivity
of is equivalent to the statement that III'(k,G™) = 0 for every
inner twist G of GG. There are also variants in which v ranges not over all
places of k, but only over places outside a fixed finite subset S; one defines

Iy (k, G) = ker(H' (k,G) = [[ H' (%, G)).
vgS

None of the injectivity statements are true in general, but the following
weaker result holds:

Theorem 5.12.29. Let k be a global field. Let S be a finite set of places of k.
Let G be an affine algebraic group over k. Then H'(k,G) ~ Hv¢5 HY(k,, G)
has finite fibers.

Proof. The number field case was proved by Borel and Serre [BS64, The-
orem 7.1]. For the global function field case, see |[Nis79|, |BP90, §4],
[Oes84, 1V, 2.6, Proposition(a)|, and |[Con12b, Theorem 1.3.3(i)]. O

Remark 5.12.30. The analogue of Theorem [5.12.29| for abelian varieties is
a conjecture; see Conjecture [5.7.32

Theorem 5.12.31 (Kneser, Harder, Chernousov). Let G be a simply con-
nected semisimple group-over a global field k. Then the map

H!(k,G) — [[H' (k. G) ~ ] H'(k, G)
v real v

is a bijection. In particular, if k is a totally imaginary number field or a

global function field, then H*(k,G) = 0.

Proof. By Theorem [5.12.24([b)), HY(k,,G) is trivial for each nonreal place
v. “For the number field case, see [PR94, Theorem 6.6]. The statement
H!(k, G) = 0 for a global function field is proved in [Har75|. O

Theorem 5.12.32 (Voskresenskii). Let T' be a torus of dimension at most
2 over a global field k. Then I (k,T) = 0.

Sketch of proof. One classifies all finite subgroups of GL4(Z) for d < 2
to classify all possibilities for 7', and one checks the result in each case; see
[Vos65| for the details. O
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5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

Exercises

(Center of a group scheme vs. center of its group of points) Over a
field k, let {£1} denote the constant group scheme associated to a
two-element group (view 1 and —1 as symbols that are distinct even
if chark = 2). Let {41} act on G, so that —1 acts as z + 1. Let
G be the semidirect product G,, x {£1} over k. Let Z be the center
of G.

(a) Prove that Z ~ ps.

(b) Show that if k = Fa, then Z(k) is strictly smaller than the center

of G(k).

Let S be a scheme.
a) Prove that the group schemes U, g and G /2 Gyer S have the
il a S
same underlying S-scheme.
b) Prove that if S is nonempty and n.> 3, they are not isomorphic
y y
as group schemes.

(Group schemes of order p) Let k be a field of characteristic p. Show
that p,,, a;, and the constant group scheme Z/pZ over k are pairwise
nonisomorphic as group schemes over k.

(“Inseparable twist” of G,) Let k be a field of characteristic p, and

suppose that ¢ € k — kP, (So in particular, k is not perfect.) Let G be

the k-subvariety of G2 defined by the equation y? = tzP + x. Prove

that

(a) G is a subgroup scheme of GZ.

(b) G =~ G, 5 as k-group schemes.

(c¢) G is not isomorphic to the k-group scheme G,.

(d) G as a k-variety (without group structure) is not isomorphic to
Al

(e) G is birational to A! over k if and only if p = 2.

(Coordinate-free variant of GL,,) Let k be a field, and let V' be a finite-

dimensional k-vector space. For each k-algebra A, define GLy (A) to

be the group of A-module automorphisms of V' ®; A. Prove that the

functor GLy is represented by an algebraic group.

(Representations of G,,) Let G be an algebraic group over a field k.
A (finite-dimensional) representation of G is a finite-dimensional k-
vector space V equipped with a homomorphism G — GLy of algebraic
groups. Prove that giving a representation of G,, on a vector space
V' is equivalent to giving a direct sum decomposition V' = P, ., Vi
into subspaces indexed by Z. (Hint: Given a decomposition, define an
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5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

action of G, on V such that each a € k act as multiplication-by-a™
on V,, and likewise for elements of k-algebras.)

(Hodge structures |[Del71] 2.1])

(a) Define the Deligne torus S := Resc/r G- Prove that there is a
unique isomorphism S¢ = G,, x G,, of algebraic groups over C
such that the induced homomorphism

C* = S(R) = S(C) — (G x Gp)(C) = C* x C*

is z+— (2, 2).

(b) Let V' be an R-vector space. Complex conjugation acts on the
space Vg 1= V ®gr C through the second factor. Let W be a
C-subspace of Vg. Let W be the image of W under complex
conjugation. Prove that W is another C-subspace of V.

(c) A Hodge structure over R is a finite-dimensional representation
of S. Prove that giving a Hodge structure is the same as giving
a finite-dimensional R-vector space V equipped with a direct sum
decomposition Ve = P (p,q) €22 VP2 into C-subspaces VP? such that

V® = VP for all (p,q) € Z>.
The cocharacter group of a k-torus T is the &-module

Y(T) = Homks—group schemes (Gm,k57 Tks) .

(a) Describe the abelian group Y(7T') stripped of its Gg-action.
(b) Define a bilinear &g-equivariant pairing
X(T) x Y(T) = Z,
and show that it identifies each of X(7') and Y(7") with the Z-dual
of the other.
(c) Restate Theorem using Y(7') instead of X(T').

(Remark: One advantage of X(T') over Y(T) is that it can be used
also in the generalization given in Theorem [5.5.10})

Compute Hom(u,,, G,,) in the category of algebraic groups over a
field k.

Let T be a group of multiplicative type over a field k. Prove that T
is smooth if and only if either char k = 0, or char k = p and X(7T') has
no nontrivial elements of order p.

Let k = Fy(t). Let f: G, — G, be the homomorphism z + z* — tz2.
Let G = ker f.

(a) Prove that G° ~ .

(b) Prove that Gyeq is not a subgroup scheme of G.

Let k be a field. Let n > 1. Let A = kle]/(¢"). Let G = Resy i, G-
Prove that there exists a unipotent group U of dimension n — 1 and
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an exact sequence
1-U—-G—-G,,—~1
of smooth algebraic groups.

5.13. (Example of a pseudo-reductive group) Let k& be a separably closed
field of characteristic p having a field extension L of degree p. Let
G= RGSL/k Gm
(a) Prove that dim %, (Gy) =p — 1.

(b) Prove that G(k) has no nontrivial elements of order p.
(c) Prove that Z,(G) = {1}.

(d) Deduce that G is pseudo-reductive but not reductive.
For a generalization, see [CGP10, Example 1.1.3].

5.14. (Failure of real approximation) Let T be the torus z? + 2y% = 1 of
Example Let G be the kernel of the cubing map T’ 2 T. Prove
that G(Q) is not dense in G(R).

5.15. Let G be a smooth algebraic group over a field k. Let G be the trivial
right G-torsor. Prove that there is an isomorphism G(k) ~ Aut G.

5.16. Let X be a geometrically integral k-variety with a k-point . Prove
that the category Cx . of Section [5.7.2]is equivalent to the category
Cx of Example [5.12.11} and that the two definitions of Alby/, are
compatible.

5.17. Let k be a field. (Assume char k # 2 if you want to make the problem
easier.)

(a) Find explicit equations for all 1-dimensional tori T" over k.
(b) For each T, find explicit equations for all T-torsors over k.

5.18. Prove that any smooth connected algebraic group G over a field k& is
geometrically integral.

5.19. Use Theorem 5.12.19@ to give another proof of Wedderburn’s the-
orem that every finite division ring is commutative, or equivalently,
that the Brauer group of a finite field is trivial.

5.20. In |Lan56|, Lang proved a stronger version of Theorem 5.12.19@.
Specifically, he proved that any homogeneous space X of a smooth
connected algebraic group G over a finite field k£ has a k-point. Prove
this.

5.21. Let k be a finite field. Let G be an algebraic group over k.

(a) Prove that H(k, Q) is finite.
(Hint: To handle the noncommutative case, use [Ser02| 1.§5.5,
Corollary 2].)

(b) Give an example to show that H!(k,G) can have more than one
element.
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5.22. (Extensions and torsors) Let G be a smooth commutative algebraic
group over a field k, with group law written additively. An extension
of the constant group scheme Z by G (in the category of commutative
k-group schemes) is a commutative k-group scheme F fitting in an

exact sequence
0-G—-FEF—Z—0.

A morphism of extensions is a commutative diagram

0 G E Z 0
0 G E' Z 0.
Given an extension, write £ = [[ ., En, where E, is the inverse

image under £ — Z of the point corresponding to the integer n.
(a) Prove that each E, is a G-torsor.
(b) Prove that
{ extensions of Z by G } — { G-torsors over k }
0—-G—E—>Z—0)—F
defines an equivalence of categories. Deduce that the set of iso-

morphism classes of extensions is in bijection with H!(k, G).
(c) Prove that any extension induces an exact sequence of &j-modules

0— G(ks) = E(ks) = Z — 0
and that the image of n under the coboundary homomorphism
7 = H(&,,2) = HY(k,G) is [E,].
(Remark: Similarly, a 2-extension
0-G—>F1—~FEy—7Z—0

gives rise to a class in HQ(k:, (), and so on; this is related to the notion
of gerbe.)






Chapter 6

Etale and fppf
cohomology

(References: [SGA 45|, [Mil80], [FK88], |[Tam94])

Etale cohomology was developed by M. Artin and Grothendieck for rea-
sons to be discussed in Section To set up the foundations of étale coho-
mology properly would require a whole book. In fact, there are several books
about this, cited above. We will only introduce some of the key concepts
and definitions. Many results will be cited without proof.

In this chapter, schemes are assumed to be separated and locally noe-
therian.

6.1. The reasons for étale cohomology

6.1.1. Generalization of Galois cohomology. Etale cohomology over
Spec k- is the same as Galois cohomology, so étale cohomology over more
general schemes can be thought of as a generalization of Galois cohomology.
More precisely, it will turn out that any abelian sheaf .# for the étale topol-
ogy on Speck gives rise to a continuous Bx-module called .Z# (ks) (and vice
versa), and the étale cohomology group HY(Speck,.#) equals the Galois
cohomology group H'(®y,.Z (ks)). See Theorem m

For instance, in Section we saw that torsors under a smooth al-
gebraic group A over k could be classified by the Galois cohomology set
HY(&4, A(ks)). To classify torsors under group schemes over a more general
scheme S we need étale cohomology.

165
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One can also generalize the cohomological description of the Brauer
group of a field, to define the Brauer group of an arbitrary scheme.

6.1.2. Comparison with classical cohomology theories. Given a com-
pact complex manifold X, one can define singular cohomology groups
HY(X,Z), H(X,Z/nZ), and so on. One can also define cohomology of co-
herent analytic sheaves; this can be useful in proving the existence of global
meromorphic functions on compact complex manifolds, for instance: These
cohomology theories use the analytic topology on X.

It would be nice if these cohomology theories worked for varieties over
other fields. But one does not usually have an analytic topology on such
a variety, so one needs to find substitutes. To measure the success of a
cohomology theory, we check whether for proper C-varieties it gives the same
answers as the classical topological cohomology theories such as singular
cohomology.

It turns out that the Zariski topology on-a proper variety gives the right
answers for cohomology of coherent sheaves; see [Ser55| or [Har77, The-
orem B.2.1]. But the Zariski topology is not fine enough to give the right
answers for constant coefficients. For instance, if X is a nice C-curve of
genus g, then the singular cohomology group H(X(C), Z) and the sheaf co-
homology group Hl(X an 7). for the analytic topology both give Z29, which
should be considered the right answer; but if we use the Zariski topology on
X, and let Z be the constant sheaf Z on X, then H'(X,Z) = 0 since Z is
flasque [Har77, Proposition II1.2.5]. Again, the problem is that the Zariski
topology has too few open subsets in comparison with the analytic topology.

To obtain a sufficiently fine topology on a scheme, one must be open-
minded about what a topology is, and in particular about what open subsets
and open coverings are; see Section[6.2] The “topologies” that follow are not
topologies in the usual sense.

The étale topology on X, which is finer than the Zariski topology, is
a substitute for the analytic topology, and has an associated cohomology
theory. Etale cohomology does not give the right answer for H' (X, Z), but
it does give the right answers for cohomology with a finite abelian group
as coefficients, at least when the order of the group is not divisible by the
characteristic. For instance, if X is a nice curve of genus g over an alge-
braically closed field k, and n is an integer not divisible by char k, then we
get the right answer H, (X, Z/nZ) ~ (Z/nZ)?9. One can also define an even
finer topology, the fppf topology, which lets one remove the restriction on
the characteristic.
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Etale cohomology with coefficients in some rings of characteristic 0 can
be defined by taking an inverse limit; for instance,

H (X, Z¢) = lim Hy (X, Z/0°Z).

This is important for an application to the Weil conjectures; see Chapter [7]
Other applications of étale and fppf cohomology, to torsors and to Brauer
groups of schemes, are given toward the end of Chapter [6]

6.2. Grothendieck topologies

(Reference: |Vis05| §2.3|)

Before the notion of a topology on a set was invented, people studied
metric spaces. Then people noticed that many properties of metric spaces
could be defined without reference to the metric; for many purposes, just
knowing which subsets were open was enough. This led to the definition
of a topology on a set, in which an arbitrary collection of subsets could
be decreed to be the open sets, provided that the collection satisfied some
axioms modeled after the theorems about open sets in metric spaces. (See
[Moo08| for the history.)

Grothendieck took this one step further by observing that sometimes
one does not even need to know the open subsets: for many purposes (for
instance, the concept of a sheaf), it suffices to have a notion of open covering.
This led to the notion of a"Grothendieck topology, which is usually not a
topology in the standard sense. Just as an open set in a topological space
need not be open relative to any metric, an open covering in a Grothendieck
topology need not consist of actual open subsets!

This relaxation of the notion of open covering is necessary to obtain a
sufficiently fine topology on a scheme.

Remark 6.2.1. This point of view was used already in Chapter [4]

Definition 6.2.2. Let C be a category. (Our set-theoretic conventions are
such that the collection of objects in each category is a set; see Section )
We consider all families of morphisms {U; — U };c; in C having a common
target. A Grothendieck (pre)topology on C is a set 7 whose elements are
some of these families (the families that do belong to T are called the open
coverings), satisfying the following axioms:

(i) Isomorphisms are open coverings: If U’ — U is an isomorphism, then
the one-element family {U" — U} belongs to 7.

(ii) An open covering of an open covering is an open covering: If {U; — U}
belongs to T and {V;; — U;} belongs to T for each i, then {V;; — U}
belongs to T.
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(iii) A base extension of an open covering is an open covering: If {U; — U}
belongs to 7 and V' — U is a morphism, then the fiber products
V xy U; exist and {V xy U; — V'} belongs to T.

Remark 6.2.3. There is another approach, using sieves, which has advan-
tages and disadvantages, one disadvantage being that it is farther from geo-
metric intuition. The definition of Grothendieck topology in [SGA 4y} I1.1.1]
is in terms of sieves. A Grothendieck pretopology gives rise to a Grothen-
dieck topology, and all the Grothendieck topologies we will use arise this way.
From now on, we will abuse terminology and call a pretopology a.topology,
as is commonly done.

Definition 6.2.4. A pair (C,7T) consisting of a category C and a Grothen-
dieck topology T on C is called a site.

6.2.1. The Zariski site. Let X be a topological space. Let C be the cate-
gory whose objects are the open sets in X, and such that for any U,V € C,

{i}, U CV,andi: U = V is the inclusion,

Hom(U,V) =
om( ) {@, otherwise.

Let 7 be the collection of families {U; — U} such that | J, U; = U. Then T is
a Grothendieck topology on C, called the classical Grothendieck topology.

Let X be a scheme. The (small) Zariski site Xz,, is the site associated
to the underlying topological space sp(X).

6.2.2. The (small) étale site. Fix a scheme X. Take C to be the category
Etx whose objects are schemes U equipped with an étale morphism U — X
and whose morphisms are X-morphisms. (These morphisms will automati-
cally be étale [SP| Tag 02GW]|.) Call a family {¢;: U; — U} of morphisms
in C an open covering if | J; #;(U;) = U as topological spaces. This defines
the (small) étale site X.

Remark 6.2.5. For the big étale site, one would take C = Schemesy.
Open coverings are defined as families of étale morphisms {¢;: U; — U}
such that |J; ¢;(U;) = U. The definitions of sheaves and cohomology (see
Sections [6.3.2] and [6.4.1)) make sense for both the small and the big étale
sites. But the cohomology of a big étale sheaf equals the cohomology of its
restriction to the small étale site [SP, Tag 03YX], and the small étale site is
easier to work with, so the small étale site is generally preferred.

6.2.3. The (big) fppf and fpqc sites. Fix a scheme X. Take C =
Schemesy. An open covering is a family {¢;: U; — U} of X-morphisms
such that [[U; — U is fppf (respectively, fpqc). This defines the (big) fppf
site Xp,p¢ (respectively, the (big) fpqc site Xgpqc).
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Remark 6.2.6. By the étale site, we will always mean the small étale site.
By the fppf or fpqc site, we will always mean the big site. (Here is one
reason for this. For the small étale site, morphisms between objects are
automatically étale [SP|, Tag 02GW|, as mentioned already in Section
But if one considered the small fppf site, by taking C to be the category
of fppf X-schemes with X-morphisms, it would not be automatic that X-
morphisms between objects were fppf—for example, all k-varieties are fppf
over Spec k, but a k-morphism between two k-varieties need not be flat. The
same problem arises with fpqc.)

6.2.4. Continuous maps of sites.

Definition 6.2.7. A continuous map of sites (C',7") — (C;T) is a func-
tor in the opposite direction F: C — C' respecting open coverings, in the
following sense:

(1) for every open covering {U; — U} in T, collection {FU; — FU} is an
open covering in 7', and

(2) for every open covering {U; — U} in T and C-morphism V' — U, the
C’-morphism F(V xy U;) = FV x py EU; is an isomorphism.

The reversal of direction makes.the definition compatible with maps of
topological spaces:

Example 6.2.8. Let f: X' — X be a continuous map of topological spaces.
Equip the categories of open subsets of X and X’ with the classical Grothen-
dieck topologies to obtain sites (C,7) and (C’,7’). Then f induces a con-
tinuous map of sites (C',T") — (C,T): the functor C — C’ takes an open
subset U of X to. the open subset f~'U of X'.

If a set X is equipped with topologies 7’ and T (in the usual sense) and
T is finer (more open sets) than T, then the identity map (X, 7") — (X, T)
is a continuous map of topological spaces. Similarly:

Example 6.2.9. For any scheme X, Proposition [3.8.2] yields continuous
maps
Xquc — Xfppf — Xet — XZar-

Remark 6.2.10. There is a more restrictive notion, called a morphism of
sites. This is a continuous map of sites for which the inverse image functor
on the categories of sheaves is exact; see |[SP, Tag OOX1|. The maps in
Example [6.2.9) are morphisms of sites.

6.3. Presheaves and sheaves

6.3.1. Presheaves.
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Definition 6.3.1. A presheaf of abelian groups (or abelian presheaf) .7
on a category C is a functor
C’* — Ab
Uw— Z(U).
An element of #(U) is called a section of .# over U. A morphism of

presheaves is a morphism of functors.

Remark 6.3.2. Similarly, one may define a presheaf of sets, a presheaf of
groups, and so on.

Example 6.3.3. If C is the category of open subsets of a topological space
(Section [6.2.1]), then we get the same notion of presheaf as in [Har77, I1.§1].
(The condition .% () = 0 there is unnatural and should be deleted.) For this
reason, for arbitrary C, the homomorphism % (U) — % (V) induced by a
morphism V' — U of C is called the restriction from U to V and is denoted
s+ 8|y, even though V' might not be an actual subset of U.

Example 6.3.4. Let A be an abelian group.- The constant presheaf A on
a category C is the functor .# such that .7 (U) = A for all U € C, and such
that % takes each morphism in C to the identity A — A.

6.3.2. Sheaves.

Definition 6.3.5. Let A, B,C be sets, and let f: A — B, g: B — C, and
h: B — C be functions. Then

is called exact if

(i) f is injective, and

(ii) f(A) equals the equalizer {b € B : g(b) = h(b)} of g and h.
Example 6.3.6. If A, B,C are abelian groups and f,g,h are homomor-
phisms, then

Ahpto
is exact if and only if the sequence of abhelian groups
0—A-LBhe

is exact.

Definition 6.3.7. Let .# be a presheaf on a site (C, 7). Then .# is a sheaf
if and only if

(6.3.8) H H (U; xu Uy)
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is exact for all open coverings {U; — U} in T. (Here the two arrows on the
right correspond to the two projections, from U; xy Uj to U; and to U;.) A
morphism of sheaves .% — ¢ is simply a morphism of presheaves.

Example 6.3.9. If T is the classical Grothendieck topology on a topological
space, then the sheaf condition says

(i) an element s € .#(U) is determined by its restriction to an open cov-
ering, and

(ii) given elements s; € .#(U;) for an open covering {U; — U} that are
compatible (they agree on pairwise intersections), one can glue to ob-
tain an element s € .%(U) whose restriction to U; is s; for each 1.

Remark 6.3.10. Suppose that {U; — U} is an open covering in one of the
sites Xet, Xfppt, OF Xfpqe- Let U' = [[U; and U” = U’ xy U'. If a presheaf .7
already satisfies % (U’) = [[.Z (U;), then exactness of is equivalent to
exactness for the open covering consisting of the single morphism U’ — U,
the exactness of

(6.3.11) FU)— ZU) = ZFU").

Definition 6.3.12. An abelian sheaf is a sheaf of abelian groups. A group
sheaf is a sheaf of groups.

6.3.3. Examples of sheaves. Here we show that some presheaves arising
commonly in algebraic geometry are fpqc sheaves. The sheaf property in
each case turns out to be a consequence of fpqc descent.

Definition 6.3.13. Let X be a scheme, and let C be a subcategory of
Schemesy. Let % be a quasi-coherent Ox-module; in particular, % is
a sheaf on Xy,,. Define a presheaf .Z¢ on C by

Fe(U) == (p*F)(U) = Hom(p*Ox,p*F)
for each object U 2 X of C.

Example 6.3.14. Take C to be the underlying category of Xp,qc; then Defi-
nition [6.3.13] extends a quasi-coherent &x-module .# to a presheaf Fg,qc on
KXtpge-

Proposition 6.3.15. Let .% be a quasi-coherent Ox-module on a scheme
X. Then the presheaf Fipqe 0n Xipqe in Example|6.5.14) is an abelian sheaf.

(And hence the same is true on Xzar, Xet, and Xeppe. Of course, this is
trivial for Xzar, on which Fzay = F.)

Proof. By Remark [6.3.10} it suffices to check exactness of (6.3.11]) for each
fpqc morphism p: S’ — S of X-schemes. For this, we may replace .# by
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its restriction to S, which we now rename .%. Let S” = S’ xg 5/, and let
q: S” — S be the projection. Then (6.3.11]) for Fppqc is

Hom(0g, %) — Hom(p*Os,p* %) = Hom(q* s, ¢* F).

This is exact, because Theorem [£.2.3] implies that the functor from quasi-
coherent S-modules to quasi-coherent S’-modules with descent data is fully

faithful. O

Proposition 6.3.16. Let S be a scheme, and let X and Y be S-schemes.
Then the functor U — Homy (Xy,Yy) is a sheaf of sets on Sgpqc, denoted
Hom(X,Y).

Proof. Remark lets us reduce to showing that for each fpgc morphism
p: U — U of S-schemes, if U" := U’ xy U’, then
(6317) HOHIU(XU, YU) — HOHIU/(XU/, YU’) = HOIIIU//(XU//, YUH)

is exact. The map from Homy (Xy, Yi7) to the equalizer sends a U-morphism
Xy — Yy to the morphism between the associated U’-schemes with descent

data; this map is a bijection by Theorem [1.3.5|[l). Thus (6.3.17) is exact. O

Corollary 6.3.18. Let S be a scheme, and let X be an S-scheme. The
functor U — Auty(Xy) is a group sheaf on Sgqc-

Proof. By Proposition [6.3.16] the monoid presheaf Hom(X, X) is a sheaf.
Take the subgroup of invertible elements in each monoid. (Il

Recall from Definition that if X is a scheme and Y is an X-scheme,
then the functor of points hy : Schemes$’® — Sets is defined by hy (U) :=
Homy (U,Y).

Proposition 6.3.19. Let S be a scheme, and let X be an S-scheme. Then
the functor of points hx, viewed as a presheaf on the fpqc site Sgpqc, s a
sheaf (and hence the same is true for the Zariski, étale, fppf sites).

Proof. Remark lets us reduce to showing that for each fpqc morphism
p:U" — U of S-schemes, if U"” := U’ xy U’, then

Homg (U, X) — Homg(U’, X) = Homg(U", X)
is exact. Applying Proposition to each term rewrites this as
Homy (U, Xy) — Homy (U', X¢r) = Homy (U”, Xypnr),
which, as a special case of , is exact. O
Remark 6.3.20. If G is a group scheme over X, then hg is a group sheaf.

We sometimes write G when we mean the associated sheaf. For instance,
the abelian sheaf G, on Xy, is the same as Ox, and the abelian sheaf G,
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on Xfpqc is the same as (Ox)pqe. Another example is the abelian sheaf G,
on Xgpqe sending each U to Oy (U)*.

6.3.4. Sheafification.

Definition 6.3.21. A sheafification of a presheaf .Z is a sheaf .Z T equipped
a morphism i: .# — Z* such that every presheaf morphism from .Z to a
sheaf factors uniquely through .

The definition implies that a sheafification is unique if it exists.

Proposition 6.3.22 (cf. [Har77, Proposition-Definition I1.1.2]). Let .7 be
a presheaf on a site. Then the sheafification of F ewists.

Sketch of proof. Let .# be a presheaf. Call two sections s,t € .#(U)
equivalent if there exists an open covering {U; — U} such s|y, = t|y, for all
i. This defines an equivalence relation. Let .71 (U) be the set of equivalence
classes. Then .#7 is another presheaf.

Loosely speaking, a section of .Z* is something that is locally (for some
open covering in the Grothendieck topology) a section of .%;. More precisely,

one should define Z*(U) := ﬁO(U, Z1) (the notation i is explained in

Section [6.4.4]). O

Remark 6.3.23. The Zariski, étale, and fppf topologies are independent of
the choice of universe in the sense that

(1) any open covering can be refined to one in which all the morphisms
U; — U are open immersions, étale morphisms of finite presentation, or
flat morphisms of finite presentation, respectively, and

(2) for any U, the isomorphism classes of such morphisms form a set that
does-not grow as one enlarges the universe.

The same is not true for fpqc morphisms. For instance, over Spec k one has
the fpqc morphism Spec L — Spec k, where L is the purely transcendental
extension k({t; : i € I}) for a set I of arbitrary cardinality, bounded only
by the size of the universe. In the fpqc topology, even the sheafification
of a presheaf can depend on the choice of universe [Wat75 Theorem 5.5,
Remark (c)]. Because of this, in situations requiring sheafification, the fppf
topology is preferred over the fpqc topology.

Definition 6.3.24. The constant presheaf A (on a Zariski, étale, fppf, or
fpqc site) is usually not a sheaf, so we define the constant sheaf to be the
sheafification of the constant presheaf.
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6.3.5. Exact sequences.

Definition 6.3.25. Let a: ¢ — 7 be a morphism of abelian sheaves on a
site. Its kernel ker(«) is defined as the presheaf U +—— ker(4(U) — s (U)).
It turns out to be a sheaf.

® Warning 6.3.26. In contrast, the presheaf image U — im(¥(U) — (U))
need not be a sheaf.

Definition 6.3.27. A sequence of abelian sheaves

79 Lo
on asite (C,T) with foa = 0 is called exact (at ¢) if ker(/3) is a sheafification
of the presheaf image of « (for the natural morphism from this presheaf image
to ker(/3)). In other words, the sequence is exact if for each U € C and for

each g € 9(U), we have $(g) = 0 if and only if there exist an open covering
{Ui = U} and f; € Z(U;) with a(f;) = g|u, for each .

Remark 6.3.28. Let A, B, C be fppf group schemes over a scheme S. A
sequence
A—-B—=C

of homomorphisms of group schemes over S is exact in the sense of Defini-
tion [5.1.18]if and only if the associated sequence of sheaves on Spypr is exact.
(One can make sense of this even if A, B, and C' are noncommutative.)

6.4. Cohomology

6.4.1. The derived functor definition. In this section we fix a scheme
X and an element o of {Zar, et, fppf}, so that X, is one of the sites we have
defined. It turns out that the category of abelian sheaves on X, has enough
injectives.
Definition 6.4.1 (cf. [Har77, I11.§1]|). For ¢ € N, define the functor

{abelian sheaves on X¢} — Ab

ZF +— HIX,Z)

as the gth right derived functor of the (left exact) global sections functor

{abelian sheaves on X¢} — Ab
F  —  F(X).
If .Z is an abelian sheaf on X,, then the abelian group HI(X,.%) is called
Zariski

the gth < étale cohomology group of .%.
fppf
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In particular, for any exact sequence of abelian sheaves on X,
0—>F -9 —H —0,
we get a long exact sequence
0 — HY(X,ZF) — HUX,9) — HYX, )
— H(X,.7) — H(X,9) — H,(X, )
Remark 6.4.2. For each abelian sheaf .# on X, = (C,7) and for each “open
subset” U € C, one can define HI(U,.%#) by taking the derived functors
of I'(U,—). There is a canonical “pullback” homomorphism H¥(X, #) —
H{(U,.Z). In fact,
C°P?* — Ab
Uw+— H{U, 7)
defines a presheaf called 77(.%).
Alternatively, one can restrict .# to the site U, and take HI(U, .Z|y).
There is a canonical isomorphism
HI(U, #) ~ H{U, Z|v),

because one can show that the functor .# — .#|y takes injective sheaves on
X, to injective sheaves on U,; see |[Mil80, II1.1.10 and III.1.11].

6.4.2. Etale cohomology and limits. Exercise stated that for a
direct limit of fields K = @Ka, we have BrK = ligBrKa. There
are various versions .of this for schemes and étale cohomology, discussed in
[SGA 4y1, VII, §5]. Here is one:

Theorem 6.4.3. Let (X;);cr be a filtered inverse system of schemes. Sup-
pose that the X; are quasi-compact and quasi-separated, and that the mor-
phisms in the system are affine.

(a). The limit X := Wm X; exists in the category of schemes.

(b) Suppose that 0 € I and Gy is a commutative group scheme of finite pre-
sentation over Xo. Fori >0, let G; = Gy xx, X;. Let G = Go xx, X.
For each q € N, the natural homomorphism

@Hgt(Xiv Gl) — Hgt(Xv G)
is an isomorphism.

Proof. See |[SGA 4y, VII, Corollaire 5.9]. O

6.4.3. Etale cohomology and Galois cohomology. For this section, we
fix a field k£ and a separable closure ks. By Proposition [3.5.35] the only field
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extensions L of k for which Spec L — Spec k is étale are the finite separable
extensions.

Definition 6.4.4. If .7 is a sheaf on (Speck)er, define 7 (k) := lim (L),
where the direct limit is over all finite separable extensions L D k contained
in kg, and .# (L) means .% (Spec L).

Remark 6.4.5. We get the same direct limit if we take only finite Galois
extensions L O k. Then &j acts continuously on each L, hence on-each
Z(L). Thus # (ks) is naturally a &-set.

Theorem 6.4.6 (Etale cohomology over a field).

(i) The functor
{ sheaves of sets on (Speck)et } —>  {®p-sets }
F o Flks)
is an equivalence of categories. The global section functor F — F (k)

corresponds to functor that takes a &g-set M to the set of invariants
MOk,

(ii) The equivalence in part restricts'to an equivalence
{ abelian sheaves on (Speck)et } —  { &g-modules }.
(iii) There are natural isomorphisms
HY, (Speck, #) ~ HY(®y, F (ks))
for all g € N.

Proof.

(i) We describe an inverse functor. Let S be a &j-set. For each finite
separable extension L D k contained in kg, define .7 (L) = SGaltks/L),
By Proposition [3.5.35] every étale k-scheme U is a disjoint union of
k-schemes of the form Spec L, and we define .% (U) as the corresponding
product of the sets .%#(L). The restriction morphisms are products of
inclusion morphisms

j‘(L) _ SGal(ks/L) SN SGal(ks/M) _ y(M)
for finite separable extensions L/M of finite separable extensions of k
contained in ks. The rest of the proof of (i) is easy.
(ii) This is obvious from ().
(iii) Under (ii), the global sections functor corresponds to the &-invariants
functor. Take derived functors on both sides. O
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6.4.4. Cech cohomology. Let U = {U; — U}ics be an open covering on
some site S. For (ig,...,i,) € IPTL, define

Uig...i, == Uy, (>j Ui, (>j 5 Ui,

If (ig, . ..,ip) € I and j € {0,...,p}, then forgetting the jth factor gives a
projection Uy, 4, — Uion_;]_._.ip, where the means that that index is omitted.
We obtain '

B S
20 0 < 20?1 2011 = 102122 20?172 <

Let % be an abelian presheaf on §. Then we obtain

5 B —
Hz‘o 9(Ui0) — Hz‘oil ‘g(Uioil) — H’ioilig 9(Uioi1i2) — """
Relabel these products as C°, C', and so on, and combine each stack of
arrows by taking their alternating sum to obtain homomorphisms d?:

d° dt d2

P ct Cc?
Definition 6.4.7. The elements of C?, ker(d4), im(d?~!), respectively, are
called Cech g-cochains, Cech g-cocycles, and Cech ¢-coboundaries.

One can check that the composition d? o d9~! of any two successive ho-
momorphisms is zero, so we have a complexr. Take the cohomology groups of
this complex, and denote them

ker d4
imdi—1t’

where we interpret imd%= ! as 0 if ¢ = 0.

au,z) =

@ Warning 6.4.8. In the case of the Zariski site, one obtains the same group
H"(u, F) if one fixes a well ordering on I and takes products only over
(p+1)-tuples satisfying ig < iy < --- < ip, as in [Har77, I11.§4|. But for the
étale siteand other sites, this approach gives the wrong cohomology groups
because the fiber products contain new information even when some of the
indices are equal.

Definition 6.4.9. Let U = {U; — U}ic; and V = {V; — U}jcs be open
coverings with respect to some site (C, 7). Then U is called a refinement of
V if there exists a map 7: I — J and a morphism U; — Vi ;) for each i € I.

If U is a refinement of V, then there is an induced morphism H?(V, %) —
HY(U,.F) for each q > 0.
Definition 6.4.10. Let .# be an abelian presheaf on a site (C, 7)), let U € C,
and let ¢ € N. The gth Cech cohomology group of U with coefficients in
F is
H'(U, 7) = lim U, F),
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where the direct limit is taken over all open coverings of U, ordered by
refinement.

® Warning 6.4.11. The abelian groups H*(U,.#) and HY(U,.%) need not be
isomorphic.

Proposition 6.4.12. If .# is an abelian sheaf on a site (C,T), and U € C,
then we have

Sketch of proof. The first line is immediate from the definition of fIO(U , F)
and the sheaf property of .#. For the second and third lines, let (%) be
the presheaf of Remark and use Proposition for the spectral
sequence of Cech cohomology

EY =T"(U, #1F)) = HPTYU, ZF),
and use the fact HO(U, HUF)) = 0; see |[ShaT2, pp. 200-201]. O

Theorem 6.4.13 (M. Artin). Let X be a quasi-compact scheme such that
every finite subset of X is contained in an affine open subset. (This is
automatic if X is quasi-projective over an affine scheme.) Let F be an

abelian sheaf on Xe. Then there are canonical isomorphisms Hey (X, F) =
HY (X, F) for all g € N.

Proof. See the original reference |[Art71], or see [Mil80, III.2.17]. O

Important Remark 6.4.14. In group cohomology, one can define H°(G, A)
and HY(G, A) even when the group A is nonabelian. Similarly, one can define
i’ (X,%) and i (X, ) for a presheaf .# of possibly nonabelian groups; see
[Mil80, p. 122].

6.5. Torsors over an arbitrary base

(Reference: |[Mil80, II1.§4])

Torsors under a group scheme G over a general base scheme can be
thought of as families of torsors. (In differential geometry, such objects are
sometimes called principal G-bundles.)
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6.5.1. Definition of torsors.

Definition 6.5.1. Let G — S be an fppf group scheme. An G-torsor over S
(or simply G-torsor) is an fppf S-scheme X equipped with a right G-action

XxgG@— X
such that one of the following equivalent conditions holds:
(i) There exists an fppf base change S’ — S such that
Xgr with its right Ggr-action
is isomorphic over S’ to
(g with the right translation Gg/-action.
(ii) The morphism
X xgG— X xgX
(z,9) — (,z9)

is an isomorphism.

Proof of equivalence.

{[ii)=(@): Take S’ = X. Then backward says that S' xg X ~
S’ xg G. In other words, Xg ~ Gg.” Moreover, the right G-actions corre-
spond: this is simply the formula (xg)h = x(gh) coming from the definition
of right G-action on X.

:: Let ¢ be the morphism
X xgG— X x5 X
(x,9) — (2, 29).
Base extend ¢ by S’ — S and use to replace Xg» by Gg. This gives
ogr: Ggr X1 Ggr —> Ggr xgr Ggr
(@, 9) — (z,2g).

Since G is a group scheme, ¢g is an isomorphism. But S’ — S is fppf, hence
fpgc, so fpqe descent (Theorem ) implies that ¢ was an isomorphism
to begin with. O

Remark 6.5.2. Let X be an G-torsor over S. By fpqc descent (Theo-
rem [4.3.7([) ), many properties of G are inherited by X. For instance, if G is
smooth over S, then X is smooth over S.

6.5.2. Trivial torsors. The following generalizes Proposition [5.12.14]

Proposition 6.5.3. Let G — S be an fppf group scheme, and let X be a
G-torsor over S. The following are equivalent:
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(1) X is isomorphic to the trivial torsor (G with right translation action).
(il) X(S) #0; i.e., X — S admits a section.
(iii) X corresponds to the neutral element of I[I%ppf(S, G) (see Sectz’on.

Proof.
:>: This is because G — S has the identity section.

:>: The second definition of torsor gives us an isomorphism X x ~
Gx of Gx-torsors over X. If we have a section S — X, we can further base
extend by this to get Xg ~ Gg; in other words, X ~ G as G-torsors over S.

(:>: This follows from the definition of the correspondence given in
Section [6.5.5] O

6.5.3. Examples. Generalizing Example [5.12.9] we have:

Example 6.5.4. Let G be a finite group. A Galois covering S — S with
Galois group G in the sense of Remark is the same thing as a torsor
under the constant S-group scheme corresponding to G.

Example 6.5.5. Let .Z be a invertible sheaf on a scheme S. Let L — S be
the corresponding line bundle, i.e., L := Spec Sym(.%) (some authors use
%! instead). Thus there exists a finite cover of S by open subsets U such
that Ly — U is isomorphic to Ux A' — U. Let Z be the zero section of the
line bundle, viewed as a closed subscheme of L. Then the open subscheme

X =L~ Z of Lis an G,, s-torsor over S. This torsor is trivial if and only
if &~ 0Os.

Example 6.5.6. The same construction as in Example [6.5.5] associates to
any locally free rank n sheaf a GL,,-torsor.

6.5.4. Torsor sheaves. Recall that a scheme gives rise to its functor of
points, which is a sheaf of sets. Thus sheaves of sets can be viewed as
a generalization of schemes. Similarly, group sheaves can be viewed as a
generalization of group schemes.

Definition 6.5.7. Let G be a group sheaf on a site with final object S (e.g.,
the étale site on a scheme S). A G-torsor sheaf T is a sheaf of sets equipped
with a right action T'(U) x G(U) — T(U) for each U € C, functorially in
U, such that there exists an open covering {U; — S} and an isomorphism
T|u, = G|y, identifying the right G|y,-action on T'|y, with the right action
of G|y, on itself by translations.

Definition 6.5.8. Say that an open covering {V; — S} trivializes a torsor
sheaf T if there exist isomorphisms T'|y;, ~ G|y, respecting the right G-actions
for all 4.
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6.5.5. Torsors and H'. Section [5.12 used Galois descent to show that
(scheme) torsors under a smooth algebraic group G over k are classified by
Hl(k:, G). The generalization to base schemes S other than Spec k breaks up
into two steps:

(1) Relate ﬂl(S, Q) to torsor sheaves. By definition, giving a sheaf locally
is the same as giving a sheaf, so the question of descent does not come
up.

(2) Ask whether torsor sheaves are represented by (scheme) torsors. This

is the delicate part, because it involves descent of schemes, which is not
always effective.

The following handles the first step:

Proposition 6.5.9. Let G be a group sheaf on a site with final object S.
Then there is a isomorphism of pointed sets

{G-torsor sheaves}

<1
H(S,G).
isomorphism (5,@)

Proof. The construction is similar to the construction of a 1-cocycle from
a twist in Remark as we now demonstrate.

Let T be a G-torsor sheaf. Choose an open covering U := {U; — S}
and isomorphisms f;: G|y, ~ T|y,. Then on the overlaps U;; = U; xg U;
the transition maps f;l fi: Glu,, = q |lu;; are given by left multiplication by
some g;; € G(Uj;). The g;; form a Cech 1-cocycle. Changing the isomor-
phisms f; corresponds to replacing the 1-cocycle by a cohomologous one. In
this way, we get an isomorphism of pointed sets

{G-torsor sbeaves tri-vialized by U} 5 dlw, 7).
isomorphism

Taking thedirect limit over all open coverings gives the desired isomorphism.
O

Fortunately, it is often true that torsor sheaves are represented by torsor
schemes:

Theorem 6.5.10. Let G be an fppf group scheme over a locally noetherian
scheme S. Then we have

G-torsors G-torsor sheaves} ~ -1 ~
{ } — { } - prpf(S? G) -2 H%ppf(S7 G)a

isomorphism isomorphism

where the last term and the last isomorphism should be included only if G is
commutative (since otherwise H%ppf(S, G) is not defined). Moreover, the first
injection is a bijection in any of the following cases:

(i) G — S is an affine morphism.
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(ii) G is of finite presentation and separated over S, and dim S < 1.

(i) G — S is an abelian scheme, and G is locally factorial.

Proof. For the last isomorphism, see |[Mil80, II1.4.7]. Case ({) follows from
Theorem [4.3.5(i). Case follows from [Ray70b, Théoréme XI.3.1(1)] in
the smooth case, and |[Ana73| Théoréme 4.D] in general. Case is a
special case of [Ray70b, Théoréme XI1.3.1(2)]. In [Ray70b, XI and XIII|
one can find other hypotheses that guarantee that the injection is a bijection.
On the other hand, [Ray70b|, XII] contains some counterexamples. O

Remark 6.5.11. To avoid the delicate issue of representability by a scheme,
one can enlarge the category of schemes to the category of algebraic spaces.
Under the hypotheses of Theorem (or the weaker hypothesis that
G — S is a group algebraic space over an algebraic space), a G-torsor sheaf
for the fppf topology on S is always represented by a G-torsor algebraic space,
because the definition of algebraic space is fppf local; see [LMBO0O, 10.4.2]
and [SP|, Tag 04SK].

To simplify notation, we write H! (S, G) for Hflppf(S, G) from now on.

6.5.6. Geometric operations on torsors over schemes. The notions of
inner twist, inverse torsors, contracted product, and subtraction of torsors
in Sections [5.11] and [5.12.5] can be generalized to base schemes S other than
Speck. The idea in each case is that the construction is easy in the case
where the torsor T — S involved is trivial, so we do the construction after
fppf base change and then descend the result to S. We will only state the
results here; see [Sko01), pp. 20-21] for more details.

Let G be an fppf group scheme over a scheme S. Assume that G is affine
over S; this is to ensure that descent is effective, so that we can work with
torsors as schemes instead of only as sheaves.
6.5.6.1. Inner twists. Given 7 € H'(S,G) (perhaps the class of a G-torsor
T —S), one obtains another fppf group scheme G7 affine over S.
6.5.6.2. Inverse torsors. Let T — S be a right G-torsor, and let 7 be its
class in H'(S, G). Then T may be viewed as a G™-G-bitorsor, and the same
S-scheme may be viewed as a G-G™-bitorsor 7.
6.5.6.3. Contracted products. Let G — S be an fppf group scheme. Let X
be an S-scheme that is affine over S and equipped with a right G-action
(but X is not necessarily a torsor). Let 17" be a left G-torsor over S. The

G
contracted product X x T is the quotient of X xg T by the G-action in
which g € G acts by (z,t) — (xg,g~'t). The result is an S-scheme that is
affine over S.
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6.5.6.4. Subtraction of torsors. Let Z and T be two right G-torsors over S.

G
Let 7 = [T] € H'(S,G) be their classes. Then Z x T~ is a right G"-torsor
over S.

Example 6.5.12 (Twisted torsor). Let k be a field. Let S be a k-scheme.
Let G be an affine algebraic group over k. Then Gg is an fppf group scheme
over S that is affine over S. Suppose that f := Z — S is a right Gg-torsor,
but T" — Speck is a right G-torsor. Define

- Gs G
7T =7 XSTS:ZXkT

and let f7: Z7 — S be its structure morphism. Then Z7 is a right G"-torsor
over S (i.e., a right (G™)g-torsor).

6.5.7. Unramified torsors. This section will be essential for the finiteness
of Selmer sets in Section [8:4.4 Let k be a global field. Let S be a finite
nonempty set of places of £ containing all the archimedean places. Let Oy g
be the ring of S-integers in k. For v ¢ S, let Oy, be the local ring of Oy g
at v, let O, be its completion, and let k, = Frac O,, so k, is the completion
of k at v. Let G be a smooth finite-type affine group scheme over O g.
Affineness guarantees that every element of H' is actually represented by a

torsor scheme (Theorem ) Let G=¢G XOp.s k.

Let 7 € H'(k,G) and v ¢ S. Let 7, be the image of 7 in H!(k,, G). Call
7 unramified at v if 7 is in the image of H'(O},,G) — H'(k, G), or equiv-
alently, if 7, is the image of HY(O,,G) — H!(k,, G) (the equivalence follows
from a fancy version of fpqc descent; see [BLR90), §6.2, Proposition D.4(b)]).
Call 7 unramified outside S if 7 is unramified at every v ¢ S. In this case,
7 comes from an element of Hl((’)k,g, G): first, the torsor corresponding to
7 spreads out over Oy g for some finite S’ D S; then apply fpgc descent
to Spec Op,.g/ 11 HUeS,\S Spec O, — Spec Oy, 5. Let HL(k,G) be the set of
7 € HY(k, @) that are unramified outside S.

Asin Section we have an exact sequence of smooth algebraic groups
over k
155G G—F—1,

where GO is the connected component of G, and F is finite étale over k.
Enlarging S if necessary, we get a corresponding exact sequence of smooth
finite-type separated group schemes over Oy, g

1-G" =G —-F—1

in which G° has connected fibers and F is finite étale of order n. The map
HY(k,G) — H(k, F) restricts to a map h: H(k,G) — HL(k, F).

Theorem 6.5.13. Under the hypotheses above,
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(a) the maps Hy(k,G) N Hg(k, F) — [l,es H' (ky, F) have finite fibers;
(b) if k is a number field, then Hi(k,G) itself is finite.

Proof.
Step 1: For each v & S, the kernel of H'(O,, F) — H!(ky, F) is trivial.

If T is an F-torsor over O, then T' is finite over O, by Remark so
T is proper over O, and hence T(O,) = T'(k,) by the valuative criterion for
properness. Thus T'(0,) # 0 if and only if T'(k,) # 0. That is, T is trivial if
and only if T}, is trivial.
Step 2: HY(0,,G%) = 0.

Let T — Spec O, be a GY-torsor. Its special fiber Ty (v) over the residue
field corresponds to an element of H! (k(v), gﬁ(v)), which is trivial by Lang’s

theorem (Theorem [5.12.19 m@ Thus Ty, has a k(v)-point. Since G is
smooth over O,, so is T (Remark - Hence we may apply Hensel’s
lemma (Theorem m@ ) to deduce that T has an O,-point. Thus 7" is a
trivial torsor.

Step 3: The kernel of h is finite.

For each v ¢ S, we have the following commutative diagram in which
the maps labelled Step 1 and Step 2 have trivial kernel:

H(k,G) Hl(k, F)

N l

Yk,, G) —— H(k,, F)

HY(0,,9) —>H (Oy, F).

Suppose T € ker h. By definition of H(k, G), for each v ¢ S, the element
7y comes from some 70, € H(O,,G). The diagram shows that 7o, maps
to 0 in H'(ky, F). Step 1 shows that 7o, maps to 0 already in H'(O,, F).
Step 2 shows that 7o, = 0. Thus 7, = 0.

Hence ker h is contained in

11 (k, G) := ker (Hl(k, G) — [] B (o, G)) :
vgS
which is finite by Theorem [5.12.29| since G is affine.

Step 4: Fvery fiber of h is finite.
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Given a nonempty fiber h~1(¢) with ¢ € Hi(k, F), choose 7 € h™1(¢) C
HY(k,G). Then 7 comes from an element of H'(Of ,G). Call this element
T also.

If G were commutative, then h=1(¢) would be in bijection with h~1(0)
via the subtraction-of-r map. In the general case, subtraction-of-r and

subtraction-of-¢ (see Section |5.12.5.3)) identify the top row of

HL(k, G) —~ HY(k, F)

~| |-s

HY(k, G7) > H(k, F¢)

with the bottom row, and h=1(¢) is identified with (h™)=1(0). By Step 3
applied to G7, the latter is finite. Thus h~!(¢) is finite.

Step 5: The map Hg(k, F) = [[,cg H' (ky, F) has finite fibers.

Fix &, € HY(k,, F) for each v € S. Consider 7 € Hi(k, F) mapping to
&, for all v. By Theorem , the torsorT"— Speck corresponding to
T is finite étale. By Proposition [3.5.35] T' as k-scheme is a disjoint union of
k-schemes of the form Spec L for some separable field extensions L O k of
degree bounded by n := #F. For v ¢ S, the class 7, comes from H*(O,, F),
so the base extension T}, comes from a finite étale O,-scheme, which by
Theorem is a disjoint union of O,-schemes Spec R, where each R
is the valuation ring of a finite unramified extension of k,. This implies
that each L D k above is unramified outside S. For finite v € S, the
v-adic valuation of the discriminant of each L/K may be nonzero, but it is
bounded given &,. A variant of Hermite’s theorem [Ser97, 4.1] says that
k has only finitely ‘many separable extensions of degree < n and bounded
discriminant. Let &’ be the compositum of them all, so ¥ D k is a finite
Galois extension. Then T'(k') is nonempty, so 7 maps to 0 in H'(¥', F).
Thus 7 comes from H!(Gal(k'/k), F(k')) in the inflation-restriction sequence
of Galois cohomology

0 — HY(Gal(k'/k), F(K')) — H'(k, F) — H'\(K', F).
Since Gal(k'/k) and F(K') are finite, the set H'(Gal(k'/k), F(k')) is finite,
so there are only finitely many possibilities for 7. This completes the proof
of ().
Step 6: If k is a number field, then Hk(k,G) is finite.
If k is a number field, then (an elementary case of) Theorem [5.12.24|(a))

shows that H!(k,, F) is finite for each of the finitely many v in S. Thus the
conclusion follows from (@]). 0
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6.6. Brauer groups

(References: |Gro68b,/Gro68c,/Gro68d| and [Mil80, IV])

6.6.1. Cohomology of G,,.

Proposition 6.6.1. Let X be a scheme. Then

(1) H%ar(X’ Gm) = Hgt(X7 Gm) = H?ppf(X> Gm) = ﬁX(X)X .
(ii) HY, (X, Gy) ~ HL(X,Gyp) =~ H%ppf(X, Gm) ~ Pic X (generalization

of Hilbert’s theorem 90).

Proof.

(i) This is true by definition.
(ii) For each Zariski open covering U = {U; — X}, we have

{line bundles trivialized by U}
isomorphism

= I:I%ar(u? Gm)’

because the transition maps needed to-describe a line bundle are in-
vertible functions on the pairwise intersections. Taking the direct limit
over open coverings, we get the first of the isomorphisms in

. 1
Pic X ~ Hy,(X,;Gyp) ~ HY, (X, Gp),

and the second isomorphism comes from Proposition [6.4.12
If we repeat the argument using the étale topology instead of the
Zariski topology, we 'get an isomorphism

Pic Xo ~ HL (X, G,,),

where Pic X is the group of isomorphism classes of “étale line bundles”,
that is; sheaves .Z on Xt such that there exists an étale open covering
{U; - X} such that .Z|y, ~ Oy, for all i.

We claim that for any étale surjective morphism X’ — X, the maps

line bundles on X fpqc descent trivial line bundles on X’
trivialized by X’ with descent datum

|

{line bundles on X } étale gluing {trivia] line bundles on Xclet }

trivialized by X[, with descent datum,

where each set denotes a set of isomorphism classes, are bijections. The
top horizontal map is a bijection by Theorem on fpqc descent of
quasi-coherent sheaves: one can show that descending a line bundle
yields a line bundle. The right vertical map is the functor of Defini-
tion [6.3.13F it gives a bijection, because the descent data are given by
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isomorphisms of trivial line bundles, and the automorphism groups of
the trivial line bundle Ox and Ox, are both equal to Ox(X)* for
every scheme X. The bottom horizontal map is a bijection because an
étale sheaf is uniquely determined by its restriction to an étale open
cover with gluing data.

Finally, taking the limit of the bijection between the sets on the left
over all X’ — X yields Pic X ~ Pic X, since every line bundle (on X
or Xe) is trivialized by some X’. Thus Pic X, Pic X, H%ar(X, Gm),
HL (X, G,,) are all isomorphic.

The same proof shows that Pic X ~ H%ppf(X ,Gm). O

Remark 6.6.2. Specializing part to the case X = Speck with the
étale topology gives H'(®y, k) = 0, which is (Noether’s generalization
of) Hilbert’s theorem 90.

Remark 6.6.3. More generally, for any smooth commutative group scheme

G over a scheme X, there is an isomorphism HY (X, G) = H?ppf(X, G)
|Gro68d, Théoréme 11.7]. The analogue for smooth noncommutative G

holds too, as far as it makes sense: I:Iit(X, G) ~ I:ﬂppf(X, G) |Gro68d, Re-
marque 11.8(3)].

6.6.2. The cohomological Brauer group. For a field k£, Theorems
and yield

Brk ~ H?*(&, k) ~ H2 (Speck, G,,).
The right-hand side makes sense when Speck is replaced by an arbitrary
scheme, so we are led to the following definition:

Definition 6.6.4. For any scheme X, define the (cohomological) Brauer
group as

BrX := H4(X,G,,).
If R is a commutative ring, define Br R := Br(Spec R).

@ Warning 6.6.5. Some authors use Br X instead to denote the Brauer group
defined using Azumaya algebras as in Definition and use Br' X to de-
note the cohomological Brauer group. Some instead use Br’ X to denote
the torsion subgroup of the cohomological Brauer group, because of Theo-

rem E.6T7).

Remark 6.6.6. For any scheme X, we have Br X ~ H%ppf(X, Gm), by Re-
mark [6.6.3
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If X — Y is a morphism of schemes, then there is an induced homomor-
phism BrY — Br X, and we obtain a functor

Schemes®?® — Ab
X — Br X.

Proposition 6.6.7 (Brauer group of a regular integral noetherian scheme).
Let X be a regular integral noetherian scheme. Then

(i) Br X — Brk(X) is injective.
(ii) Br X is a torsion abelian group.
Proof.

(i) This is a special case of [Gro68c| Corollaire 1.10].

(ii) Since Brk(X) is a Galois cohomology group, it is torsion. So (i) im-
plies (ii). O

@ Warning 6.6.8. Without regularity, Proposition can fail: Exercise
gives a counterexample to (i) from [AG60, p. 388]. Part can fail too; see

Warning 6.6.18.
For an extension of Proposition [6.6.7|(]), see Theorem [6.8.3]

Corollary 6.6.9. If X — Y is a birational morphism of reqular integral
noetherian schemes, then BrY — Br X s injective.

Proof. Functoriality of Br yields a commutative diagram

Br X —— Brk(X)
(Y)

BrY ——= Brk
and the horizontal homomorphisms are injective by Proposition . O

Y

See Corollary for a partial refinement of Corollary

Proposition 6.6.10 (Brauer group of a limit). Let (X;)icr be a filtered
inverse system of schemes. Suppose that the X; are quasi-compact and quasi-
separated, and that the morphisms in the system are affine. Let X = @XZ
Then Br X ~ ligBrXi.

Proof. Take Gy = G,, and ¢ = 2 in Theorem [6.4.3] O

Proposition [6.6.10] is useful for spreading out Brauer group elements:



6.6. Brauer groups 189

Corollary 6.6.11. Let X be a variety over a global field k. Let A € Br X.
Then for some finite set S of places of k, there exist a finite-type O g-scheme
X, an element A € Br X and a morphism X — X identifying X with the
generic fiber X3 such that Br X — Br X maps A to A.

Proof. Theorem lets us spread out X to a finite-type Oy g-scheme X'
The open subschemes Xp, ., as T' ranges over finite sets of places with 7' 2 5
form a filtered inverse system and lim Xp, . ~ X. By Proposition
Br X ~ lim Br Xp, .. Thus A comes from an element of Br Xp, .. for some
T'. Rename T as S, and rename Xp, . as X. O

6.6.3. Azumaya algebras. A matrix algebra over a field k. is End V' for
some finite-dimensional vector space over k. The generalization of this over
a scheme X is the Ox-algebra Endy, (&) := Homyg, (&, &) for some locally
free Ox-module &.

An Azumaya algebra over k is a k-algebra that becomes isomorphic to an

r X r matrix algebra for some r € Z~ after finite separable base extension.
The generalization of this is the following;:

Definition 6.6.12 (|Gro68b, Théoréme 5.1]). An Azumaya algebra on a
scheme X is an Ox-algebra A that is coherent as an &'x-module with A, # 0
for all x € X, and that satisfies one of the following equivalent conditions:

(i) There is an open covering {U; — X} in the étale topology such that
for each ¢ there exists r; '€ Zs( such that A ®g, Oy, ~ M, (Oy,).
(ii) There is an open covering {U; — X} in the fppf topology such that for
each i there exists r; € Z¢ such that A ®g, Oy, ~ M,,(Oy,).
(iii) A is locally free as an @x-module, and the fiber A(z) := A ®¢, k(z)
is an Azumaya algebra over the residue field k(x) for each x € X.

(iv) A is locally free as an Ox-module, and the canonical homomorphism
A®g, APP — Endg, (A) is an isomorphism.

6.6.3:1. The Azumaya Brauer group.

Definition 6.6.13. Two Azumaya algebras A and A’ on X are similar (and
we then write A ~ A’) if there exist locally free coherent &x-modules & and
&' of positive rank at each x € X such that

A® Endﬁx ((o@) >~ .A/ ® EndﬁX (5)/)
ﬁx ﬁX

Definition 6.6.14. Let X be a scheme. The Azumaya Brauer group
Bra, X is the the set of similarity classes of Azumaya algebras on X. The
multiplication is induced by A,B — A ®¢, B, the inverse is induced by
A +— A°PPand the identity is the class of Ox.
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Then Bra, is a functor from Schemes® to Ab, just as Br was.

6.6.3.2. Cyclic Azumaya algebras. The cyclic algebra constructions from Sec-
tion [1.5.7] generalize in a straightforward way to an arbitrary base scheme
X. Namely, suppose that a € I'(X, %) is a global unit and that ¥ — X
is a Z/nZ-torsor. As in Section we define a twisted polynomial alge-
bra Oy |z],, where o acts as the generator of Z/nZ, and ¢ = (°£) z for all
sections £ of Oy . Then the Ox-algebra Oy[z],/(z"™ — a) turns out to be an
Azumaya Ox-algebra, split by the étale cover Y — X.

There is a cohomological version of this construction. The exact sequence
1—p, —Gp G, —1

lets us map a to an element of H'(X, u,,). On the other hand, the torsor

Y — X has a class in H'(X,Z/nZ). The cup product yields an element of

H?(X, p,,), which can be mapped to an element of H*(X,G,,) =: Br X.
The two constructions above are related: the-homomorphism ((6.6.16)

defined in the next section maps the class of Oy[x|;/(z"™ —a) to the element
of Br X.

Remark 6.6.15. Suppose that X is a scheme over Z[1/n, (], so Z/nZ is
isomorphic to p,, over X. Then we may form a cyclic algebra from two units
a,b € T'(X, 0%), by reinterpreting the p,,-torsor Spec Ox|[z]/(2" —b) — X
as a Z/nZ-torsor and proceeding as before.

6.6.4. Comparison of the two definitions of the Brauer group. Just
as Azumaya algebras of dimension n? over a field k are classified up to
isomorphism by Hl(k‘, PGL,), Azumaya algebras of rank n? over a scheme
X are classified by H (X, PGL,,): a Cech 1-cocycle gives the transition data
needed to glue sheaves of matrix algebras using fpqc descent.

The exact sequence
0—G,, — GL, —PGL,, — 0
of sheaves on Xy (or Xgpr) gives rise to a map
H'(X,PCL,) — H*(X,G,,) = BrX

so each Azumaya algebra A of rank n? gives rise to an element of Br X. If
the rank of A is not constant, one can apply the same construction on each
open and closed subset of X where the rank is constant. It turns out that
this induces a map

(6.6.16) Bra, X — Br X,

functorial in X.

Theorem 6.6.17.
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(i) For any scheme X, the natural map
Bra, X — BrX := H4(X,G,,)
s an injective homomorphism.

(ii) An Azumaya algebra A on X that is locally free of rank n? defines an
element of Bra, X that is killed by n. In particular, if X has at most
finitely many connected components, Bra, X is torsion.

(iii) If X has an ample invertible sheaf (e.g., X is quasi-projective over
Spec A for some noetherian ring A), then the injection in nduces
an tsomorphism

Bra, X — (Br X)iors-
Proof.
(i) See |Gro68b)| equation (2.1)].
(ii) We have a commutative diagram of fppf group schemes

0 I, SLy, PSL,, —= 0

N R

0—G,, — GL,, — PGL,, —— 0.

The snake lemma, together with the surjectivity of G,, — G, shows
that PSL,, — PGL,, is an isomorphism. Taking cohomology gives a
commutative diagram

H' (X> PSLn) - H2(X7 u’n)

i

H'(X,PCL,) — H*(X,G,,).

Now A corresponds to an element of H!(X, PGL,,). The diagram shows
that its image in H?(X,G,,) comes from an element of H?(X, u,,) and
is hence killed by n. By , the class of A in Bra, X is killed by n too.

(iii) This is an unpublished theorem of Gabber. A different proof, using
a-twisted sheaves, was found by de Jong [dJ0O5|. O

@ Warning 6.6.18.

(i) Mumford constructed a normal singular surface X over C such that
Br X is not torsion |Gro68c, Remarque 1.11b]. But Bra, X is torsion.
This shows the necessity of taking the torsion subgroup on the right-

hand side of Theorem 6.6.17.

(ii) There is a nonseparated normal surface with Brp, X ;Cé (Br X)tors,

namely the cone Spec C[z,y, z]/(zy — 2?) with a doubled vertex. The
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original reference is [EHKV01, Corollary 3.11|; see [Ber05, §3| for a
simpler proof.

Corollary 6.6.19. If X s a reqular quasi-projective variety over a field,
then Bra, X ~ (Br X )iors = Br X.

Proof. The first isomorphism comes from Theorem 6.6.17. By Proposi-
tion the variety X is a finite disjoint union of integral varieties, and
applying Proposition to each shows that Br X is torsion. O

6.6.5. Computing Brauer groups. Two main methods for computing
Brauer groups are

e the Hochschild-Serre spectral sequence in étale cohomology (see Corol-

lary , and

e residue homomorphisms (see Theorem [6.8.3)).

6.7. Spectral sequences

(References: |Mil80, Appendix B|, [Sha72, I1.§4|, [Wei94, Chapter V])

Suppose that one has left exact functors between abelian categories
AL
Then the composite functor gf: A — C is also left exact. If A and B have
enough injectives, one can form the derived functors R" f, R"g, and R"(gf).

If moreover f takes injectives to g-acyclics (that is, Rig(f(A)) = 0 for any
injective object A € A and any g € Z~), then there is a spectral sequence

Ey® = (RPg)(RIf)(A) = (R'(gf))(A)
that sometimes lets one compute R™(gf) in terms of the other two derived
functors.

The notation
Egﬂq — [pta

used above means all of the following:
e For each r € Z>o U {00}, there is a page r consisting of objects EF? of

C for p,q € Z such that EF'? =0 when p < 0 or ¢ < 0. (The objects on
a given page are usually displayed in a table.)

e The objects E¥"? on page 2 are the ones given in the notation.

e For r € Z>9, one has morphisms “of degree (r,1 — )" this means that
there is a morphism

D,q . P4 p+r,g+l-—r
dart: EPT — EY
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for each p,q € Z. For example, page 2 has the form

EYS By B B3 By

e For each r € Z>9, the morphisms on page + form complexes:
) —rgtr—1 _
AP o dmmTT =0
for all p,q € Z.

e For each r € Z>9, the objects on page r + 1 are the cohomology objects
of the complexes on page r:
p.q
Effl = kefd,« 1
im db T

e For fixed p, g € Z, the page oo object E&! is equal to EX? for sufficiently
large r. (Note that for r sufficiently large, the d, morphisms coming into
and out of EP"? extend outside the nonnegative quadrant, so they are
automatically zero, and hence B = EXf, = EY, = ... )

e The “limit objects” L™ for n € N are objects of C.

e The object L™ has a filtration

L"=LiDOLYD>---DLyD>0
such that the quotients of successive terms equal (respectively) the ob-
jects
EO,n El,n—l En,(]
S EXTT L B

along a diagonal on page co. (Thus E%" is a subobject of Ly,.)

One says that E5? converges to (or abuts to) L1,

Proposition 6.7.1. Suppose that

P,q p+q
Ey" = L
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is a spectral sequence. Abbreviate EY'? as EP1. Then there is an ezact
sequence

0— EY — L' — B 4 B0 Yeer (L2 — E%?) — BV 5 B3O,

Remark 6.7.2. Spectral sequences also arise in some situations not having
to do with the composition of left exact functors. For instance, cohomology
of the total complex of a double complex is the limit of a spectral sequence
starting with page 1.

6.7.1. The Hochschild—Serre spectral sequence in group cohomol-
ogy.

Theorem 6.7.3. Let G be a profinite group, and let H be_a normal closed
subgroup of G. Then there is a spectral sequence

EPY:=HP(G/H,HY(H, A)) = HPTYG, A)

for each (continuous) G-module A.

Sketch of proof. The composition of the left exact functors
{G-modules} — {G/H-modules} — Ab

M — MH
N — NG/H
equals M ~ M (all group actions are assumed continuous). One checks
that the first functor takes injectives to acyclics. O

Applying Proposition to Theorem [6.7.3] one gets the following ex-

tension of the inflation-restriction sequence:

Corollary 6.7.4 (Inflation-restriction sequence). Let G be a profinite group,
and let H be a-normal closed subgroup of G. Then for any G-module A, there
is an exact sequence
0 = HY(G/H, ATy 25 HY(G, A) 23 HY(H, A)S/H

— H*(G/H, A™) — ker (H*(G, A) — H*(H, A)) — HY(G/H,H'(H, A))

— H3(G/H, AT),

6.7.2. The Hochschild—Serre spectral sequence in étale cohomol-
ogy. Recall from Example that a Galois covering of schemes X' — X
with Galois group G (assumed finite) is the same thing as a torsor under
the constant group scheme associated to G. Then X’ — X is finite and
surjective, so it is fpgc. Since X’ — X becomes étale after base extension
by X' — X, it was étale to begin with (Theorem [4.3.7()).
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Theorem 6.7.5. Let X' — X be a Galois covering of schemes with Galois
group G. Let F be a sheaf on Xet. Then there is a spectral sequence

HP (G HL (X', 7)) = HY(X, 7).
Sketch of proof. The right G-action on X’ makes .7 (X’) a left G-module.

The sheaf condition for the open covering {X’ — X} implies that the com-
position of the left exact functors

{sheaves on X¢t} — {G-modules} — Ab

F —  F(X)
N — N¢
equals .# — % (X). Moreover, the first functor takes injectives to acyclics.

O

Remark 6.7.6. A common application of Theorem [6.7.5]is to the case where
X is a k-variety and X’ = X, for some finite Galois extension L of k. By
taking a direct limit, one obtains an analogous spectral sequence for an
infinite Galois extension, such as kg over k.

Theorem [6.7.5] and Remark help us compute Brauer groups of va-
rieties over non-algebraically closed fields.

Definition 6.7.7. If X is a variety over a field k, let X® = X}, and define
the algebraic part of the Brauer group of X by

Br; X := ker (Br X — Br X®).

Corollary 6.7.8. Let X be a proper and geometrically integral variety over
a field k. Then there is an exact sequence

0 — Pic X — (Pic X®%)®* — Brk — Br; X — H (&}, Pic X®) — H3(k, G,).
Proof. We apply Theorem and Remark with .% = G,,, and plug

(Proposition [2.2.22),
(Proposition ,
H% (X®,G,,) = BrX® (by definition),
(Proposition [6.6.1)),
(by definition),
(Hilbert’s theorem 90),
H?(®y, ks™) = Brk (Theorem [1.5.12)
into the exact sequence of Proposition [6.7.1} U

Remark 6.7.9. For a nice k-variety X, the homomorphism

(Pic X*)® — Brk



196 6. Etale and fppf cohomology

given in Corollary [6.7.8]is the same as the homomorphism constructed in the
proof of Proposition [1.5.12}

Remark 6.7.10. The cohomological approach to class field theory gives as
a byproduct that if k is a local or global field, then H3(k, G,,) = 0. The local
case is obtained by taking a direct limit of [NSWO08|, 7.2.2]. The number
field case is [INSWO08, 8.3.11(iv)] applied to the set S of all places of k. The
function field case follows from the fact scd k < 2 [NSWO08, 8.3.17|.

6.8. Residue homomorphisms

(References: |GS06|, Chapter 6], [Gro68d, §2|)

6.8.1. Residue homomorphisms for discrete valuation rings. Given
an integral divisor D on a variety X, one has the associated discrete valuation
ring R inside the function field K := k(X). An element of K* need not
come from the subgroup R*; the obstruction is measured by the valuation
K> — Z; in other words, a rational function has no zero or pole along D if
and only if its valuation is 0. Analogously, an element of Br K need not come
from the subgroup Br R; the obstruction is measured by a certain residue
homomorphism:

Proposition 6.8.1. If R is a discrete valuation ring with fraction field K
and residue field k, then there is an exact sequence

0~ BrR— BrK -~ H'(k,Q/Z),

with the caveat that one must exclude the p-primary parts from all the groups
if k is imperfect of characteristic p.

Proof. This is a special case of [Gro68d, Proposition 2.1]. O

The residue homomorphism can be defined as follows. First, we may
replace R by its completion. Let K" be the maximal unramified extension
of K. If k is perfect, then Example[din Section [I.2.4)implies that K" is C1,
so Br K" = ( by Proposition If k is imperfect of characteristic p,
then |[Gro68d, Corollaire 1.3] implies that Br K" = 0 still holds after
the p-primary part is excluded; in the rest of this paragraph, we exclude
p-primary parts in this case. Proposition applied to the extension
K" of K implies that Br K ~ H(Gal(K" /K), (K"™)*), which maps to
H?(Gal(K"/K),Z) via the valuation. Also, Gal(K"™/K) ~ &;. Finally,
the long exact sequence associated to the exact sequence of groups

0-Z2Z—-Q—->Q/Z—0
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with trivial &-action yields an isomorphism H'(k,Q/Z) = H?(k,Z). The
composition

Br K = HY(Gal (K™ /K), (K™™)*)
— H2(Gal(Kunr/K)’ 7) ~ H2(k:,Z) ~ Hl(k:, Q/Z)

is the residue homomorphism.

?2 Warning 6.8.2. The caveat in Proposition cannot be dropped. (For
example, if k = ks # k and R = k[[t]], then BrR ~ Brk = 0 (Proposi-
tion below), and H!(k,Q/Z) = 0 (since & = {1}), but Brk((t)) # 0
(Exercise [1.26]).

6.8.2. Residue homomorphisms for regular integral schemes, and
purity. For any discrete valuation v on a field K. with residue field k,
applying Proposition to the valuation ring gives a homomorphism
BrK =¥ H'(k,Q/Z), modulo the caveat. On a regular integral noether-
ian scheme X, each integral divisor defines a discrete valuation v on k(X),
and the integral divisors are in bijection with the set X of codimension 1
points of X. Taking all the associated residue homomorphisms yields the
following global variant of Proposition [6.8.1] saying roughly that an element
of Brk(X) belongs to the subgroup Br X if and only if it has “no poles”
along any integral divisor of X.

Theorem 6.8.3. Let X be a regular integral noetherian scheme. Then the
sequence

0 —BrX — Brk(X) =% @ H'(k(z),Q/Z)
zeX®)
is exact, with the caveat that one must exclude the p-primary part of all the
groups if X (is of dimension < 1 and some k(z) is imperfect of characteris-
tic p, or if X is of dimension > 2 and some k(x) is of characteristic p.

Proof. This is a consequence of |[Gro68d, Proposition 2.1| and Grothen-
dieck’s absolute cohomological purity” conjecture, proved by Gabber; see
|[Fujo2]. O

@ Warning 6.8.4. The caveat in Theorem cannot be removed completely.
For example, suppose that ¥ = ks, # k and X := JP’,lg. Then BrX =0
(Theorem below) and H'(k(z),Q/Z) = 0 for every z € X1 but
Brk(X) # 0 (Exercise[1.26). On the other hand, it might be that excluding
the p-primary parts for p such that some k(z) is imperfect of characteristic p
is enough even when dim X > 2.
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Corollary 6.8.5. Let X be a regqular integral noetherian scheme. Let Z be
a closed subscheme of codimension > 2, and let U = X — Z. Then the
homomorphism Br X — BrU is an isomorphism, with the caveat that one
considers only the £-primary parts for primes £ invertible on X.

Proof. Theorem [6.8.3] describes Br X and BrU as the same subgroup of
Brk(X). O

Remark 6.8.6. The caveat in Corollary might be unnecessary.

Corollary 6.8.7. Let X and X' be nice varieties over a field k. If X and
X' are birational, then Br X and Br X' are isomorphic, with the caveat that
one considers only the prime-to-p parts if chark = p > 0.

Proof. We give the proof when char k = 0; the same proof applies to the
prime-to-p parts if char k = p > 0. The domain of definition U of the bira-
tional map X --+ X' is the complement of a closed subscheme of codimension
> 2 in X. Corollary [6.8.5] implies that Br X — BrU is an isomorphism. The
composition
BrX' — BrU < BrX

is compatible with the embeddings of all three groups in Brk(X) = Brk(X’).
Thus Br X’ C Br X. Similarly Br X € Br X'. O

Remark 6.8.8. If in Corollary we assume moreover that dim X =
dim X’ < 2, then Br X ~ Br X’; i.e., the caveat becomes unnecessary. See
|Gro68d, Corollaire 7.5].

6.9. Examples of Brauer groups

6.9.1. Local rings and fields.

Proposition 6.9.1. Let R be a complete local ring with residue field k. Then
the quotient homomorphism R — k induces an isomorphism Br R — Brk.

Proof. The (equivalent) analogue for Bry, was first proved in [Azu51), The-
orem 31]. See [Mil80, III.3.11(a)| for a proof for Br. O

Remark 6.9.2. Proposition holds more generally for henselian local
rings [Mil80, IV.2.13]. (See Section[B.3|for the definition of henselian.) Even
more generally, if R is henselian local ring with residue field k£, and G is a
smooth commutative group scheme over R, then HY(R,G) = Hi(k,G) for
all ¢ > 1; see |Gro68d, equation (2.6)] for the case where R is a henselian
discrete valuation ring, and [Mil80, III.3.11(b)| for the general case. For
q = 1, we can formulate the same statement for noncommutative G, and it
is true [SGA 3yp1, XXIV, Proposition 8.1].
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Corollary 6.9.3. Let R be the valuation ring of a nonarchimedean local field
K. Then BrR = 0.

Proof. The residue field £ is finite, so Brk = 0 by Theorem [1.5.32] Now
use Proposition [6.9.1 O

For R and K as in Corollary [6.9.3] we have
H' (k, Q/Z) = Homeons(Z, Q/Z) = Q/Z,

so the exact sequence of Proposition [6.8.1] becomes

res

0—0—BrK — Q/Z.

In fact, res is (up to sign) the homomorphism inv: Br K = @Q/Z in Theo-
rem [[L5.341

6.9.2. Rings of S-integers and arithmetic schemes.

Example 6.9.4. Let k£ be a global field. Let S be a nonempty set of places
of k containing all the archimedean places. Let Oy s be as in Definition[T.T.1}
For v ¢ S, let I, be the residue field. Theorem yields an exact sequence

0 — BrOy s — Brk -~ (HH'(F,, Q/Z).
vgS
By the previous discussion, the homomorphism Brk — HY(F,,Q/Z) is the

same as the homomorphism inv,: Brk — Q/Z. Comparing with the de-
scription of Br k in Theorem 1.5.36 yields an exact sequence

(6.9.5) 0 BrOps — P Brk, =5 Q/z.
vES

Question 6.9.6 (M. Artin). If X is proper over Z, must Br X be finite?
[M3I80, IV.2.19]

A positive answer to Question in the special case of nice sur-
faces over finite fields would already have significant implications; see Theo-

rem [7.6.8]

6.9.3. Curves.

Theorem 6.9.7. If X is a proper curve over a separably closed field k, then
Br X =0.

Proof. If k is algebraically closed and X is nice, then this follows from
Proposition and Tsen’s theorem. For the general case, see |Gro68d,
Corollaire 5.8|; the proof uses fppf cohomology. ([
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6.9.4. Rational varieties. The following lemma will allow us to compute
the Brauer groups of P} and other rational varieties.

Lemma 6.9.8. Let m: X — B be a morphism of regular integral noetherian
schemes. Suppose that w has a section s: B — X, and that the generic fiber
of T is isomorphic to IP’II{(B) as a k(B)-scheme. Then m*: BrB — Br X is
an isomorphism.

Proof. By functoriality, we have a diagram

BrPy p <—BrX

)

Brk(B)<——BrB

containing two commutative squares. By Proposition , we may view
Br B as a subgroup of Brk(B). By Corollary BrX — Br Pllc(B) is injec-
tive. The left vertical homomorphism is an isomorphism by Theorem [6.9.7]
Hence all four groups in the diagram may be viewed as subgroups of Br IP’II(( B)"
Then 7* shows that Br B C Br X, and s* shows that Br X C Br B. Thus
BrB =BrX. [l

Proposition 6.9.9. Let k be a field. Let n € Z>o. Then Brk = Br Pr.

Proof. We use induction on n. The case n = 0 is trivial, so suppose that
n>1 Let P=(1:0:---:0) € P"k), and let X be the blowup of P at P.
Projection from P is a rational map P" --» P! sending (zo: @1 : -+ : )
to (z1 : -+ : @), and it has a rational section sending (z1 : --- : x,) to
(1:21:--:2y,). Resolving the indeterminacy yields a morphism X — P71
with a section. Lemma m shows that Br X ~ BrP"~! and the inductive
hypothesis yields BrP"~! ~ Brk, so Br X ~ Brk.

By functoriality we have Brk — BrP” — Br X, with the injectivity
coming from Corollary [6.6.9 The previous paragraph showed that the com-
position is an isomorphism, so Brk — BrP" is an isomorphism too. O

Proposition 6.9.10. Let X be a nice variety over a field k. If X is birational
to Py for some n > 0, then Brk S BrX.

Proof. If char k = 0, this follows from Proposition [6.9.9and Corollary [6.8.7]
For the general case, see [Sal85, Proposition 1.7 and the paragraph after
Lemma 1.2]. O

Corollary 6.9.11. Let X be a nice variety over a field k. If Xy, is birational
to Pp. for some n > 0, then Br Xi, =0 and Bri X = Br X
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6.9.5. Quadrics. A quadric over a field £ is a degree 2 hypersurface in P}
for some n > 2.

Proposition 6.9.12. If X is a smooth quadric over a field k, then the
homomorphism Brk — Br X is surjective.

Proof. By Proposition [3.5.67] the variety X is geometrically integral. By
Corollary [6.7.8] it suffices to prove that Br X® = 0 and H*(&,, Pic X®) = 0.
Corollary [6.9.11] yields Br X* = 0.

By |Har77, Exercise 11.6.5(c) and Corollary 11.6.16],

Pic X 7 x 7 if dim X = 2,
ic ~
Z if dim X =1 or dim X > 3.

with Oxs(1) corresponding to 2 if dim X = 1, to (1,1) if dim X = 2, and
to1lif dimX > 3. If dimX = 1 or dim X > 3, then the Galois action on
Pic X® ~ Z is trivial (ampleness must be preserved), so H! (&, Pic X®) = 0.
Now suppose that dim X = 2. If the &g-action on PicX® ~ Z x Z is
trivial, then H!(®, Pic X®) = 0 again. If not, then Pic X® ~ Z[& /&[] for
some quadratic extension L of k, so by Shapiro’s lemma, Hl(Qik, Pic X%) =
HY(&.,7Z) = 0. O

6.9.6. Quadric bundles.

Lemma 6.9.13. Let k be a field of characteristic 0. Let m: X — B be a flat
morphism of regular integral k=varieties. Let n be the generic point of B. For
z € XN mapped by 7 to some b € BY | the inclusion k(b) — k(z) induces a
homomorphism i, : H!(k(b),Q/Z) — H(k(x),Q/Z); also let ex/b € L>1 be
the ramification index, and let exp = e, iy If T € XD and b e BY satisfy
m(x) # b, then let €, = 0. Together, these €, define a homomorphism € in
the diagram

0 BrB Brk(B) —~ P H'(k(b),Q/Z)
beBM)
(6.9.14) ‘
0 BrX BrX, —“> P H'(k(z),Q/Z).
zex@
m(x)#n

This diagram commutes and has exact rows.

Proof. The first row is exact by Theorem [6.8.3] By Theorem [6.8.3] Br X, is
cut out in Brk(X) by the residue homomorphisms for z € X (1) lying above
7, while Br X is cut out in Brk(X) by the residue homomorphisms for all
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z € XW: thus the second row of (6.9.14)) is exact. The first square commutes
since Br is a functor. The second square commutes by Exercise [6.12] O

Proposition 6.9.15. Let k be a field of characteristic 0. Let w: X — B be
a flat morphism of reqular integral k-varieties. Suppose that every fiber of
has an irreducible component of multiplicity 1 that is geometrically integral.
Suppose also that the generic fiber Xy(py is a smooth quadric over k(B).
Then the homomorphism Br B — Br X is surjective.

Proof. Proposition [6.9.12] shows that the middle vertical homomorphism
of (6.9.14]) is surjective. Surjectivity of the left vertical homomorphism will
follow from the four-lemma if the homomorphism € in (6.9.14)) is injective.

Suppose that b € BY). By hypothesis, the fiber X, has an irreducible
component Z of multiplicity 1 that is a geometrically integral k(b)-variety.
Let z be the generic point of Z. By flatness, z € X1, By Proposi-
tion 2.2.19|[)=(iv]), the extension k(z) D k(b) is primary, so the largest
separable algebraic extension of k(b) in k(z) is k(b). Equivalently, by Galois
theory, if we choose compatible separable closures k(b)s C k(z)s, then the
restriction homomorphism of absolute Galois groups Gy(,) — Gy is sur-
jective. Applying Homeonts(—, Q/Z) shows that i, is injective. Also, e, is
the multiplicity of Z, which is 1. Thus €, = e, p?; = i, Which is injective.
Since for every b € B there exists an « as above, € is injective. U

Exercises

6.1. (Kummer sequence) Let X be a scheme, and let n € Z>;. Consider
the sequence of sheaves

1—p, —Gp-5G, —1

on either Xe; or Xgppe, where p,(U) — Gy, (U) is the inclusion, and

Gm(U) = G, (U) is the nth-power homomorphism.

(a) Prove that the sequence is exact when considered as a sequence
of sheaves on Xppp¢.

(b) Give an example to show that it need not be exact when considered
as a sequence of sheaves on Xt.

(c) Prove that if 1/n € Ox (that is, the image of n under Z — Ox (X)
is invertible), then the sequence is exact on X.

6.2. Is it true that the groups H. (X, G,,) and HZ, (X, G,;,) are isomorphic

Zar

for all schemes X and all ¢ > 07

6.3. Show that the general definition of “G-torsor over S” is equivalent, in
the case where S = Speck and G is a smooth algebraic group over k,
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6.4.

6.5.

6.6.

6.7.

6.8.

6.9.
6.10.

6.11.

6.12.

to the definition of “G-torsor over k” given earlier. (Hint: Use the fact
that smoothness is preserved by base extension and fpqc descent.)

Let k be an imperfect field of characteristic p. Fix a € k — kP, and let
X = Speck(a'/?).

(a) Prove that X can be made an oy,-torsor over k.

(b) Prove that X can also be made a p,,-torsor over k.

Let k be a global field. Let S be a finite nonempty set of places
of k containing all the archimedean places. Let Oy g be the ring of
S-integers. Use familiar theorems of algebraic number theory to prove
that H%ppf(Spec Ok.s, ity,) is finite for each n > 1.

Let H be as in Example Let A = Rlz,y]/(z* 4+ y?), and let
K = Frac A. Prove that the class h of the Azumaya A-algebra H®p A
is a nonzero element of ker(Br A — Br K).

Let k£ be an algebraically closed field. Let X ‘be a nice k-curve of
genus g. Let n be a positive integer not. divisible by char k. Using
that Br X = 0, calculate HL (X, p,,) for ¢ =10,1,2. (You may assume
the following fact: if A is an abelian variety of dimension g over an
algebraically closed field k£ and chark fn, then the multiplication-by-n
homomorphism A(k) - A(k) is surjective and has kernel isomorphic
to (Z/nZ)%.)

Let O be the ring of integers of a number field k. Using , show
that Br O is a finite abelian group, and compute its structure.

Let k be a finite field. Let X be a nice k-curve. Show that Br X = 0.

Let X be a proper and geometrically integral variety over a field k.

Assume that X (k) # (.

(a) Prove that the homomorphism Brk — Br X is injective.

(b) Prove that the homomorphism Pic X — (Pic X®)®* is an isomor-
phism.

(¢) Show that the same two conclusions hold if k is a global field and
the hypothesis “X (k) # 07 is weakened to “X(k,) # 0 for all
places v of k”.

(Brauer group of a conic) Let k be a field. Let X be a nice genus 0
curve over k. Let ¢ € Brk be the class of X viewed as a 1-dimensional
Severi-Brauer variety. Prove that the homomorphism Brk — Br X
is surjective with kernel generated by c. (Hint: Use the theorem of
Lichtenbaum mentioned in the proof of Proposition )

(Functoriality of residue homomorphisms) Let K C K’ be an inclusion
of fields. Suppose that v: K — Z U {oo} and v': K/ — Z U {0} are
discrete valuations such that v'|x = ev for some e € Z>; (called the
ramification index). Let R be the valuation ring in K, and let k be
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the residue field. Let R’ be the valuation ring in K’, and let &’ be
the residue field. The inclusion & < k' induces a homomorphism
i: HY(k,Q/Z) — H'(K’',Q/Z). Then the diagram

0——=BrR——BrK —=H'(k,Q/2Z)
(6916) l l lei
0 —BrR —=BrK' "=~ H'\(},Q/Z)

commutes. (This result may be viewed as a generalization of Theo-

o T30



Chapter 7
The Well conjectures

(References: [Har77, Appendix C|, [FK88|)

The Weil conjectures give information about the number of points on
varieties over finite fields. All of them have been proved.

7.1. Statements
Fix an algebraic closure Q of Q. Let Z be the integral closure of Z in Q.
Theorem 7.1.1 (Weil conjectures).

(i) Let X be a sEheme of finite type over Fy. Then there exist aq, ..., .,
Bi,...,Bs € Z such that

for all n> 1.
(i) If X 15 a smooth proper variety of dimension d over Fy, then the plus

and minus terms can be grouped as follows in alternating batches ac-
cording to the absolute value of the terms:

bag

bo by bo
— n n n n
#X(Fgn) = Z%j - Zau +Za2j = Za2d,jv
Jj=1 Jj=1 j=1 Jj=1

where
e theb; € N are the ¢-adic Betti numbers, and they satisfy bog_; = b;
fori=0,...,2d (the terminology will be explained in Section;
e the ayj € Z are such that the agq—; . in the (2d — i)-th batch equal
the values qd/aiv* in some order;

205
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o |aij| = ¢"/? for all i and j, for any archimedean absolute value | |

on the number field Q(cvj;) (this is called the Riemann hypothesis
for X because of an analogy to be explained in Remark|7.4.4).
If moreover X is geometrically irreducible, then

bO =1 bgd =1
apr =1 Qog1 = q“.

(iii) Let X be a smooth proper scheme over a finitely generated subring
R of C. Let m be a maximal ideal of R, so R/m is a finite field
by Remark and the reduction Xpy is a smooth proper scheme
over R/m. Then for i = 0,...,2d, the b; in Jor Xg/m equals
rk H(X(C),Z), the Z-rank of the singular cohomology group.

A typical choice of R in is the ring of S-integers of a number field
embedded in C. Part is especially intriguing,-in that it hints at a con-
nection between singular cohomology and varieties over finite fields. This
will be explained in Section [7.5]

7.2. The case of curves

If X is a nice genus g curve over C, then
H°(X(C),Z) ~ Z,
H'(X(C),Z) ~ 7%,
H?(X(C),Z) ~ Z.

Analogously, if X is a nice genus g curve over F,, then it turns out that
the f-adic Betti numbers of X are

bop =1,
b1 = 29,
by = 1.

The Weil conjectures in this case say that there exist Ai,..., Aoy € 7 with
IAj| = ¢"/? and \jy; = g/ for i = 1,..., g, such that for all n > 1,

#X(Fgn) =1 = (A 4+ Agg) +¢"

Corollary 7.2.1 (Hasse-Weil bound). Let X be a nice genus g curve over
F,. Then

#X(Fy) =q+1—¢
where the “error” € is an integer satisfying |e| < 2g./q.
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7.3. Zeta functions

(References: |Ser65,/Tat65, Tat94])

7.3.1. The prototype: the Riemann zeta function.

(Reference: |Ahl78|, Chapter 5, §4|)

Definition 7.3.1. The Riemann zeta function is the meromorphic contin-
uation of the holomorphic function defined for s € C with Res > 1 by

¢(s) == Z n-°.

n>1

For future comparison to zeta functions of schemes, we recall some basic
properties of ((s).

Proposition 7.3.2.

(1) The function ((s) is holomorphic on C except for a simple pole at s = 1.

(ii) There is a functional equation relating ((s) to ((1—s). More precisely,
if T' denotes the gamma function |[Ahl78| Chapter 5, §2.4|, then the
function €(s) = w°/2T\(s/2)((s) is entire and satisfies £(s) = £(1—s).

(iii) The function ((s) vanishes at every negative even integer. The negative
even integers are called the trivial zeros.

(iv) All other zeros of ((s) lie in the interior of the critical strip defined by
0 < Re(s) < 1. The (unproven) Riemann hypothesis is the statement
that these nontrivial zeros lie on the critical line defined by Re(s) = 1/2.

Proof.

(i) See |AhI78, Chapter 5, §4.2].

(ii) See [Ahl78, Chapter 5, §4.3].

(i) See |Ahl78| Chapter 5, end of §4.2].

See |Ahl78| Chapter 5, §4.4]. O

~—_ — ~— ~—

(iv

For s € C with Res > 1, the unique factorization of positive integers
and the formula for an infinite geometric series allow us to rewrite ((s) as
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an Euler product:

¢(s) == Z n°

n>1

— H (1 —p*S)*1

primes p

= I1 (1— #(2z/m)™)""

maximal ideals m C Z

= 11 (1— (#k(P)~*) ",

closed points P € SpecZ

Remark 7.3.3. The factor 7~*/2I'(s/2) appearing in Proposition
should be viewed as the analogue for the infinite place of Q of the Euler
factor (1 —p~%)~! for a finite prime p.

7.3.2. Schemes of finite type over Z.

Definition 7.3.4. If X is a scheme of finite type over Z, one defines the
zeta function of X as

x(s):= JI (=@kE)™)",

closed- P € X

Remark 7.3.5. It is easy to show that (x(s) converges in the half-plane
{s € C: Re(s) > r} for some r € R depending on X (see Exercise[7.2), but
it is less easy to find the smallest such r.

The Riemann zeta function ((s) is then (gpecz(s). More generally, if k
is a number field and O, is its ring of integers, then (spec o, (s) is called the
Dedekind zeta function of k.

7.3.3. Schemes of finite type over a finite field. For schemes over a
finite type over a finite field, there is a closely related definition.

Definition 7.3.6. Let X be a scheme of finite type over F,. Define

Zx(T) := exp Z#X(Fqn)% e Q[T

Equivalently, Zx (T') is characterized by the equations

d
(7.3.7) Zx(0)=1,  T—rlogZx(T) = n; X (F )T

Because of the following proposition, Zx(T') too is called the zeta func-
tion of X.
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Proposition 7.3.8. If X is a scheme of finite type over Fy, then X is also
of finite type over Z, and we have (x(s) = Zx(q~*).

Proof. See Exercise [T.3] O

7.4. The Weil conjectures in terms of zeta functions

We can reformulate the Weil conjectures in terms of Zx (7'), and in fact this
is how they were originally expressed [Weid9, p. 507]:

Theorem 7.4.1 (Restatement of Weil conjectures).

(i) Let X be a scheme of finite type over Fy. Then the power series Zx (T')
is (the Taylor series of) a rational function in Q(T). The rational
function will be of the form

(1=pT)--- (1= BT)
1-—aT) - (1 —-a,T)

for some a1, ...,q., B1,...,Bs € Z.
(i) If X is a smooth proper variety of dimension d over Fy, then
(T = Py(T)YP5(T) -+ Pog—1(T) 7
Po(T)Py(T)Py(T) - - - Pog(T)
where P; € 1+ TZ[T) factors over C as H?;l(l — a;T), with |oy;| =
q"/? for any archimedean absolute value | | on the number field Q(aj)
(“Riemann hypothesis”). Also, we have the functional equation

1

(7.4.2) Zx <da> = +¢™2TXZ5(T),

where x = by — by +by — - - -+ bog € Z is the Euler characteristic of X .
(Equation can be equivalently expressed as a functional equa-
tion relating (x (s) to (x(d — s), in analogy with Proposition [7.53.3i).
The sign is specified in Exercise ) If in addition X is geometrically
irreducible, then Po(T) =1 —T and Pag(T) =1 — ¢°T.

(iii) Same as in Theorem|7.1.1|.

Remark 7.4.3. The Euler characteristic y can also be defined geometrically,
without reference to Betti numbers: it equals the self-intersection number
A.A where A C X x X is the diagonal (the graph of the identity morphism
X = X).

Remark 7.4.4 (Riemann hypothesis for a curve over a finite field). If X
is a smooth proper curve, then the zeros of Zx(T) satisfy |T| = ¢~ '/2,
so Proposition implies that the zeros of (x(s) satisfy Re(s) = 1/2, in
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analogy with Proposition[7.3.2|{iv)).) This explains the use of the terminology
“Riemann hypothesis” for varieties over finite fields.

7.5. Cohomological explanation

(Reference: |Del74, §1 and §2])

7.5.1. History.
(References: |Die75|, [Roq02,|Roq04, Roq06|)

Before Weil’s work, the Weil conjectures were known for curves over finite
fields, by work of E. Artin, Hasse, and Schmidt, except that the Riemann
hypothesis was known only for curves of genus < 1. Weil was led to his
conjectures by this work, and by his own proof of the Riemann hypothesis
for curves of arbitrary genus [Weid8a| and for certain varieties of higher
dimension such as diagonal hypersurfaces |[Wei49|.

Weil’s proof for curves proceeded by adapting the theory of correspon-
dences to varieties in characteristic p. ‘As Hasse observed in 1936, the prob-
lem of determining #X (F4n) can be converted into a purely geometric prob-
lem; namely, if F' is the relative ¢g-power Frobenius morphism on qu, then
#X (Fgn) equals the number of fixed points of F™. Weil reinterpreted this
number as the intersection number of two curves in X x X, namely, the
graphs of the identity and F™.

On the other hand, Lefschetz and Hopf had given a topological “trace
formula” for the number of fixed points of a map from a compact manifold
to itself, in terms of the action of the map on the associated singular co-
homology spaces; this showed that the number of fixed points of powers of
an endomorphism of a complez projective variety (assuming nondegeneracy)
would be given by a formula such as that in Theorem . Weil’s hope
was that-the theory of correspondences would serve in characteristic p as
a substitute for the singular cohomology theory, given that correspondences
had served him so well in the case of curves. Such a “motivic” approach (to
use anachronistic terminology), however, has never been completed.

Instead, others, starting with Serre and Grothendieck in the 1950s, sought
to develop an algebraic analogue of singular cohomology rich enough to ac-
commodate a trace formula that would explain the Weil conjectures. It
was this thinking that motivated the development of étale cohomology by
Grothendieck, M. Artin, Verdier, and Deligne. Etale cohomology eventually
proved the conjectures in full, even though the first of the conjectures, the
rationality, was originally proved by a different method without cohomology,
by Dwork [Dwo60)|.
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7.5.2. The Lefschetz trace formula in topology. Let X be a compact
differentiable real manifold of dimension d. Let f: X — X be a differentiable
map. A fixed point of f is a point x € X such that f(z) = z. At such a
point, the derivative df, is an endomorphism of the tangent space T,,.X. Call
a fixed point x € X nondegenerate if 1 — df, is invertible, where 1 is the
identity endomorphism; this condition should be thought of as saying that
the fixed point is of “multiplicity 1.

For i > 0, the singular cohomology group H* (X, Z) is a finitely generated
abelian group, and tensoring with Q yields a finite-dimensional Q-vector
space isomorphic to H (X, Q). Its dimension b; is called the ith Betti number
of X. Then f induces a Q-linear endomorphism f* of each H (X, Q), and its
trace is an integer because the endomorphism comes from-an endomorphism

of H(X,Z).

Theorem 7.5.1 (Lefschetz trace formula). With notation as above, if all
fixed points of f are nondegenerate, then

#{fixed points of f} = Z(—w‘tr (*H (X, Q).

i>0

The alternating sum of traces is actually a finite sum since HY(X,Q) = 0
for ¢ > d = dim X.

Definition 7.5.2. From now on, in this and similar situations, we use the
abbreviations

tr(f[HAX, Q) ==Y (-1 tr (f*[H(X,Q)),

i>0
det(1 =T (X, Q) := [T det (1 = T (x, @),
1>0

where T is an indeterminate.

The following is a simplified version of Poincaré duality, stated in a form
suitable for adaptation to the étale setting.

Theorem 7.5.3 (Poincaré duality). If X is an oriented connected compact
real differentiable manifold of dimension d, then Hd(X,Q) ~ Q, and there
are cup-product pairings

H'(X,Q) x H(X,Q) — HYX,Q) ~Q

that are perfect pairings for each i. In particular, b; = by_; for each 1.

If X is a connected compact complex manifold of complex dimension d,
then X is automatically oriented, and its dimension as a real manifold is 2d.
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7.5.3. Some (-adic cohomology. If n € Z, we write 1/n € Ox to mean
that the image of n in I'(X, Ox) is a unit, or equivalently, that each point
of X has residue field of characteristic not dividing n.

Definition 7.5.4. Let X be a scheme. Fix a prime ¢ with 1/¢ € Ox. For
1 € N, define ‘ ‘
H'(X,Zy) == @Hét(X, ZJ0"Z).

(To simplify notation, we omit the subscript ¢.) When equipped with the
profinite topology, this is a continuous Zg-module. Also define a Qg-vector
space
H'(X,Qy) := H(X, Zy) 2@ Q.
14

These definitions will be applied especially when X is a variety over
a separably closed field, since it is this case that most closely models the
singular cohomology of a complex variety. If X is a variety over a smaller
field, typically one forms the base extension Xy for some separably closed
field K D k before taking its cohomology. One can show that the resulting
cohomology is unchanged upon passing from one separably closed field to a
larger one, so it does not matter much which K is chosen.

Example 7.5.5. Let A be a g-dimensional abelian variety over a field k.
Let £ be a prime not equal to chark. The Tate module of A is defined by

Ty A = Homg(Qe/Ze, A(ky)) = lim A(ks) (€],

where each homomorphism A(kg)[(""!] — A(ks)[£"] in the inverse system
is multiplication-by-£.” It turns out that TyA is a free Zy,-module of rank
2g equipped with-a continuous action of &;. It acts as if it were an “étale
homology group H§*(Ag,, Z¢)” in the sense that its Z,-dual Homg, (T, A, Zy)
is canonically isomorphic to Hl(Aks, Zy), as it turns out. See Exercise for
another way in which T;A acts like homology. One also defines a Q-vector
space ViA 1= (T, A) ®z, Q.

Remark 7.5.6. More generally, it turns out that for any smooth proper
variety X over a separably closed field k, for any prime ¢ # char k, and any
i > 0, the Zs-module H*(X,Z,) is finitely generated. Its rank, which by
definition equals dimg, H!(X,Qy), is called the ith /-adic Betti number b;
of X. This is in analogy with Section [7.5.2]

If k& is not separably closed, one generally base-extends X to ks or k

before defining its Betti numbers.

Remark 7.5.7. There is another approach to defining étale cohomology
with Zy or Qg coefficients, via the pro-étale topology; see [BS15|.
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7.5.4. Tate twists. There is a “twisted” variant of ¢-adic cohomology:

Definition 7.5.8. Let X be a scheme, and let n € Z~( be such that 1/n €
Ox. For m € Z, the Tate twist (Z/nZ)(m) is a sheaf on X defined as
follows:
Z/nZ if m =0,
(Z/nZ)(m) := < (w,)®™ if m >0,
Hom((p,) 2™, Z/nZ) if m < 0.
Again fix a prime ¢ with 1/¢ € Ox. Also fix m € Z. For each n > 0, there
is a natural surjection (Z/"T1Z)(m) — (Z/¢"Z)(m). (For example, when
m = 1, it is the ¢th-power homomorphism pynt1 — pm.) For ¢ € N and
m € Z, define

HY(X, Z(m)) = lim Hi (X, (Z/£°Z) ()

H{(X,Qq(m)) := HY(X, Z¢(m)) % Q.

When X = Speck, one can also view (Z/nZ)(m), Ze¢(m), and Qy(m) as
continuous Gx-modules. In particular, Qg(m) is a 1-dimensional continuous
character of &, and Q/(1) is called the cyclotomic character.

Suppose that k is separably closed. Then k contains all ¢-power roots
of unity. If we choose generators (yn of the abelian group py for all n > 1
compatibly (i.e., such that Cfnﬂ = (yn), then we obtain compatible isomor-
phisms Z/0"7Z — pym and Zy — Zy(1) and Qy — Qg(1). Thus the Tate twists
do nothing.

Now let k£ be an arbitrary field. The previous paragraph shows that
HY (X}, Q¢(m)) and H'(X},, Q) are isomorphic as abelian groups. But they
may differ when the action of &y, is taken into account. The precise relation-
ship is as follows:

Proposition 7.5.9. There is an isomorphism of Qg-representations of &y,
H (X, Qe(m)) =~ H' (X}, Qr) @g, Qe(m).

Proof. On Xj_, we may identify (Z/¢"Z)(m) with Z/¢{"Z by choosing a
generator ¢ of the &g-module (Z/¢"Z)(m). Hence we obtain an isomorphism
of abelian groups

H' (X, Z/0"Z) ®z,/¢n7, (Z/0"Z)(m) — H (X, (Z/0"Z)(m)).

This isomorphism is independent of the choice of (, so it is &y-equivariant.
Take inverse limits and tensor with Q. ([l



214 7. The Weil conjectures

7.5.5. The Lefschetz trace formula in étale cohomology. If X is a
scheme of finite type over a separably closed field, and d := dim X, then it
turns out that H*(X, Q) = 0 for all i outside the range 0 < i < 2d (this is a
consequence of [SGA 4yyy, X, Corollaire 4.3]).

Theorem 7.5.10 (Grothendieck-Lefschetz trace formula). Let X be a
smooth proper wvariety over an algebraically closed field k. Fix a prime
{ # chark. Let f: X — X be a k-morphism such that each fized point
in X (k) is nondegenerate (in the same sense as in Sectz’on but using
the Zariski tangent space). Then

#{fixed points of f in X (k)} = tr (f|H"(X,Qy))
in Qp, where the right-hand side is defined as in Definition [7.5.2.

Proof. See |[SGA 43| Cycle, Corollaire 3.7]. O

Remark 7.5.11. More generally, without the nondegeneracy hypothesis,
the formula remains true if we replace the left-hand side by the intersection
number I""A computed in X x X, where T is the graph of f and A is the
diagonal [SGA 4%, Cycle, Corollaire 3.7].

Theorem 7.5.12 (Poincaré duality in ¢-adic cohomology). Let X be a
smooth proper integral variety of dimension d over a separably closed field k.
Fiz a prime ¢ # char k.

(a) There is a natural isomorphism H24(X, Qu(d)) ~ Q.
(b) Cup product defines a perfect pairing

H"(X, Qo)) x H*7"(X,Qq(d — i) — H*(X,Qu(d)) ~ Q¢
for each r,1 € Z.

Proof. This is a consequence of [Mil80, VI.11.2]. O

Remark 7.5.13. As at the end of Section [7.5.4] the Tate twists do not
change the Q-vector spaces; they only change the Galois action in the setting
that X comes from a variety defined over a subfield ky < k. For fixed 7,
Proposition shows that if Theorem holds for some 4, then it
holds for all 4.

7.5.6. Arithmetic and geometric Frobenius. Fix a power ¢ of a prime
p. Define the arithmetic Frobenius o to be the field automorphism of F,
given by o(a) = a?. Write o also for the induced morphism Spech —
SpecT,.
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Let X be a smooth proper variety over F,. Let X=X XF, ﬁq- The field
automorphism ¢ gives rise to an automorphism

Let F%: X — X be the absolute g-power Frobenius morphism. Finally,
let F'= Fx JF, X — X be the relative g-power Frobenius morphism (Re-

mark [3.7.6]).
The diagram (3.7.1]) for X — SpecF, (with ¢ in place of p) is

(7.5.14)

|

SpecF, —2 > Spec F,

@ Warning 7.5.15. Of the three morphisms F', Fx, and 1 X o, only F'is a
morphism of El—varieties, and usually only 1 X ¢ is an automorphism.

% Warning 7.5.16. Diagram for X — SpecF, is not the same as
the base extension by Spech — SpecF, of the corresponding diagram for
X — SpeclF,. For example, the absolute Frobenius F is different from the
base extension of Fx.

The Qg-vector space H (X, Q) is finite-dimensional by Remark
By contravariant functoriality, each morphism of schemes X — X (not nec-
essarily an F,-morphism) induces a Qp-linear endomorphism of HY(X, Q).
We compare these for the three morphisms at the top of .

Proposition 7.5.17. Let X be a smooth proper variety over F,. With nota-
tion as above, the endomorphism of H'(X,Qy) induced by the relative Frobe-
nius morphism F is the inverse of the endomorphism induced by 1 ® o.

Proof. Lemma applied to étale morphisms to X implies that F+ acts
as the identity on the category of étale X-schemes, and hence as the identity
on H'(X,Qy). Now the result follows from (7.5.14]). O

Because of Proposition [7.5.17, the field automorphism o~ € AutF, and
the corresponding automorphism 1 x o' of X are both called geometric
Frobenius (cf. [Del74} 1.15]).
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7.5.7. Deducing the Weil conjectures. Let X be a smooth proper va-
riety of dimension d over F,. Let X = XFQ- Let F': X — X be the relative
g-power Frobenius morphism. Then #X (Fg») is the number of fixed points
of the nth iterate F™. Also, the derivative of F' is everywhere 0, so fixed
points of F' and its powers are automatically nondegenerate. So applying
the Grothendieck—Lefschetz trace formula (Theorem to X and F"
yields

(7.5.18) #X(Fgn) = tr (F"H*(X,Qy)) .
Thus
Zx(T)=exp | ) #X(Fqn)% (Definition
n>1

=exp | Y _tr (F"[H*(X, Q) %
n>1
— det (1 — TF|H*(X,Qp)) " (by Exercise
(M) P(T) - Paa—1(T)
~ Po(T) Po(T) Pa(T) - - - Poa(T)’

where ‘
Bi(t) == det (1 = TF[H(X,Q)) € Q).
In particular, Zx(7T') is a rational function in Qu(7"). But Zx(7T) is also in
1+ TZ[[T]] by Proposition[7.3.8 so Zx(T') € Q(T).
For each i, let b; = dimH* (X, Q,), and let c;1, . . ., o p, be the eigenvalues
of F*|H (X, Qy) counted with multiplicity; then
b;

Bi(t) =[] = aisT).

j=1
The «;; turn out to be nonzero, so deg I; = b;.
The identity 1x: X — X induces the identity on each space H (X, Qy),
so Remark [7.5.11] applied to 1x yields

2d
AA=D(=1)b = x,
1=0

as claimed in Remark [7.4.3]

Now suppose in addition that X is integral. Twisting the isomorphism

in Theorem @ by —d shows that
H*(X, Q) ~ Qq(—d).



7.5. Cohomological explanation 217

In particular, byy = 1. With notation as in Section Proposition [7.5.17
shows that F* acts on H*(X,Qy) as o~ acts on Qy(—d), i.e., as multi-
plication by ¢¢. The Galois equivariance of the perfect pairing in Theo-
rem (]ED shows that the eigenvalues agq—; . of F* (or o~1) acting on
the space HQd_i(Y, Q) are the inverses of the eigenvalues of o~! acting on
HY(X,Qu(d)); the latter eigenvalues are «;/q?, because of the twist. This
explains the functional equation.

The relationship between ¢-adic Betti numbers and classical Betti num-
bers arises from a theorem comparing ¢-adic and singular cohomology for a
C-variety, and a theorem about how H’ (X, Qy) behaves under specialization.

All that remains is to prove that each eigenvalue coy; is an- algebraic
integer with |o;;| = ¢%/2. This was shown by Deligne using further properties
of ¢-adic cohomology; see [Del74), Théoréme 1.6] and [Del80|, Théoréme 2.
See also [Kat76| for an overview of the proof.

7.5.8. Nonproper varieties.

Remark 7.5.19. The cohomological. approach generalizes to F,-varieties
that are not proper. The Grothendieck—Lefschetz trace formula holds for
a variety over a separably closed field once one replaces H"(X, Q) with
“cohomology with compact support” H.(X,Qy); cf. |Gro68a] and |Del74|
Théoréme 2.8]. And for a smooth integral variety of dimension d over a
separably closed field, Poincaré duality gives a perfect pairing

H (X, Q(i)) x H*™"(X, Qq(d — i)) — HZ*(X, Qe(d)) ~ Q¢

involving both kinds of cohomology; cf. [SGA 4y, XVIII, Théoréme 2.14
and (3.2.6.2)].

Lemma 7.5.20. Let X be a d-dimensional variety over a separably closed
field k. If U C X 1is a dense open subscheme, then the restriction map
H24( X, Qy(d)) — H2(U,Qu(d)) is an isomorphism.

Proof. This is a consequence of [SGA 4yry, XVIII, Lemme 2.1]. O

Corollary 7.5.21. Let X be a d-dimensional variety over a separably closed
field k. Then H*(X,Qy(d)) is naturally the Qq-vector space having as basis
the set of d-dimensional irreducible components of X.

Proof. Lemma lets us replace X by a dense open subscheme so that
its irreducible components are disjoint. Then the statement reduces to the
irreducible case already mentioned in Remark [7.5.19 O
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7.6. Cycle class homomorphism

In this section, X is a variety that is smooth of dimension d over a field k.
We will occasionally impose more restrictive conditions.

7.6.1. Algebraic cycles.
(Reference: |Ful98, Chapter 1])

The group Pic X may be identified with the group of Weil divisors mod-
ulo linear equivalence. And by definition, a Weil divisor is an integer com-
bination of integral closed subschemes of codimension 1. We now generalize
to higher codimension.

For r € N, the group of codimension r cycles, denoted Z"(X), is
defined as the free abelian group on the set of codimension r integral closed
subschemes of X. For instance, Z'(X) is the group of Weil divisors on X.
If r > d, then Z"(X) = 0.

For each codimension r integral closed subscheme Z, let [Z] € Z"(X)
denote the basis element corresponding to Z. More generally, if Y C X is
any closed subscheme whose irreducible.components Y; are of codimension r
in X, let y; be the generic point of Y;, let ¢; be the length of the artinian
ring Oy,y,, and define [Y]:= Y ¢;[V;] € Z7(X).

There is a notion of rational equivalence of cycles that for » = 1 becomes
linear equivalence of divisors. . The Chow group CH"(X) is the group of
codimension r cycles modulo rational equivalence; see [Ful98, §1.3 and §1.6],
where CH"(X) is denoted by A”(X). For instance, CH!(X) = Pic X.

7.6.2. Changing the base field. Given a field extension L D k, there is
a base change homomorphism Z"(X) — Z"(X|) sending each basis element
[Z] to [Zr]. Even though Z is integral, Z; might not be, so [Z1] must be
defined in terms of lengths as in Section

Proposition 7.6.1. Let L D k be an extension of fields. Let X be a smooth
k-variety. Let r € N.

(a) The homomorphism Z"(X) — Z"(X) is injective.
(b) If L is Galois over k with Galois group G, then the homomorphism
Z"(X) — Z"(X1)C is an isomorphism.

Proof.

(a) For Z varying over codimension r integral closed subschemes of X, the
subschemes Zj, are nonempty and do not share irreducible components,
so the classes [Z1] are linearly independent.
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(b) Consider a G-orbit of codimension r integral closed subscheme of X7,
and let Y be their union, a closed subscheme of Xy. Although descent of
schemes is not effective in general, in the present setting we can descend
the ideal sheaf of Y to show that Y = Z; for some closed subscheme
Z C X. If Z were not reduced, then Y would not be reduced either. If
Z were not irreducible, then Y would not consist of exactly one G-orbit.
Thus Z is integral, and [Z] maps to [Y]. Such classes [Y] form a basis
of Z"(X1)%, so Z"(X) — Z7"(X)¢ is an isomorphism. O

7.6.3. Cohomology classes of divisors. Taking cohomology-of the Kum-
mer sequence

1—>ugn—>Gm£—n>Gm—>1
of sheaves on Xg yields a connecting homomorphism
Pic X = H(X,G,,) — H*(X,(Z/"Z)(1)).
These are compatible as n varies, so we obtain homomorphisms
(7.6.2) Pic X — H2(X,Z(1)). — H3(X, Qu(1)),

whose composition will be denoted clg;.

7.6.4. Cohomology classes of higher-codimension cycles. In this sec-
tion, k is algebraically closed. Let Z C X be an integral closed subscheme
of codimension r, so dim Z = d —r. Our goal is to define a cohomology class
clet(Z) € H" (X, Qu(r))-

Case 1: X and Z are mice. The inclusion Z — X induces

(7.6.3) HX72" (X, Qu(d — 7)) — H¥*72"(Z,Qu(d — 7)) =~ Qy,

by Theorem @ for Z. By Theorem (]E[) for X, this linear func-
tional corresponds to an element of H2" (X, Qy(r)) denoted clet(Z).

Case 2: X and Z are smooth and integral. Replace by

H242M (X, Qu(d — 1)) — H2(Z,Qu(d — 1)) ~ Q,

which again by Poincaré duality (Remark|7.5.19)) defines an element cle(Z) €
H?"(X,Qq(r)). (In fact, Case 1 was unnecessary since it is subsumed by
Case 2.)

Case 3: X is smooth and integral, and Z is integral. Let X' = X — Z58 and
7' = 7 — 758, Case 2 defines clet(Z') € H?" (X', Qq(r)). Using the fact that
X' differs from X only in a subset of codimension > r, one can show that
the map H?" (X, Q(r)) — H2"(X',Q¢(r)) is an isomorphism (cf. [SGA 43|
Cycle, 2.2.10]). Let clet(Z) be the element of H* (X, Q(r)) corresponding
to clet(Z') € H* (X!, Qu(r)).
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Case 4: X is smooth, and Z is integral (the general case). Extending
Z-linearly, and taking direct sums over the components of X if X is not
integral, we obtain a cycle class homomorphism

clet: Z7(X) — HY (X, Qu(r)).

Rationally equivalent cycles have the same image under clet; in other
words, cle factors through the quotient CH"(X). Even better, algebraically
equivalent cycles have the same image under cle; [SGA 4%, Cycle, Remar-
que 2.3.10].

The homomorphism CH!(X) — H?(X,Q(1)) is the same as the homo-
morphism ((7.6.2)).

7.6.5. The Tate conjecture.
(Reference: |Tat94])

Which cohomology classes in H2" (X, Qy(r)) are in the image of cle, or at
least in the Qg-span of the image? The Tate conjecture attempts to answer
this question. It is analogous to the Hodge conjecture, which, for a smooth
projective C-variety, attempts to describe the Q-span of the image of the
analogous cycle class homomorphism from Z"(X) to the singular cohomology
group H*"(X(C), Q).

Let X be a nice variety over a field k that is not necessarily algebraically
closed. Let & = Gal(ks/k) = Aut(k/k). Fix r > 0. The homomorphisms

le
Z"(Xy,) — Z"(X5) = HY (X7, Qu(r)) = B (Xp,, Qu(r))
are G-equivariant; and taking G-invariants yields a homomorphism
Z7(X) — B (X, Qu(r))°,

by Proposition (]ED Extending Qg-linearly yields a Qg-linear cycle class
homomorphism

(7.6.4) Z7(X) ® Q=% H2 (X, Qu(r))®.

Conjecture 7.6.5 (Tate conjecture). Let k be a finitely generated field (i.e.,
finitely generated as a field over F, or Q). Let X be a nice variety over k.
Then the cycle class homomorphism (7.6.4) is surjective.

Conjecture implies a variant for Xj_ instead of X, as we explain in
the rest of this section.

Definition 7.6.6. The space of algebraic classes is the image of

Z7(Xp,) ® Qp 2% H2(Xy,, Qu(r)).
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The space of Tate classes is

U H? (X, Qe(r)",
open H < &
where the union is over all (finite-index) open subgroups H of the Galois
group &.

Every algebraic class is a Tate class. If Conjecture holds for X,
for every finite separable extension L O k contained in kg, then the converse

holds.

Remark 7.6.7. Like the Hodge conjecture, the Tate conjecture is interesting
because it predicts the existence of algebraic cycles in situations where there
is no known way to construct them.

7.6.6. The Tate conjecture and the Birch and Swinnerton-Dyer
conjecture.

(References: |Tat95a], |[KT03|)

Theorem 7.6.8. The following statements are equivalent:

(i) The Tate conjecture for divisors (the r =1 case) on nice surfaces over
finite fields holds.

(ii) For every nice surface X over a finite field, Br X is finite.
(i) For every abelian variety A over a global function field, II1(A) is finite.
(iv) The rank part of the Birch and Swinnerton-Dyer conjecture (the for-

mula ords—1 L(A,s) = rk A(K)) holds for abelian varieties over global
Sfunction fields.

(v) The full Birch and Swinnerton-Dyer conjecture (Remark|5.7.54) holds
for abelian varieties over global function fields.

Sketch of proof. Artin and Tate proved the equivalence of these state-
ments in the 1960s, except that they required additional assumptions and
needed to exclude the p-parts of some groups, where p is the characteristic
|Tat95a]. Since then the work of many people |Gro68d, Mil75, Mil81)
Sch82, Bau92, KT03| proved the equivalence in full generality, as we now
sketch.

<:>: For each nice surface X over a finite field k and for each prime
{ # chark, the truth of the Tate conjecture for divisors on X in f-adic
cohomology is equivalent to the finiteness of (BrX)[¢*°] [Tat95a, Theo-
rem 5.2(1)<(ii)], and the finiteness of (Br X)[¢*°] implies the finiteness of
the whole group Br X (see [Mil75, Theorem 4.1] and [LLRO5, p. 674, foot-
note|).
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ﬁ: Let X be a nice surface over a finite field k. There exists a
nice curve B over k and a rational map f: X --» B whose generic fiber X,
(a variety over the global function field k(B)) is nice. In proving finiteness
of Br X, Remark [6.8.§ lets us replace X by a blowup, so we may assume
that f is a morphism. Let J be the Jacobian of X,,. In this context, Br X is
finite if and only if III(.J) is finite |Gro68d, §4].

:>: Suppose that A is an abelian variety over a global function
field K. By |Gab01, Proposition 2.4|, A is a quotient of the Jacobian .J
of some nice curve C' over K. Spread out C to show that C. = X, for
some X --+ B as in the previous paragraph. Then finiteness of Br X implies
finiteness of I11(.J), which implies finiteness of III(A) (because .J is iSogenous
to A x A’ for some A’, and finiteness of III is invariant under isogeny).

()< ([iv) and (iv)<(v]): See [KT03| 1.8, Theorem]. O

7.7. Applications to varieties over global fields

7.7.1. Uniform estimates for the number of points over finite fields.
The following application of the Weil ‘conjectures is a variant of [LW54,
Theorem 1].

Theorem 7.7.1 (Lang—Weil). Let 7: X =Y be a morphism between schemes
of finite type over Z. For what follows, let ¢ be a prime power, lety € Y (IF,),
let X, be the fiber 7=1(y) (i.e:, the Fy-scheme obtained by pulling back m by
SpecF, EN Y), and let d = dim X,,. All implied constants below depend on
m: X =Y but not on q,y, ord. Then

(i) We have #X,(F,) = O(q?9).
i1 the F,-scheme 15 geometrically irreducible, then
ii) If the Fq-sch Xy Il ducible, th
#X,(Fy) = ¢" + 0(¢"'/?).
i) Ifq is sufficiently large and X, is geometrically irreducible, then X
Y y
has an F4-point.

(iv) If q is sufficiently large and X, is geometrically integral, then Xy has a
smooth F,-point.

Sketch of proof.

(i) We may assume that X and Y are affine; then in particular each X
is separated. We may also assume that a prime ¢ is invertible on X
and Y, because in each, the open subschemes where two different ¢ are
invertible cover the whole scheme. The result now follows from

e the generalized Lefschetz trace formula of Remark
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e a uniform bound on dimH.(X,,Q;) as y varies [Kat01, Theo-
rem 1], and
e the bound ¢/2 on the absolute values of the eigenvalues of the
relative g-power Frobenius morphism on the space Hi(yy,(@g)
[Del80, Théoréme 1].
Alternatively, by fibering a variety into curves and using induction on
the dimension, one can reduce to the case in which X — Y is a family of
curves, in which case one does not need the ingredients above, but just
the Weil conjectures for curves; this is the original argument of [LW54].

(ii) Combine the proof of with the isomorphism H2(V, Qu(d)) ~ Q,
of Corollary for a d-dimensional geometrically irreducible finite-
type Fg-scheme V. (Alternatively, one can again follow {LW54] and
reduce to the case of curves.)

(i) If ¢ is sufficiently large, then ¢ + O(¢*/2) > 0.
(iv) Let U be the smooth locus of X — Y. If X is geometrically integral,

then so is its smooth locus Uy, by Proposition [3.5.64, So follows
from forU —Y. O

7.7.2. Existence of local points. Recall the notation for global fields
introduced in Section [1.1.3]

Theorem 7.7.2. Let k be a global field. Let X be a geometrically integral
k-variety. Then X (k,) is nonempty for all but finitely many v € Q.

Proof. There exists a finite subset S C 2, containing all archimedean places
such that X spreads out to a separated finite-type Oy, g-scheme & with geo-
metrically integral fibers. By Theorem , for almost all v € Spec Oy, g,
there is a point in X'(F,) at which the morphism X — Spec Oy, g is smooth.
By Hensel’s lemma (Theorem [3.5.63|(a))), this point lifts to an element of
X(Oy) CTX(ky) = X(ky). O

Remark 7.7.3. Given X as in Theorem [7.7.2] one can algorithmically de-
termine a finite subset S C  such that X (k,) is nonempty for all v ¢ S
(in practice, it might be easiest to begin by replacing X by a geometrically
integral curve in X). If k is a number field, then in principle one can also
determine whether X (k,) is nonempty for each of the finitely many v € S;
this was mentioned already in Remark [2.6.4]

7.7.3. Embedding finitely generated algebras into local fields.
(Reference: |Cas86| Chapter 5])

Theorem 7.7.4. Let A be an integral domain of characteristic O that is
finitely generated as a Z-algebra. Let k be the constant field of Frac A, so k
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is a finite extension of Q (see Section|2.2.4)). Then for all but finitely many
v € Q, there exists an embedding A — O,,.

Proof. Let X = Spec A. Let X = Spec(QA), which is a geometrically
integral k-variety by Propositions 2.2.19] and [2.2.20l We may replace A by
A[f71] for some nonzero f € A to assume that X is as in the proof of
Theorem so Asmooth hag an O,-point for all but finitely many v. For
any such v, Remark [3.5.76] yields a point in the open subset X' (Oy) of X (ky)
lying outside the countably many subvarieties ¢ = 0 defined by nonzero
g € A. Any such O,-point is a homomorphism A — O, killing no nonzero
g € A. (|

Corollary 7.7.5. Let A be an integral domain of characteristic 0 that is
finitely generated as a Z-algebra. Then there are infinitely many primes p
such that A embeds in Zj,.

Proof. With notation as in Theorem [7.7:4] there are infinitely many places
v of k that are unramified of degree 1 over Q; then O, ~ Z,. There are only
finitely many v above each p, so infinitely many primes p occur. U

In the context of Corollary [7.7.5] for some applications one would like to
force particular nonzero elements a1, ...,a, € A to map to units in Z,. To
arrange this, apply Corollary [7.7.5 to A[al_l, s
Corollary 7.7.6. Let B be an integral domain that is also a finitely generated
Q-algebra. "Then there are infinitely many primes p such that B embeds in

Qp.

Proof. Choose Q-algebra generators of B, and let A be the Z-subalgebra
they generate. Apply Corollary [7.7.5to A. If A embeds in Z,, then its
localization B = QA embeds in QZ, = Q,. O

Corollaries and make it possible to reduce many questions over
characteristic 0 fields to questions over Z, or Q,. See Exercises[7.9 and

for examples.
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7.1.

7.2.

7.3.
7.4.

7.5.

7.6.

7.7.

7.8.

Exercises

Find the smallest g > 0 such that there exists a finite field F, and a
nice curve X of genus g over F, such that X (F,) is empty.

(Convergence of zeta functions) Let X be a scheme of finite type over

Z.

(a) Prove that there is a polynomial f(x) such that for every ¢ > 1,
the number of closed points P € X with #k(P) = ¢ is less than
or equal to f(q).

(b) Deduce that there exists » € R such that the product defining
(x(s) converges for all s € C with Re(s) > r.

Use Exercise to prove Proposition [7.3.8

Let notation be as in Theorem [7.4.1|(ii). Let x be the multiplicity of
_dj2 - -
q"* as a zero of Py(T). Assuming Theorem , prove that
1
Zx | == ) = (1)}t g™2TX Z(T).
x (g ) = COSA T ()
Let A be an abelian variety over C. Then A(C) ~ C9/A for some
rank 2g discrete Z-submodule A in C9, and A ~ H;(A(C),Z). Let £
be any prime. Prove that there is a natural Z,-module isomorphism

TyA ~ A ® Zy. (“Natural” means that it should be functorial with
respect to abelian variety homomorphisms A — B.)

Let V be a finite-dimensional vector space over a field k of character-
istic 0. Let F:'V — V be an endomorphism. Then

T’n
exp Ztr(F")7 =det(1—TF)™!

n>1
in k[[T]].
Prove that given n > 1, if p is sufficiently large (relative to n), then
for any €,...,6, € {1,—1}, there exists * € Z such that for all

i€{1,2,...,n}, the Legendre symbol (%”) equals ¢;.

Generalize Theorem : Show that if the hypothesis that X, is

geometrically irreducible is dropped, then
#X,(Fy) = Cq" + O(¢" ),

where C is the number of d-dimensional irreducible components of X,
that are geometrically irreducible.
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7.9. (a)
(b)
()

(d)

7.10. (a)

(b)

Let p be an odd prime, and let n > 1. Let N € M, (Z,). For each
r > 1, prove that (1 +p"N)? =1+ p" N (mod p"*2).

Prove that the group 14+pM,(Z,) of GL,(Z,) is torsion-free; that
is, its only element of finite order is the identity.

(Selberg) Let k be a field of characteristic 0. Prove that any
finitely generated subgroup G of GL, (k) has a torsion-free finite-
index subgroup.

Does the previous statement hold for all fields of all characteris-
tics?

Let p be an odd prime. Let b € 1+ pZ,. Prove that there is a
p-adic power series f € Zp[[n]] with radius of convergence greater
than 1 such that f(n) = 0" for all n € Z. (Hint: Use properties
of the p-adic logarithm and exponential maps in [Kob84, IV.1].)
Let b € Z;. Prove that there are p-adic power series fo, ..., fp—2 €
Z,([n]] such that f.(n) = bP=1"+¢ for all ¢ € {0,...,p — 2} and
n € Z.

A sequence (an)n>0 in a field k is called a linear recursive se-
quence if there exist » > 1 and ¢;—1,...,co € k such that

Gntr = Cr—10n4r—1+ -+ + CoQp

for all n > 0. Prove that if chark = 0, then there exist a non-
negative integer s, polynomials pi,...,ps € k[n|, and elements

bi,...,bs € %™ such that
an = p1(n) b + -+ + ps(n) bF

for all sufficiently large n.

The Skolem—Mahler—Lech theorem states that for any linear
recursive sequence (a) in a field k of characteristic 0, the set
{n:a, = 0} is a finite union of arithmetic progressions and sin-
gletons. Prove it. (Hint: A p-adic power series with radius of
convergence greater than 1 is either identically zero or has only
finitely many zeros in Z,.)

Give an algorithm that takes as input the specification (r,co, ...,
Cr—1,0a0,...,ay-1) of a linear recursive sequence (a)n>0 of inte-
gers, and outputs YES if there exists n such that a,, = 0 and NO
otherwise. (Warning: This is an unsolved problem! No such algo-

rithm is known, and it may be that no such algorithm exists—that
is, it could be undecidable.)



Chapter 8

Cohomological
obstructions to rational
points

In 1970, Manin [Man71| explained how, for a variety X over a global field
k, elements of Br X could produce obstructions to the local-global principle.
Meanwhile, Fermat’s method of infinite descent was generalized to show how
a torsor under an algebraic group. G over X could give rise to an obstruc-
tion, by Chevalley and Weil |[CW30| for finite G, by Colliot-Théléne and
Sansuc |CTS77,|CTS80, CTS87| for commutative G, and by Harari and
Skorobogatov [HS02| for general G. In this chapter, we will explain these
and related obstructions.

8.1. Obstructions from functors

8.1.1. The F-obstruction to the local-global principle. Let k be a
global field, and let A be its adéle ring. Let F': Schemes;” — Sets be a
functor. For a k-algebra L, write F'(L) for F(Spec L). Let X be a k-variety.

Suppose that A € F(X). For each k-algebra L, define evy: X(L) —
F(L) as follows: Given z € X (L), the corresponding morphism Spec L % X
induces a map F(X) — F(L), sending A to some element of F'(L) called

227
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eva(x) or A(x). Then the diagram
X(k)— X(A)

(8.1.1) eml emi
F(k) — F(A)

commutes. Let X (A)? be the subset of X(A) consisting of elements whose
image in F'(A) lies in the image of F(k) — F(A). Then shows that
X (k) € X(A)A. In other words, A puts constraints on the locus'in X(A)
where k-points can lie.

Imposing the constraints for all A € F/(X) yields the subset

XA =Xx@A)" = N XA,
AcF(X)
again containing X (k).

Definition 8.1.2. If X(A) # 0 but X(A)¥ =), then we say that there is
an F-obstruction to the local-global principle; in this case X (k) = 0.

8.1.2. The F-obstruction to weak approximation. We have X(A) C
X([Tkv) =[] X (ky); cf. Exercise (If X is proper, then all three sets are
equal.) There is a variant of Definition in which X (A) is replaced by
X(ITko) = TT1 X (ky) and F(A) is replaced by [[ F(ky) in (8.1.1)); call the
resulting set X (J]k,)*.

Definition 8.1.3. If X([]4,)" # X([]ku), then we say that there is an
F-obstruction to weak approximation. Usually this terminology is used in
a context where X (J]#,)f is known to be closed in X (][] k), in which case
such an F-obstruction would imply that X (k) is not dense in X (] ky).

8.1.3. Examples. In order for the F-obstruction to be nontrivial, F' must
be such that F'(k) — F(A) is not surjective. In order for the F-obstruction
to beuseful, the image of F(k) — F(A) must be describable in some way.
This is so in the following two examples, as will be explained in subsequent
sections.

Example 8.1.4. Taking F = Br defines the Brauer set X (A)P".

Example 8.1.5. Taking F = H'(—, G) for an affine algebraic group G over
k defines a set X (A)H (X.0),

Remark 8.1.6. To avoid having to understand the Brauer group of a non-
noetherian ring like A, in Section we will replace Br A in by
@, Brk, when defining X(A)®"; in fact, the Brauer-Manin obstruction
was originally defined using @, Brk,. It turns out that the natural ho-
momorphism Br A — &, Brk, is an isomorphism |Ces15, Theorem 2.13],
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so the resulting set X (A)P" is the same. Similarly, we replace H' (A, G) by
[T, H(ky, G) in Section the natural map H'(A, G) — [[, H'(k,, G) is
an injection (a consequence of [Ces15, Theorem 2.18]), so again the resulting
set X (A)H'(X:0) is the same.

Question 8.1.7. Are there other functors that one could use to obtain
obstructions?

8.1.4. Functoriality. The proofs of the following three statements are left
to the reader as Exercise Bl

Proposition 8.1.8. Let m: X' — X be a morphism of k-varieties. Let
2’ € X'(L) for some k-algebra L, and let A € F(X). Then the two ways of
evaluating A on 2’ yield the same result: If we define z :==m(x) € X (L) and
Al i=r*A € F(X'), then A'(2') = A(z) in F(L).

Corollary 8.1.9. The assignment X + X (A)¥ is functorial in X.

Corollary 8.1.10. Let m: X' — X be a morphism of k-varieties. If the map
F(X) — F(X') is surjective, then X'(A)¥ ‘s the inverse image of X (A)F
under X'(A) — X(A).

8.2. The Brauer—Manin obstruction

Throughout this section, k is a field, and X is a k-variety.

8.2.1. Evaluation. Let A € Br X. If L is a k-algebra and x € X (L), then
Spec L & X induces a homomorphism Br X — Br L, which maps A to an
element of Br L that we call A(x); cf. Section |8.1.1}
8.2.2. The Brauer set.
(Reference: [Sko01, §5.2])

Now suppose that k is a global field. Fix A € Br X.
Proposition 8.2.1. If (x,) € X(A), then A(x,) =0 for almost all v.
Proof. By Corollary [6.6.11} for some finite set of places S (containing all
the archimedean places), we can spread out X to a finite-type Oy, g-scheme
X and spread out A to an element A € Br X'. Enlarging S if necessary, we
may also assume that z, € X(O,) for all v ¢ S. Then A(x,) comes from an
element A(x,) € BrO,. But BrO, = 0 by Corollary O

Thus A determines a map

X(A) — Q/Z
(z0) — (A, (z0)) =Y _ invy(A(zy)).

v
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Proposition 8.2.2. Ifx € X(k) C X(A), then (A,z) =0.

Proof. Use the commutativity of

X (k)——— X(A)
(8.2.3) l l
0 Brk @D, Brk. 2 /7 —0. O

Remark 8.2.4. Compare with (8.1.1]).
Definition 8.2.5. For A € Br X, define

X(A)* = {(2) € X(A): (A, (z,)) =0}
Also define

XAPF = ] x@A

AeBr X
This agrees with the definition in Example [8.1.4] because of Remark

Corollary 8.2.6. We have X (k) C X (A)Pr.
Proof. This is a restatement of Proposition [8.2.2 O

8.2.3. The Brauer—Manin obstruction to the local-global principle.

Definition 8.2.7. One says that there is a Brauer—-Manin obstruction to
the local-global principle for X if X(A) # 0, but X (A)Br = 0.

Definition 8.2.8. For a class of nice varieties X over global fields, one says
that the Brauer—Manin obstruction to the local-global principle is the
only one if the implication

XAP#£) = Xk #0
holds.

See Conjecture [9.2.27] for a setting in which it is conjectured that the
Brauer—Manin obstruction to the local-global principle is the only one.

8.2.4. Brauer evaluation is locally constant.

Proposition 8.2.9. Let k be a local field, and let X be a k-variety. Let
AeBrX.

(a) The map X (k) — Brk sending x to A(x) is locally constant with respect
to the analytic topology on X (k).

(b) If k = R, the map X(R) — BrR is constant on each connected compo-
nent of X(R).
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Proof.

(a) Given a € Brk, we need to show that {z € X (k) : A(x) = a} is open in
X (k). The structure morphism X — Speck induces a homomorphism
Brk — Br X, which sends « to a “constant” element ax € BrX. Re-
placing A by A — ax subtracts « from all the values A(x). Thus we may
reduce to showing that {x € X (k) : A(z) = 0} is open in X (k).

Let g € X (k). Consider pairs (Y,y) where Y is an étale X-scheme,
Y is affine, and y € Y (k) maps to zg € X (k). Let R be the direct limit of
O(Y') over the system of such (Y,y). Then R is the henselization of the
local ring Ox 4,, so R is a henselian local ring with residue field k (see
Section . For each (Y,y), we have morphisms Speck = Spec R —
Y — X, inducing homomorphisms Br X — BrY — Br R — Brk, the
composition of which sends A to A(zg) = 0. By Remark the
homomorphism Br R — Brk is an isomorphism, so-A4 maps to 0 already
in Br R. By Theorem A maps to 0 in BrY for some (Y,y). Let
m: Y — X be the structure morphism, which is-étale. By functoriality as
in Proposition A(m(y)) = 0 for every y € Y (k). Since m: ¥ — X
is étale, Proposition shows that m(Y (k)) is open in X (k), and it
contains xg.

(b) A locally constant map is constant on connected components. O

Remark 8.2.10. The proof of works for every local field k. But if k£ is

nonarchimedean, then each connected component of X (k) is a point. And if
k = C, then Brk = 0. So only the case k = R is interesting.

Corollary 8.2.11. Let 'k be a global field. Let X be a k-variety.

(a) For any A € BrX, the map X(A) — Q/Z sending (z,) to (A, (xy)) is
locally constant.

(b) For any A € Br X, the set X(A)* is open and closed in X (A).

(c) Theset X(A)B is closed in X(A).

(d). Let X (k) be the closure of X (k) in X(A). Then X (k) C X (A)B*

(e) If X is proper and X (A)B" # X(A), then weak approzimation for X
fails. In this case, one says that there is a Brauer—Manin obstruction
to weak approximation for X .

Proof.
(a) Combine Propositions and

(b) A fiber of a locally constant map is open and closed.
(c) The set X (A)P" is the intersection of the closed sets X (A)4 as A varies.
(d) This follows from () and Corollary
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(e) If X(k) € X(A)P" C X(A), then X(k) # X(A), while X(A) =
[[, X (kv) if X is proper. Thus weak approximation for X fails. O

Remark 8.2.12. Suppose that X is a proper variety over a global field k.
For a place v of k, what does a locally constant function f on X (k,) look

like?

e Suppose that v is archimedean. Then f is constant on each connected
component of X (k).

e Suppose that v is nonarchimedean. Let O, be the valuation ring, and
let m, € O, be a uniformizer. Then X (k,) = X(0,) = @nX(OU/WZ}),
which is compact, and f factors through the finite set X (O, /7)) for
some n.

Now suppose that A € Br X. Then the remarks above apply to the eval-
uation map X(k,) — Brk, given by A for each v, and this map is 0 for
all but finitely many v, by Proposition Thus the map X(A) — Q/Z
sending (x,) to (A, (z,)) admits a finite explicit description, in principle. In
Section [8:2.5] we will see an example of this.

8.2.5. Example: Iskovskikh’s conic bundle with 4 singular fibers.
(References: |Isk71], [Sko01, Chapter 7|)
Let U be the smooth, affine, geometrically integral surface
¥+ 22 =3B —2H) (-2

over Q. We will construct a nice Q-surface X containing U as an open
subscheme, and then we will show that there is a Brauer—Manin obstruction
to the local-global principle for X.

8.2.5.1. Conic bundles. The X above will be a conic bundle. Before con-
structing.it, let us discuss conic bundles more generally.

A (possibly degenerate) conic over a field k is the zero locus in P? of a
nonzero degree 2 homogeneous polynomial s in k[xg, x1, x2]. It is a diagonal
conic if s is az? + bx? + cx3 for some a, b, ¢ € k not all zero.

The generalization to conic bundles will be easier if we first re-express
the situation over k in a coordinate-free way. If E is the k-vector space
with basis g, 21, 72, then P? = Projk[zo, ¥1, 22] = ProjSym E =: PE, and
a degree 2 homogeneous polynomial s is an element of Sym? E. We have
E =Ly® Ly & Lo, where L; = kx;. To say that s = 0 is a diagonal conic is
to say that s = sg + s1 + s for some s; € kx? = LZ®2 not all zero.

If B is a k-scheme, then a conic bundle over B is the zero locus of

s in P& := ProjSym &, where & is a rank 3 vector bundle on B, and
s € T'(B,Sym? &) is a section vanishing nowhere on B. In the special case



8.2. The Brauer—Manin obstruction 233

where & = £ & L4 ® % for some line bundles .%; on B, and s = sg+51+ 92
for some s; € F(B,,i”i@Q) such that sg, s1, 82 do not simultaneously vanish
anywhere on B, the zero locus of s is called a diagonal conic bundle.

8.2.5.2. Chatelet surfaces. We now specialize further to the following setting:
k : field of characteristic not 2,

B = IP’,IW
L =0, S0 =1,
L =0, 51 = —a,
L= 0(2), s9 1= —F(w,x),

where a € k*, and F(w,z) € I'(P}, 0(4)) is a separable homogeneous poly-
nomial of degree 4 in the homogeneous coordinates w,z on B = P'. The
result is a nice k-surface X containing the affine surface

v’ — a2’ = f(x)
as an open subscheme, where f(z) is the dehomogenization F'(1,z). Such a
surface X is called a Chatelet surface. It has-a map to B = P!, and the
fibers of X — P! are conics. In fact, all-the fibers of X — P! above points
in P!(k) are nice conics, except above four points (the zeros of F) where the
fiber degenerates to the union of two intersecting lines in P?.

8.2.5.3. Iskouskikh’s example. Iskovskikh’s surface is the Chéatelet surface X
over Q given by the choices a:= —1 and f(z) := (3 — 22)(2? — 2) € Q[z].

Remark 8.2.13. One could choose other nice compactifications X’ of the
affine surface

U:y? + 2% =(3—2%)(a® - 2).
For instance, one could let X’ be the blowup of X at a closed point of X —U.

But the question of whether such a compactification has a rational point is
independent of the choice, by Corollary [3.6.16]

Let K = k(X). As explained in Section given two elements
a,b.& K*, one can define a quaternion algebra with class (a,b) € (Br K)[2].
Let A= (3— 22, —1) € Br K. By Proposition , we may view Br X as
a subgroup of Br K.

Proposition 8.2.14. The element A € Br K lies in the subgroup Br X.

Proof. By Theorem [6.8.3] we need only check that A has no residue along
any integral divisor on X. Therefore it will suffice to find a Zariski open
covering {U;} of X such that A extends to an element of Br U; for each i.

To accomplish this, we rewrite A in other ways. Define B := (22 -2, —1)
and C := (3/2?> —1,—1) in BrK. Then A+ B = (32> + 22,—1) = 0 by
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Proposition since y? + 2% = K(v=T)/kY + 2y/=1). Also, A—C =
(2, —1) = 0 since 22 is a square in K. But A, B,C are all killed by 2, so
A=B=C.

Let P;_,» and P,2_, be the closed points of IF’}@ given by 3 — 22 = 0
and 22 — 2 = 0, respectively. Now A = (3 — 22, —1) represents a quaternion

Azumaya algebra on all of X except along integral divisors where 3 — 22 or

—1 has a zero or pole. Thus A comes from Br Uy, where

U,y := X — (fiber above 0o) — (fiber above P;_,2).
Similarly, B € BrUp, where

Up := X — (fiber above co) — (fiber above P,2_,),
and C € BrUg, where

Uc := X — (fiber above 0) — (fiber above P3-2).

Since U4 UUpUUg = X (in fact, U UUg = X), theelement A= B =C €
Br K belongs to Br X. ([

From now on, we consider A as an element of Br X. To evaluate A at a
point P € X (k) for any field £ D Q, choose one of

(3—22%,-1), (22=2,-1), (3/z®>—1,-1)

such that the rational function of .« is defined and nonzero at P, so that A
extends to an element of the Brauer group of an open subset Uy, Up, or
Uc containing P, and replace the rational function by its value at P. For
example, if P € Uy(Qp) for some p < oo, then

inv, A(P) = inv,(3 — x(P)?, —1)
{0 if 3 —2(P)? ¢ N@p(ﬁ)/(@p(@p(\/jl)x)v

1/2  otherwise,
by Proposition [I.5.23]

Proposition 8.2.15. We have X(A) # 0, but X(A)4 = 0. In particu-
lar, X(Q) = 0, and there is a Brauer—Manin obstruction to the local-global
principle for X.

Proof. A computation involving Hensel’s lemma (Theorem [3.5.63)(a))) shows
that X (A) # (.

Suppose that P € X(Q)) for some p < oco. If p # oo, let v,: Q, —
Z U {oo} denote the p-adic valuation. Let z = z(P) € Q, U {oc0}.
Case I: p ¢ {2,00}. If vy(x) < 0 (or = o0), then 3/2® —1 € ZX. If
vp(z) > 0, then either 3 — 2% or 22 — 2 is in Z, because their sum is 1. In



8.2. The Brauer—Manin obstruction 235

either case, A(P) has the form (u1,u2) with ui,us € Z, so A(P) € BrZ,

(this uses p # 2). But BrZ, = 0 by Corollary so inv, A(P) = 0.
Case II: p = oo. The leading coefficient of (3 — x2)(2? — 2) is not a sum
of squares in R, so any P € X(R) satisfies x(P) # oo. Then z(P)? < 3
or z(P)* > 2, so 3 — z(P)? or z(P)*> — 2 is in Rsg = Ng/r(C*). Thus
inve, A(P) = 0.
Case III: p=2. Let P € X(Q2). Let z = x(P). Then

v(z) >0 = 3-22=3=-1 (mod 4)

v(r)=0 = 2°—-2=-1 (mod 4)

v(z) <0 = 3/2°—-1=-1 (mod4).

But an element of Zs that is —1 mod 4 is not of the form a? + b with

a,b € Qg, so it is not a norm from Qz(v/—1)/Q2. Thus invy A(P) = 1/2.
Cases I, II, IIT imply that if (P,) € X(A), then (4, (P,)) = 1/2 # 0.

Thus X(A)4 = 0. O

Remark 8.2.16. Iskovskikh’s original proof that X (Q) = () used only ad hoc
methods based on quadratic reciprocity. ‘Ironically, according to [CTPS16),
§1], Iskovskikh’s intention was to produce an example that the Brauer-Manin
obstruction could not explain!. It was only a few years later that it was
realized that the Brauer—-Manin obstruction could explain it, as above.

Remark 8.2.17. Theorem B of [CTSSD&87a,|CTSSD87b| shows that for
any Chéatelet surface over a number field, the Brauer-Manin obstruction
to the local-global principle is the only one, and even better, the Brauer—
Manin obstruction to weak approximation is the only one; that is, X (k) is
dense in X (A)Br. These results were generalized in [Sal90,CT90,SS91| to
conic bundle surfaces over P! with at most five degenerate fibers. Moreover,
Schinzel’s hypothesis on prime values of polynomials would imply the same
when the number of degenerate fibers is arbitrary, and more generally for
“generalized Severi-Brauer bundles over P |[CTSD94, Theorem 4.2]. A
key. ingredient in these works is the fibration method; for an introduction,
see |CT92, §3] and |CT98| §2|, and for examples of the further development
of this method, see [Har94,|Har97,|Lial4, HW16|.

8.2.6. Effectivity. Let X be a nice variety over a global field k. One can
imagine the following procedure for attempting to decide whether X has a
k-point:

e by day, search for k-points;

e by night, search for a finite set of Azumaya Ox-algebras that obstructs
k-points.
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If the Brauer—-Manin obstruction to the local-global principle is the only one
for X, then this procedure terminates successfully. See |[Poo06, Remark 5.3|
for more details.

Under additional assumptions on X, one can give more reasonable al-
gorithms and even compute a kind of finite description of X (A)B'; see
|[KTO8, KT11]|.

8.3. An example of descent

Suppose (as in [Fly00, §6|) that we want to find the rational solutions to
(8.3.1) y? = (2 4+ 1)(z* +1).
Write © = X/Z, where X, Z are integers with gecd 1. Then y = Y/Z3 for
some integer Y with ged(Y, Z) = 1. We get
V2= (X?+ 2% (X +2Y).
If a prime p divides both X2 + Z2 and X% + Z*, then
Z? = —X? (mod p),
Z* = —X*  (mod p),
SO
274 = (22 + 7= (- X2+ (-XYH =0 (mod p),
and similarly
2X4 = (X2 + X' = (-Z22+(-2Y =0 (mod p).
But ged(X, Z) = 1, so this forces p = 2. (Alternatively, the resultant of the
homogeneous forms X2 + Z2 and X4 + Z* is 4, so the only prime p modulo
which these forms have a common nontrivial zero is p = 2.)

Each odd prime p divides at most one of X2+ Z2 and X* + Z4, but the
product (X2 + Z2)(X* + Z%) is a square, so the exponent of p in each must
be even. In other words,

Xt + 7t = ew?
for some ¢ € {£1,+£2}. Since X, Z are not both zero, the left-hand side is
positive, so ¢ > 0. Thus ¢ € {1, 2}.

Dividing by Z* and setting w = W/Z?2, we obtain a rational point on
one of the following smooth curves:

Yi: w? =2t + 1,
Ys: 2w? =z + 1.
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Each curve Y, is of geometric genus g where 29 + 2 = 4; i.e., g = 1. The
point (z,w) = (0,1) belongs to Y1(Q), and (1,1) belongs to ¥2(Q), so both
Y7 and Y5 are open subsets of elliptic curves.

One can show that Y7 and Y5 are birational to the curves
32A2: P =2 -z,
64A1: y? =2 — 4z,

where the labels are as in |[Cre97|. A “2-descent” (or a glance at [Cre97,
Table 1]!) shows that both elliptic curves have rank 0. One also can compute
that their torsion subgroups are isomorphic to Z/27Z x 7 /27. Thus the nice
models of Y] and Ys have four rational points each. It follows that rational
points on Y] satisfy z = 0 (there are two more rational points at infinity),
and rational points on Y; satisfy x € {+1}. So has six solutions,
namely,

(0,1),(0,-1),(1,2),(1,-2),(=1,2),(=1,-2).

8.3.1. Explanation. We are asked to find U(Q), where U is the smooth
affine curve

y> = (2" + 1) (=" +1)
in A?@. Let X be the nice genus 2 curve over Q containing U as an open
subscheme; explicitly, X = Projk[z,v,2]/(y?> — (2 + 22)(z* + 2%)), where
degz = degz = 1 and degy = 3. This description shows also that X — U
consists of two rational points. In particular, finding U(Q) is equivalent to
finding X (Q), and the latter is finite by Faltings’s theorem (Theorem [2.6.8).

Let Z be the nice curve over Q birational to the curve in (x,y, w)-space

defined by the system

Y2 = (@2 4+ 1)t +1),

w2:x4+1,

sok(Z)= Q(z,Vr2 +1,v/z* +1). For c € Q%, let Z, be the twist of Z that

is birational to the curve

Y2 = @+ 1) + 1),
cw? =zt + 1.
For each c, there is a degree 2 morphism
Z. — X
(z,y,w) — (2,9).

The argument of the previous section can be reinterpreted as follows:

e Each point in X (Q) is the image of f.: Z.(Q) — X (Q) for some ¢ € Q*.
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e Up to multiplying ¢ by Q*?2, there are only finitely many ¢ € Q* for
which Z. has Q,-points for all p < oo. Moreover, such a finite set of ¢’s
can be computed effectively.

The finite set of ¢’s turned out to be {1,2}. Thus the problem of determining
X (Q) was reduced to the problem of determining Z.(Q) for ¢ € {1, 2}.

If Y, is the nice genus 1 curve birational to
cy2 =zt + 1,
then we have a morphism
Te: L. — Y,
(x,y,w) — (z,w).

Fortunately, for ¢ € {1,2}, the curve Y, is an elliptic curve of rank 0, so
Y.(Q) = Yo(Q)tors is a computable finite set. We determine the Q-points in
the 0-dimensional preimage 7, 1(Y.(Q)) C Z,; this gives Z.(Q). Finally we
compute X(Q) = Uce{LQ} fe(Z:(Q)).

Remark 8.3.2. The elliptic curve
E: o =@+1{*+1)

is dominated by X, by the morphism

o X F

(z,y) — (2%, y).
Unfortunately, the approach of computing £(Q) and then computing ¢~ (P)
for each P € E(Q) cannot be carried out directly, since E(Q) is infinite, of
rank 1. Moreover, one can show that the Jacobian J of X is isogenous to
E x E, so rk J(Q) = 2 is not less than ¢g(X) = 2, so Chabauty’s method
(see |Ser97. §5.1] or [MP12|) cannot be applied directly to X. On the

other hand, X has two independent maps to F, so the Demyanenko—Manin
method [Ser97, §5.2| could be applied to determine X (Q).

8.3.2. Galois covering. One of the key points is the argument was that
there are only finitely many c such that Z. has Q,-points for all p < oo.
What makes this work is the fact that Z — X is a Galois covering.

Let us first explain why f: Z — X is étale. Over the affine open subset
Vi of U € X where z* + 1 is nonvanishing, the open subset f~'V; C Z
is obtained by adjoining vz? + 1 to the affine coordinate ring; this is an
étale extension. Similarly, over the affine open subset V5 of U where 22 + 1
is nonvanishing, f~'V5 is obtained by adjoining v/z2 4+ 1. Since Vi and V;
cover U, it follows that f is étale above U. A similar argument shows that f
is étale above the other affine open piece U’ of X. Thus f: Z — X is étale.



8.4. Descent 239

Remark 8.3.3. The argument that f is étale is a special case of the proof
of Abhyankar’s lemma |[SGA 1, X.3.6]. It is analogous to the proof that
the field Q(v/15,v/3) = Q(v/15, \/5) is an everywhere unramified extension
of Q(VI5).

In fact, the following shows that Z — X is a Galois covering with Galois
group Z/27:

Proposition 8.3.4. Let Z — X be an étale morphism between nicek-curves.
Ifk(Z)/k(X) is a Galois extension of field with Galois group G, then Z — X
is a Galois covering with Galois group G.

Proof. By the equivalence of categories between curves'and function fields,
the left G-action on k(Z) induces a right G-action on Z considered as an
X-scheme. Since k(Z)/k(X) is Galois, the X-morphism

Vv ZxG—Zxx'Z

is an isomorphism above the generic point of X. By spreading out (The-
orem ), 1) gives an isomorphism from an open dense subscheme of
Z x (G to an open dense subscheme of Z X x Z. Both Z x G and Z x x Z are
smooth, proper, and 1-dimensional over k, so any birational maps between
their components are isomorphisms. [l

8.4. Descent
(Reference: [Sko01, §5.3])

In our example, Z was a Z/2Z-torsor over X. We now generalize by
replacing Z/27 by an arbitrary smooth affine algebraic group G over k.
When we speak of a G-torsor over X, we mean a right fppf G x-torsor over
X, where Gx is the base extension. Throughout the rest of Chapter [ all
cohomology is fppf cohomology, and we use H!(X,G) as an abbreviation

for the pointed set Hflppf(X ,G) (which is a group if G is commutative). By
Theorem 6.5.10, isomorphism classes of G-torsors over X are in bijection
with H(X, G).

8.4.1. Evaluation. Let k£ be a field. Let X be a k-variety. Let G be a

smooth algebraic group over k. Let Z i) X be an G-torsor over X, and

let ¢ be its class in HY(X,G). If € X(k), then the fiber Z, — {z} is a
G-torsor over k, and its class in H(k, G) will be denoted ¢(z). Equivalently,
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x determines a morphism in cohomology mapping ¢ to {(x):
x: Speck — X
H'(k,G) +— H'(X,G)
((x) ¢ C.
Thus the torsor Z — X gives rise to an “evaluation” map
X (k) — HY(k, Q)

In other words, Z — X can be thought of as a family of torsors param-
eterized by X, and ((x) gives the class of the fiber above x.

8.4.2. The fibers of the evaluation map. We may partition X (k) ac-
cording to the class of the fiber above each rational point:

X(ky= J[ {zeXx®:Ca)y=1}
reH (k,G)

The following key theorem reinterprets the right-hand side.
Theorem 8.4.1. Let k be a field. Let X be a k-variety. Let G be a smooth
affine algebraic group. Suppose that f: Z — X is a G-torsor over X, and
let ¢ € HY(X,G) be its class. For each T € H'(k,G), let f7: Z™ — X be the
twisted torsor constructed in Example[6.5.13 Then

{weX(k):(x)=7} = [I(Z7(K).
In particular,

Xky= [I r@.
TeH (k,G)
Proof. For each x € X (k), we have the following equivalences:
z.€ f(Z7(k))
< the fiber Z] is a trivial G"-torsor over k£ (Proposition |5.12.14))

— 7, g T is a trivial G"-torsor over k
<— Z,~T as G-torsor
(by taking the contracted product with 7" on the right)
— ((z)=T. O

8.4.3. The evaluation map over a local field.

Proposition 8.4.2. Let k be a local field. Let X be a proper k-variety. Let
F be a finite étale algebraic group over k. Let f: Z — X be an F-torsor
over X. Then the image of X (k) — H'(k, F) is finite.



8.4. Descent 241

Proof. For each € X(k), the fiber f~!(z) is Spec L for some étale k-
algebra L. By Krasner’s lemma (Proposition , there exists an open
neighborhood U of x in X (k) such that for u € U, the fiber f~1(u) is
isomorphic to f~1(x) as a k-scheme. In other words, if H(k, F) is given the
discrete topology, then the evaluation map X (k) — H!(k, F') is continuous.

On the other hand, X is proper, so Proposition shows that X (k)
is compact. Thus the image of X (k) — H!(k, F) is compact and hence
finite. [

Remark 8.4.3. If chark = 0, then the whole set H!(k, F) is finite, by
Theorem 5.12.24@.

8.4.4. The Selmer set. Return to the notation of Theorem [8.4.1] but as-
sume moreover that k is a global field. For each place w of k, the inclusion
k < k, induces a homomorphism of fppf cohomology groups H!(k,G) —
Hl(kv, G). (Equivalently, it is the restriction homomorphism of Galois co-

homology associated with the inclusion of Gal(k}/k,) as a decomposition
group in Gal(ks/k).) If 7 € H'(k, G), let 7, € H'(k,, G) be its image.

Definition 8.4.4. The Selmer set is the following subset of H!(k, G):

Selz(k,G) == {r € H'(k,G) : 7, € im (X (ky) — H'(ky, G)) for all v € O } .
Remark 8.4.5. This terminology and notation is compatible with the no-
tion of the Selmer group, inthe case where f: Z — X is an isogeny between
abelian varieties, viewed as a torsor under G := ker f. For instance, if
f: F — FE is the multiplication-by-2 map on an elliptic curve over a num-

ber field, then Selg(k, E[2]) C H(k, E[2]) is the 2-Selmer group defined in
[Si192] X.§4].

By Theorem applied over each k,, we have
Selyz(k,G) = {r € H'(k,G) : Z7(k,) # () for all v € Q, }
D{rcHYk,G):Z"(k) #0}.

In particular,

Xk = [ 1z

T€Selz (k,G)

Theorem 8.4.6. If X is a proper variety over a global field k, then Selz(k, G)
is finite.

Proof. Let F be the component group of G. For a suitable finite nonempty
subset S C (i containing the archimedean places, Theorem lets us
spread out G to a smooth finite-type separated group scheme G over Oy g,



242 8. Cohomological obstructions to rational points

spread out X to a proper scheme X over Oy, g, and spread out Z to a G-torsor
over X. Let 7 € HY(k,G). For v ¢ S, the commutative diagram

H!(k,G) T
X (ko) ——=H'(ky, G) Ty

valuative criterion
for properness

X(0,) — HY(0,,6)

shows that if 7, comes from X (k,), then 7, also comes from H'(®,,G). Thus
Selz(k, G) is contained in Hg(k,G). Moreover, for each v € S, the image of
X (k) — H'(ky,, F) is finite by Proposition so the image of Selz(k, G)
in [[,cq H' (ky, F) is finite. The preceding two sentences combined with
Theorem [6.5.13|(a)) show that Selz(k,G) is finite. O

Remark 8.4.7. One can show that Selz(k,G) is not only finite, but also
effectively computable, even if one does not know X (k). This makes it
potentially useful for the determination of X (k).

Corollary 8.4.8. There exists a finite separable extension k' of k such that
X(k) € f(Z(K)).

Proof. For each 7 € H!(k,G), there exists a finite separable extension k’
such that the image of 7 in H! (¥, G) is trivial. By taking a compositum, one
can find a k' that works simultaneously for all 7 € Selz(k,G). Extending

the base from k to k' makes Z” £> X isomorphic to Z i> X. [l

8.4.5. The weak Mordell-Weil theorem. The Mordell-Weil theorem
states that for any abelian variety A over a global field k, the abelian group
A(k) is finitely generated. The following weaker statement is proved along
the way to proving the Mordell-Weil theorem:

Theorem 8.4.9 (Weak Mordell-Weil theorem). Let A be an abelian variety
over a global field k, and let m be a positive integer not divisible by char k.
Then A(k)/mA(k) is finite.

Proof of Theorem [8.4.9l By Proposition the multiplication-by-m
map A B3 A is étale, so it is locally surjective in the étale topology. Thus
we get an exact sequence of sheaves on (Spec k)et

0= Aml - AB A0
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(or equivalently of &g-modules), where A[m] is the kernel of A % A. Taking
cohomology gives

Ak) 22 A(k) —s H'(k, A[m]).

On the other hand, we may view [m|: A — A as a torsor under the
smooth affine algebraic group A[m|, and hence we get an evaluation map

A(k) — H'(k, A[m])
a — class of the torsor [m]™*(a).
Its image is contained in the Selmer set, which is finite by Theorem [8:4.6]

One checks that the two maps A(k) — H!(k, A[m]) coincide. Comparing
images shows that A(k)/mA(k) is isomorphic to the image of the evaluation
map, and we proved already that the latter image is finite. U

8.4.6. Application of descent to failure of strong approximation.
We will use an integral point analogue of descent to prove a theorem of Min-
chev [Min89, Theorem 1] on the failure of strong approximation. Minchev

worked over number fields, but with a little.more work we can generalize to
global fields.

Theorem 8.4.10. Let k be a global field. Let S be a finite set of places
of k. Let f: Y — X be a finite étale morphism of geometrically integral
k-varieties. If X(AS) # (0 and f is not an isomorphism, then the image of
the inclusion X (k) — X (A9) is not dense; that is, X does not satisfy strong
approximation with respect to S.

Proof. Let n = dim X = dimY. Let d = deg f > 1. Use Theorem [3.2.1
to enlarge S so that f spreads out to a finite étale morphism F: Y — X
of separated Oy, g-schemes such that X — SpecOp ¢ and YV — Spec Oy g
have geometrically integral fibers and X' (O,) # () for v ¢ S. For any nonar-
chimedean v € S, as x, varies over the compact set X(O,), there are only
finitely many possibilities for the finite étale O,-scheme F~1(z,), by Kras-
ner’s lemma (Proposition [3.5.74]). Therefore, as x varies over X' (O, g), the
finite étale O g-scheme F~'(x) has bounded degree and bounded ramifi-
cation over S, so there are only finitely many possibilities for F~!(z). In
particular, there exists an infinite set 7" of nonarchimedean v ¢ S such that
v splits in F~1(z) for every z € X(Oy.s).

Let X’ be the smooth locus of X — Spec O g, and let ' = F~1X’. For
v ¢ S, let F, be the residue field, and let ¢, = #[F,. By Theorem ,
#X'(F,) and #Y'(F,) are both ¢} + O(qﬁflﬂ) as ¢y — 00. In particular,
we may choose w € T such that #)'(F,) < d - #X'(Fy,). Thus there
exists a point a,, € X'(F,) that does not split in ). By Hensel’s lemma
(Theorem [3.5.63|fa))), @ lifts to some a,, € X’(Oy). By Krasner’s lemma
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(Proposition [3.5.74)), the set Uy, := {uy € X'(Oy) : F~Huw) ~ F~(aw)}
is an open neighborhood of a,, in X (k). Let U be the nonempty open set
Uw % [Togsugwy X (Ok,s) of X(A%). If v € X (k)N U, then z € X'(Of 5), so
the definition of T' implies that w splits in F~!(z), but the definition of U,
implies that w does not split in F~1(x). Thus X (k)NU = 0, so X (k) is not
dense in X (A%). O

Corollary 8.4.11 (cf. [Min89, Theorem 1|). Let k be a global field. Let
S be a finite set of places of k. Let X be a normal geometrically integral
k-variety. If X(A®) # 0 and Xy, is not algebraically simply connected, then
X does not satisfy strong approrimation with respect to S.

Proof. If X (k) is empty, strong approximation fails by definition. If X (k) is
nonempty, apply Lemma to obtain a nontrivial geometrically integral
finite étale cover Y — X, and apply Theorem [8.4.10 O

Remark 8.4.12. Corollary can fail if X is(not'normal. For example,
if X is a nodal cubic curve in P2 over a global field such that the tangent lines
to the branches at the node have irrational slope, then X is not algebraically
simply connected, but X satisfies strong-approximation with respect to any
finite S, because there is a dominant morphism P! — X.

8.4.7. The descent obstruction to the local-global principle. Let &
be a global field. Let X be a k-variety. One can show that there is an
injection X(A) < [[, X (kv); so an element of X(A) will be written as a
sequence (x,) indexed by the places v of k. The set X (k) embeds diagonally
into X(A).

A torsor Z i> X under a smooth affine algebraic group G over k re-
stricts the locations in X (A) where rational points can lie. Namely, the
commutativity of

X (k) —— X(A)

(8.4.13) i l
H'(k, G) — T, H (ky, G)

(cf. (8.1.1])) shows that X (k) is contained in the subset X (A)/ C X(A) con-
sisting of points of X (A) whose image in [], H'(ky, G) comes from H'(k, G).
One can show also that
X)) ={J 1@,
TeHY (k,G)
and that X (A)f is closed in X(A) if X is proper; see Exercise More-
over, one can replace H'(k, Q) by its subset Selz(k,G) in either of the two
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descriptions of X(A)/ above. The condition X(A)/ = () is equivalent to
Selz<k, G) = (Z)

One can constrain the possible locations of rational points further by
using many torsors:

X (AT = N X(A),
all G-torsors f: Z — X
X(A)descent - ﬂ X(A)Hl(X’G).

all smooth affine G
Then
X(k‘) C X(A)descent C X(A)

Recall that one says that the local-global principle holds for X if and
only if the implication
X(A)£0 = X(k)#0
holds.

Definition 8.4.14. One says that there is a descent obstruction to the
local-global principle if X (A) # () but X (A)descent — ),

Sometimes we wish to study the adelic subset cut out by torsors under
a subset of the possible smooth affine algebraic groups. In particular, we
define

XAyt = ] X(A)reo),
finite étale G
X(A)conn D ﬂ X(A)Hl(XvG),
smooth connected affine G

1
X(A)PGL - m X(A)H (X,PGLn).

n>1

8.5. Comparing the descent and Brauer—Manin obstructions

8.5.1. Descent is stronger than Brauer—Manin.
(Reference: |Sko01, Proposition 5.3.4])

Proposition below shows that the Brauer—-Manin obstruction is
equivalent to the special case of the descent obstruction using only PGL,,-
torsors for all n.

Recall from Section [6.6.4] that for any scheme X, we have a map of sets
(8.5.1) H'(X,PGL,) — (Br X)[n].
(We used Theorem [6.6.17|(ii) to know that the image is killed by n.)
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Lemma 8.5.2. Let k be a global field. Let X be a k-variety. Let Z i> X bea
PGL,,-torsor for somen > 1. Its class in H' (X, PGL,,) is mapped by (8.5.1)
to some A € BrX. Then X(A) = X(A)A.

Proof. Let (z,) € X(A). Then we have a commutative diagram

H!(X,PGL,) (Br X)[n]

(mv)l i(rv)

I, Hl(kvv PGL,) — [, Brk,)[n]

res T T ress

H!(k,PGL,) ——— (Brk)[n]

in which the downward maps are evaluation at (x,), the upward maps
resi, rese are restriction maps induced by k — k,,-and the horizontal maps
are given by . The lower two horizontal maps are bijections by Re-
mark [L5.18

The middle horizontal bijection identifies im(res;) with im(ress), so the
class of f in H'(X, PGL,,) maps down into im(res; ) if and only if the element
A € (Br X)[n] maps down into im(res). In other words, (z,) € X (A)7 if
and only if (z,) € X(A)A. O

Proposition 8.5.3. Let k be a global field. Let X be a regular quasi-projec-
tive k-variety. Then
X(A)descent C X(A)PGL _ X(A)Br.

Proof. By Corollary [6.6.19, every A € Br X is in the image of (8.5.1) for
some n. So-intersecting the equality of Lemma [8.5.2 over all PGL,-torsors

over X yields X (A)PST = X(A)Br. The inclusion X (A)descent € X(A)PGL
holds by definition since each PGL,, is a smooth affine algebraic group. U

8.5.2." The étale-Brauer set.
(References: [P0010, Dem09}Sko09])

Let k be a global field. Let X be a k-variety. Let G be a smooth affine

algebraic group. Recall that if Z i) X is a G-torsor, the determination of
X (k) can be reduced to the determination of Z7 (k) for various twists Z7 of

Z:
Xk = [I r@enc U @)
TeH (k,G) TeHY (k,G)
We can produce a possibly better “upper bound” on X (k) by replacing Z7(A)
by Z7(A)Pr. If we do so for every G-torsor for every finite étale group scheme
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G, we are led to define the étale-Brauer set

X(@AF= ) U e,

finite étale G H(k
all G-torsors f: Z —+ X TEH (k,G)

which is the upper bound on X (k) obtained from applying the Brauer-Manin
obstruction to étale covers. A priori, the subset

X(A)et,descent — ﬂ U fT(ZT (A)descent)

finite étale G H(k.G
all G-torsors f: Z — xT€ (k.G)

could be even smaller.

8.5.3. Etale-Brauer equals descent.
(References: [Dem09, Sko09|)

The proof of the following theorem combines work of Demarche, Harari,
Skorobogatov, and Stoll.

Theorem 8.5.4. Let k be a number field. "Let X be a nice k-variety. Then
X(A)et,Br — X(A)et,descent — X(A)descent‘

Sketch of proof. It suffices to prove
X(A)descent C X(A)et,descent C X(A)et,Br C X(A)descent'

The first inclusion is [Sko09, Theorem 1.1|, which generalizes [Sto07),
Proposition 5.17] (a statement that we would write as X (A ) = X (A)ehet),
The idea in both results is, roughly speaking, to show that if Y — X is an
torsor under-a finite étale group scheme, and Z — Y is a torsor under a
smooth affine algebraic group, then Z — X is dominated by some torsor
under an even larger smooth affine algebraic group over X; this is analogous
to-the fact that a Galois extension of a Galois extension of a field k is
contained in some even larger Galois extension of k.

The second inclusion is deduced by applying Proposition [8:5.3] to the
étale covers of X.

The third inclusion is the main result of [Dem09|, which generalizes the
equality X (A)™ = X (A)B" of [Har02, Théoréme 2, 2., and Remarque 4].
(The latter already is striking in that it implies that the torsors under all
smooth connected affine algebraic groups give no more information than the
torsors under all the groups PGLj,.) O
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8.5.4. Iterated descent obstruction. In the hope of obtaining an ob-
struction beyond the descent obstruction one might define

X (A)descent,descent - ﬂ U fT (ZT (A)descent)

all smooth affine G H(k
all G-torsors f: Z — X TEH (k,G)

and similarly X (A)descent.descentdescent  anq g0 on. But Cao, answering a

question of the author, proved the following:

Theorem 8.5.5 (|Caol7, Corollaire 1.2|). For any smooth quasi-projective
geometrically integral variety X over a number field,

X(A)descent,descent — X(A)descent.

Corollary 8.5.6. For any smooth quasi-projective geometrically integral va-
riety X over a number field,

X<A)descent _ X(A)descent,descent — X(A)descent,descent,descent ——

Proof. Use induction on the number of descents! Apply the inductive hy-
pothesis to all the torsors Z7 over X. O

8.6. Insufficiency of the obstructions

8.6.1. A bielliptic surface.
(Reference: [Sko99])

Skorobogatov proved that the Brauer—Manin obstruction is insufficient
to explain all counterexamples to the local-global principle:

Theorem 8.6.1 (|Sko99|). There exists a nice Q-variety X such that
X(A)BT £ 0but X(Q) = 0.

The proof is involved, so we only outline it. First, we describe the kind
of variety used.

Definition 8.6.2. A bielliptic surface over an algebraically closed field &
is a surface isomorphic to (E;7 x Es)/G for some elliptic curves E; and FEs
and some finite group scheme G such that G is a subgroup scheme of Ej
acting by translations on E; and G acts on Fs so that the quotient Fo/G is
isomorphic to P!. (Since G acts freely on Ej, it acts freely on Ey x FEs; i.e.,
E\ x By — (Eq x E»)/G is G-torsor.) A surface over an arbitrary field k is
called bielliptic if X7 is bielliptic.

@ Warning 8.6.3. Some authors use the term hyperelliptic surface to mean
bielliptic surface, but these surfaces have nothing to do with hyperelliptic
curves.
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Skorobogatov’s example was a bielliptic surface X := Y/G, where Y
was a product of two genus 1 curves over QQ, and G was a group generated
by a fixed-point free automorphism of order 2 of Y. Explicitly, his X was
birational to the affine surface defined by

(2 + 1)y = (2% 4 2)2% = 3(t* — 54t> — 117t — 243).

To show that X (Q) = (), Skorobogatov proved X (A)®"Br = (), by applying
the Brauer—Manin obstruction to the étale cover Y — X and its twists.

Remark 8.6.4. Because X (A)*HBr = X (A)descent  the nonexistence of ra-
tional points must also be explained by a descent obstruction. In fact, it can
be explained by the obstruction from a single torsor under a noncommutative
finite étale group scheme [HS02, §5.1].

8.6.2. A quadric bundle over a curve.
(References: |[Poo10|, [CTPS16])

We next construct an “even worse” example:

Theorem 8.6.5 (|Poo10|). There exists a nice Q-variety X such that
X (A)Br £ () but X(Q) = 0.

Combined with Theorem this shows that even the descent ob-
struction is not enough to explain all counterexamples to the local-global
principle. In the original proof of Theorem X was a Chatelet surface
bundle over a curve of positive genus. We will present a simpler variant,
based on |[CTPS16, §3.1], using quadrics instead of Chatelet surfaces. In
this section, all varieties are over Q.

Start with a nice curve C such that C(Q) consists of a single point c.
(For example, C could be the elliptic curve y?> = 23 — 3, named 972B1
in |[Cre97].) Let f: C — P! be a morphism that is étale at ¢ (for instance,
take f corresponding to a uniformizing parameter at ¢). Compose with
an automorphism of P! to assume that f(c) = oo. Let U be a connected
open neighborhood of ¢ in C(R). By the implicit function theorem, f(U)
contains an open neighborhood of oo in P!(R). Compose f with a translation
automorphism of P! to assume that 1 € f(U) and that f is étale above
0,1 €PL

Next we construct a quadric bundle Y — P!, View P! as the result of
gluing A} := SpecQ[t] and AL := SpecQ[T] using t = 1/T. In P* x A},
define the closed subscheme

YO it —1)2d +2? + 22 + 22 + 22 = 0.
Similarly, in P* x A%m define the closed subscheme

YO, a-T)X2+ 2t +a3+a2i+22=0.
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oo

Figure 6. Real points of the varieties C and Y over P! are shown in
solid black and gray. The open subset U of C'(R) is shown as a thicker
curve. The dotted lines indicate some fibers of Y — P with imaginary

points.

Glue Y — A} and YT — Al using ¢t = 1/T and x9 = T/X, to obtain
Y — PL. Alternatively, if & denotes the rank 5 vector bundle &(1) ® 6% on
P!, then Y is the zero locus in P& := ProjSym & of a section of Sym? &; in
particular, Y. is projective over Q. A calculation shows that Y®) and YT
are smooth over Q, so Y is smooth over Q. Thus Y is a family of 3-dimen-
sional quadrics over the base P!, with two degenerate fibers, above 0 and 1.
For each t € P!, let Y; denote the fiber above t. In particular, the locus in
Y ™) above T = 0 is the fiber

Yo X§+x%+x3+m§+xi =0,
a smooth quadric in P. See Figure [6]
Let m: X — C be the base extension of Y — P! by f:
X ——Y

|

C ——=PL

Proposition 8.6.6. The Q-variety X is nice.
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Proof. Since Y — P! is projective with geometrically integral fibers, the
same is true of X — C; in particular, X is a projective and geometrically
integral Q-variety. The morphism Y — P! is smooth above all points except
0,1, s0 X — C is smooth above all points of C outside those above 0,1 € P*;
since C' is smooth over Q, this implies that X is smooth over Q outside the
points above 0,1 € P!, Similarly, C' — P! is smooth above 0,1, so X — Y is
smooth at the points above 0, 1; since Y is smooth over Q, this implies that
X is smooth over Q also at the points above 0,1 € P'. Thus X is nice. O

Proposition 8.6.7. We have X(Q) = 0.
Proof. The sole point of C(Q) maps to oo € P!, but Y, has no Q-points. [

As a warm-up to proving that X (A)®“Br £ (), we prove that X (A)B £ (.

For each finite prime p, any quadratic form over @, of rank > 5 has a
nontrivial zero [Ser73| IV.2.2, Theorem 6|, so we may.choose y, € Yoo(Qp)
and let , = (yp,c) € X(Qp). Let yr be the unique point in Y7(R), let cg €
U C C(R) be such that f(cg) = 1 € P}(R), and let 7 = (ygr,cr) € X(R)
(we use the subscript R for the archimedean place to avoid confusion with
the point oo € P1). Together, these define 2= (z,) € X (A).

Proposition 8.6.8. We have z € X(A)P.

Proof. The adeles 7(z) and ¢ agree except for their archimedean parts cg
and ¢, which lie in the same connected component of C'(R). By this and
Proposition any A € BrC takes the same value at w(x) as at ¢ € C(Q);
by Proposit that value is 0. Thus 7(x) € C(A)B. Also, the homo-
morphism Br C' — BrX is surjective by Proposition [6.9.15] Corollary
then implies = € X (A)Pr. O

To generalize Proposition m to prove that x € X (A)et’B]r , we must
understand the category FEt(X) of finite étale covers of X.

Lemma 8.6.9. The morphism X — C induces an equivalence of categories
FEt(C) — FEt(X).

Proof. This follows (by [SGA 1| IX.6.8]) from the fact that each geometric
fiber of X — C (a smooth 3-dimensional quadric or a cone over a smooth
2-dimensional quadric) is algebraically simply connected. O

Proposition 8.6.10. We have z € X (A)HBr,

Proof. Suppose that G is a finite étale group scheme over Q, and X' — X
is a G-torsor. We must show that one of the twists of X’ — X has an adelic
point not obstructed by the Brauer group. By Lemma m X = Xis
the base extension of a G-torsor C' — C. We may replace C’ by a twist to
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assume that c lifts to some ¢’ € C'(Q). Let C” be the irreducible component
of C’ containing ¢”. The fiber product X” := X x C” fits in a diagram

X/¢ X/ G-torsor X Yy
ﬂ,,l ﬂ,i ”l l
o Ls ! G-torsor C f Pl

Since C" — (' is finite étale, C” is smooth and projective; moreover, O is
integral and has a Q-point, so C” is a nice curve. Similarly, X” is smooth
and projective, and X” — C” has geometrically integral fibers (just like
Y — P!), so X” is nice too.

We claim that z lifts to a point 2”7 € X”(A). For each finite prime p,
let x; = (zp,c") € X"(Qp). Since U is algebraically simply connected, the
inverse image of U in C”(R) is a disjoint union of copies of U; let U” be the
copy containing ¢’, let ¢y € U” be the point mapping to cg € U, and let
zp = (zr, ) € X"(R). Thus we have z” € X”(A) mapping to z € X(A).

The same proof as for Proposition shows that 2” € X"(A)Pr, so
X'(A)PB" is nonempty. This argument applies to all finite étale torsors over
X, so X(A)*"Br is nonempty. O

This completes the proof of Theorem [8.6.5]

8.6.3. Hypersurfaces and complete intersections.
(Reference: [PV04])

Definition 8.6.11. A scheme-theoretic intersection X = Hy N ---N H, of
hypersurfaces H; C P" is called a complete intersection if dim X =n — r.

In particular, any hypersurface in P" is a complete intersection.

Theorem 8.6.12. Let k be a number field. If X is a smooth complete
intersection in some P and dim X > 3, then the descent obstruction and
Brauer-Manin obstruction for X are vacuous; that is,

X(A)descent _ X(A)Br — X(A)
Sketch of proof. By Theorem it suffices to prove X (A)°tBr = X (A).

This follows immediately from the following two claims:
(i) The variety Xy is algebraically simply connected (Definition [3.5.45)).
(ii) The homomorphism Brk — Br X is an isomorphism.
Part (jij) follows from the weak Lefschetz theorem, which says that the homo-
morphism of fundamental groups 71 (X (C),z) — w1 (P"(C), z) is an isomor-
phism (here an embedding k < C is chosen and z € X(C)) |[Mil63, Theo-
rem 7.4]. For the proof of ({i), see [PV04, Proposition A.1]. O
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Heuristics suggest that most smooth hypersurfaces X C Pp of degree
d>n+1= dimX + 2 have no rational points. On the other hand, a
positive fraction of such hypersurfaces have Q,-points for all p < co [PV 04},
Theorem 3.6]. Thus one expects many counterexamples to the local-global
principle among such hypersurfaces. But there is no smooth hypersurface
of dimension > 3 for which the local-global principle has been proved to
faill The reason we are unable to prove anything in this setting is that our
only available tools, the descent and Brauer—-Manin obstructions, give no
information.

We need some new obstructions!

Remark 8.6.13. The Brauer—-Manin obstruction does yield counterexam-
ples to the local-global principle for some 2-dimensional hypersurfaces, such
as some cubic surfaces; see Section [9.4.9

Remark 8.6.14. There are some conditional counterexamples among hyper-
surfaces of higher dimension. For instance, Lang’s conjecture [Lan74, (1.3)]
that V(Q) is finite for every nice hyperbolic Q-variety V' implies the ex-
istence of nice hypersurfaces in P* that violate the local-global principle;
see |SW95,Poo01|. (A smooth varietyV over a subfield of C is (Brody)
hyperbolic if every holomorphic map C - V(C) is constant.)

Exercises

8.1. Prove Proposition Corollary and Corollary [8.1.10

8.2. Let k be a global field. Let X be a proper k-variety such that
X(A)# 0. Let A € BrX. Suppose that there exists a place w such
that the evaluation map X (k) — Brk, given by A is not constant.
Prove that weak approximation for X fails.

8.3. (Brauer-Manin obstruction for a degree 4 del Pezzo surface) Let X
be the smooth surface defined by

w = 2% — 5y?,
(u+v)(u+ 2v) = 2% — 522

in IP’le. (This example is from [BSD75| §4].) Let K = k(X).

(a) Prove that X(A) # 0. (Suggestion: Let Y be the smooth genus 1
curve obtained by intersecting X with the hyperplane z = 0.
Spread out Y to a smooth proper scheme over Z[S™!] for some
finite set of places S. For p ¢ S, use the Hasse-Weil bound or
Lang’s theorem on H! over finite fields to show that Y has an
[F,-point, and deduce that Y has a Q,-point.)
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8.4.

8.5.

8.6.

8.7.

(b) Let A be the class of the quaternion algebra (5,%t%) in BrK.
Find other representations of A to show that A € Br X. (Hint:
Why does it suffice to find representations on open subsets that
cover the codimension 1 points of X7)

(c) Provethatif P= (u:v:x:y:z2) € X(Qp) for some p < oo, then

0 ifp#5,
1/2 ifp=5.

inv, A(P) = {

Hint: If 5 € QX?, what can be said about the image of A in
P
Br Xq,?)
(d) Deduce that X (A)B" =0, so X(Q) = .

Let S be a finite set of places of a number field k, containing all the
archimedean places. Let Oy g be the ring of S-integers. Let G be a
finite étale group scheme over Oy, g. Prove that Hl(Ok,S, G) is finite.

(Integral descent) Let O ¢ and G be as above. Let X be a finite-
type separated Oy, s-scheme, and let Z — X be a G-torsor. For each
TE Hl(Okvg, G), define a twisted torsor f7: Z”7 — X such that

X(Ows)= - I F(Z7(0ns).
T€HY(O,5,9)

Let Oy, s be as above. Let U be an “affine curve of genus 1 over O, 5",
by which we mean a smooth, separated, finite-type O, g-scheme whose
generic fiber is an affine open subset U of a nice k-curve E of genus 1.
Show that Faltings’s theorem implies that U(Oy g) is finite. (Hints:
Show that you may enlarge S and/or extend k as needed. Find a
sequence of Galois coverings U” — U’ — U, where U’ = X' — F’
with X’ a nice genus 1 curve and F' C X’ a closed subscheme with
#I(k) > 4, and U” is an affine open subset of a ramified covering
X" — X’ branched only over F”.)

Let k be a number field. Let X be a k-variety. Let G be a smooth
affine algebraic group over k. Let Z 1, X be a G-torsor.
(a) Prove that for each place v, the set f(Z(ky)) is open in X (k).
(Hint: Proposition [3.5.73|(i).)
(b) Prove that for each place v, the evaluation map
X (ky) = H' (ky, G)
associated to f is continuous (for the v-adic topology on X (k)

and the discrete topology on H!(k,, G)).
(c) Prove that for each place v, the set f(Z(k,)) is closed in X (k).
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(d) Use results from the proof of Theorem to prove that
F(Z(A)) = x(A) N ][ F(Z(k.)

as subsets of [, X (k).
(e) Prove that f(Z(A)) is closed in X (A).
(f) Prove that for each 7 € H(k, G),

{(2v) € X(A) : 3, maps to 7, € H!(k,, Q) for all v} =fT(Z7(A)),
where 7, denotes the image of 7 in H!(k,, G).

(g) Prove that X(A)/ = Urert ) /7 (Z7(A)).
(h) Prove that if X is proper, then X (A)/ is closed in X(A).






Chapter 9

Surfaces

Curves can be divided into those of genus 0, those of ‘genus 1, and those of
genus > 1. In these three cases, the canonical sheaf wxis anti-ample, trivial
(Ox), and ample, respectively.

Similarly, one can classify higher-dimensional varieties according to how

ample wy is. At one extreme lie the Fano varieties, for which w?}(*l) is

ample; at the other lie the varieties of general type.

9.1. Kodaira dimension

(Reference: |Iit82, §10.5])

Let X be a nice variety over a field k. We will associate to X an element
k=k(X) € {-00,0,1,...,dimX}

called the Kodaira dimension of X.

Let wx be the canonical sheaf.
Case 1: We have H*(X,w™) = 0 for all m € Z>1. Then define x := —oo.
Case 2: We have H*(X,w§™) # 0 for some m € Zs1. If m is such that
HO(X , w%m) # 0, then a choice of basis defines a rational map

b X -—» PN

(defined on the open subscheme U, of points at which the global sections
generate w§"™). In this case, let ¢, (X) denote the Zariski closure of ¢y, (Up,)
in PN(™)_ Then for m > 1 sufficiently large and divisible, ¢, (X) is indepen-
dent of m up to birational equivalence (cf. [Iit82) §10.1]), and we let x be
its dimension. In fact, in Case 2 the following definitions are equivalent:

257
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(i) K := max,, dim ¢, (X).
(ii) & is the integer such that there exist c1,co € R such that
cm”™ < dimy H(X,w{™) < com”
for all m > 0 such that H°(X,w$™) # 0.
(iii) k := (trdegy Frac R) — 1, where R is the canonical ring
P H(x, ™).
m>0

The equivalence of ([i) and is [Iit82 Theorem 10.2|. The equivalence of
and follows since the function field of ¢,,(X) for sufficiently large
and divisible m is the degree 0 homogeneous part of Frac R (and for other
m it is smaller).

Proposition 9.1.1. Let X be a nice curve of genus g.-Then
g=0 = K(X)=—o0,
g=1 = k(X)=0,
g>2 = kr(X)=1L1

Proof. We leave this as Exercise O

Proposition 9.1.2.

(a) If X and Y are birationally equivalent nice k-varieties, then r(X) =
k(Y).

(b) If X is a nice k-variety and L D k is a field extension, then k(Xp) =
k(X).

Proof.

(a) The proof of [Har77, Theorem II1.8.19] generalizes to prove that the
birational map X --+ Y induces a natural isomorphism

HO(Y, w™) — HO(X, wi™)
for any m > 0, so these vector spaces have the same dimension.
(b) The formation of H°(X,w§™) commutes with field extension. O

Definition 9.1.3. If X is a geometrically integral k-variety that is birational
to a nice k-variety Y, define k(X)) = s(Y).

Proposition shows that the definition is independent of the choice
of Y. Resolution of singularities is known if char k = 0, so then a Y exists
and k(X)) is automatically defined. (The paper [Luo87| contains a definition
of kK(X) that does not rely on resolution of singularities, and hence works in
every characteristic.)
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Definition 9.1.4. If x(X) = dim X (the maximum possible), then X is said
to be of general type, or pseudo-canonical. For a nice variety of general
type, one can show that for m sufficiently large, ¢,, is birational onto its
image |Iit82, §10.2a, §10.6b]. For instance, if X is a nice curve of general
type, then the Riemann—Roch theorem shows that m > 3 suffices (more
specifically, this follows from [Har77, Corollary IV.3.2(b)], since for g > 2,
we have 3(2g —2) > 2g + 1). If X is a nice surface of general type, then
m > 5 suffices |[Bom73|, |[Eke88|.

Example 9.1.5. Let X be a nice variety. If wx is ample, then X is of
general type.

@ Warning 9.1.6. The converse need not hold. Suppose that Y is a nice
surface of degree 5 in P2, so wy ~ €(1) by [Har77, Example 11.8.20.3].
Let X — Y be the blowup of Y at a point P € Y (C). By the proof

of Proposition the rational map f,, determined by w}@}m equals the
composition

X — Yy ™. pNm)
Thus X is of general type, but f,, is not a closed immersion for any m > 1,
so wy is not ample.

9.2. Varieties that are close to being rational
(Reference: |Kol96|)

9.2.1. Rational, stably rational, and unirational varieties.

Definition 9.2.1. Let X be an n-dimensional integral variety over an al-
gebraically closed field k. Call X rational if it is birational to P™. Call X
stably rational if there exists m € N such that X x P™ is rational. Call
X unirational if there exists a dominant rational map PV --» X for some
N >0.

Remark 9.2.2. Suppose that X is unirational, so there exists a dominant
rational map ¢: PV --» X for some N > 0. Then there exists also a
dominant rational map P" --+ X with n = dim X; in fact, one can show
that there exists a rational map P™ --» P¥ such that the composition P* --»
PN --» X is dominant.

Example 9.2.3. Fix integers 0 < m < n and an n-dimensional k-vector
space V. The Grassmannian Gr(m,n) = Gr(m, V') is the moduli space of
m-dimensional subspaces of V. It is birational to P?(n_m) (even if k is not
algebraically closed), since if we identify V' with £™ x k"~ then Gr(m,n)
has a Zariski open subspace U ~ A"™™~™) parameterizing the graphs of

linear maps k™ — k"™,
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Example 9.2.4. Consider P& — P!, where & is a rank 2 vector bundle on
P!. By |[Har77, Corollary V.2.14], & ~ &(m) @ O(n) for some m,n € Z.
Tensoring & with a line bundle does not change P&, so we may assume
that & ~ 0 @ O(n) for some n > 0; the corresponding P& is called the
Hirzebruch surface F,. Since & is locally free of rank 2, there exists a dense
open subscheme U of P! such that the part of P& above U is isomorphic to
P! x U; thus F,, is a rational surface for each n.

Remark 9.2.5 (Rationality in a family). In a family of varieties: X' EN B,
rationality of one fiber A, := f~!(b) does not imply rationality of the
other fibers. In fact, there exists a smooth projective morphism X — B
of C-varieties such that {b € B(C) : A} is rational} and {6 € B(C) :
AXp is not rational} are both dense in B(C) for the analytic topology; see
|[HPT16, Theorem 1.1|. In the example constructed, for b € B(C) outside a
countable union of lower-dimensional closed subvarieties, the fiber A} is not
even stably rational.

Remark[9.2.5]is one of the reasons for introducing rational connectedness,
which is weaker than rationality and stable rationality; see Theorem [9.2.1§

Proposition 9.2.6 (Cohomology of a rational surface). Let X be a nice
rational surface over a separably closed field k. Then Pic X is a free finite-
rank abelian group, and for any prime { # char k,

HY (X, Q) ~ Qy,
HE (X, Q) =0,

HZ, (X, Q) ~ (Pic X) ® Qo(—1),
HZ, (X, Q) =0,

Het (X, Qo) = Q(-2).

1

12

1

Sketch of proof. The middle isomorphism is induced by ([7.6.2). The state-
ments are true for P2, and one can show that their truth is unaffected by
blowing up a point. O

Remark 9.2.7. Here we explain a variant of unirationality. A dominant
rational map Y --» X is called separably dominant if k(Y) is a finite sepa-
rable extension of k(X). Call an n-dimensional integral variety X separably
unirational if there exists a separably dominant rational map P™ --» X. In
characteristic 0 there is no difference between unirational and separably uni-
rational. But in characteristic p, the property of being separably unirational
is better behaved in many regards.
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9.2.2. Ruled and uniruled varieties.

Definition 9.2.8. Let X be an n-dimensional integral variety over an alge-
braically closed field k. Call X ruled if it is birational to Y x P! for some
integral k-variety Y. Call X uniruled if there exists a dominant rational map
Y x P! ——» X for some integral k-variety Y of dimension n — 1. (A point is
not uniruled.)

Proposition 9.2.9. If X is uniruled, there is a rational curve through a
general point of X, i.e., there is a dense open subset U C X such that _for
every x € U(k), there is a nonconstant rational map P* --» X whose image
contains x. The converse holds if k is uncountable.

Proof. Suppose that X is uniruled, say via Y xP! --» X. We may replace Y’
by the dense open set consisting of y € Y such that {y} xP! -+ X is defined
and nonconstant. The image of the dominant rational map ¥ x P! --» X
contains a dense open subset U of X; this proves the first part.

Now let us prove the converse. Let n = dim X. Replace X by a bira-
tionally equivalent variety to assume that X is projective. The theory of the
Hilbert scheme shows that the nonconstant rational maps P! --» X fall into
countably many algebraic families B x P! --» X. If any of these rational
maps B x P! --s X is dominant, then for a general linear (n — 1)-dimen-
sional section Y of a nonempty affine open subscheme of B, the rational map
Y x P! --s X is dominant, so X is uniruled. Otherwise, each rational map
B x P! ——5 X has image contained in a positive-codimensional subvariety
of X. Since k is uncountable, the union of these images cannot cover the
k-points of any dense open subset U of X. ([

Remark 9.2.10. As in Remark one can also define separably unir-
uled.

There is also a criterion for being separably uniruled in terms of the
existence of a single rational curve satisfying a condition that guarantees
that it ‘moves in a family, as we now explain. Let X be a nice variety
of dimension d over an algebraically closed field. Let Zx be the tangent
bundle of X, defined as the &x-dual of the sheaf of 1-forms Qx; it is a
rank d vector bundle. Given a rational curve f: P! — X, we obtain a rank d
vector bundle f*.7x on P'. Every vector bundle on P! is a direct sum of line
bundles, so f*Tx ~ O(a1) ® --- ® O(ay) for some aq,...,aq € Z. Call the
rational curve free if a; > 0 for all 7, and very free if a; > 1 for all i.

Theorem 9.2.11. Let X be a nice variety over an algebraically closed field.
Then X is separably uniruled if and only if X contains a free rational curve.

Proof. See |[Kol96| Theorem IV.1.9]. O
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9.2.3. Rationally connected varieties. Suppose that X is a nice variety
over an algebraically closed field k. Roughly, X is called rationally connected
if there is an algebraic family of rational curves such that for almost every
pair of points (x,2’), there is a rational curve in the family joining them.

Let us make this precise. In this section, by a rational curve in X
we mean a (possibly constant) rational map f: P! --» X; by Proposi-
tion [3.6.5)(b), it would be equivalent to require f to be a morphism. Say that
two points z, 2 € X (k) can be joined by a rational curve if there is a ratio-
nal curve f such that z, 2’ € f(P'). An algebraic family of rational curves,
parameterized by a base variety B, is a rational map F': B x P! --5 X this
is a family in the sense that for (almost every) b € B(k), the restriction of F’
to {b} x P! defines a rational map P! --» X. Given such-a family, the pairs
of points that it joins are the pairs of the form (F(b,t);F(b,t')) for some
b€ B(k) and t,t' € PY(k).

Definition 9.2.12. The variety X is rationally connected if there is a
variety B and a rational map F: B x P! --» X such that the rational map
BxP'xP' s X x X
(b, t,t") — (E(b,t), F(b,t"))
is dominant.
Proposition 9.2.13. If X is rationally connected, then any general pair of
points can be joined by a rational curve; i.e., there is a dense open subset U

of X x X such that any pair (xz,2') € U(k) can be joined by a rational curve.
The converse holds if k_is-uncountable.

Proof. The proof'is the same as that of Proposition [9.2.9 U

We define separably rationally connected by replacing “dominant” by
“separably dominant” in the definition of rationally connected. Here is the
analogue of Theorem [9.2.11

Theorem 9.2.14. Let X be a nice variety over an algebraically closed field.
Then X is separably rationally connected if and only if X contains a very
free rational curve.

Proof. See [Kol96, Theorem IV.3.7]. O

Moreover, it turns out that if X is separably rationally connected, then
any finite subset of X (k) is contained in a very free rational curve.

Rational connectedness also has a topological implication:

Theorem 9.2.15. If X is a rationally connected variety over C, then the
manifold X (C) is simply connected.
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Proof. See [Cam91] Theorem 3.5] or [KMM92b| 2.5.3]. O

9.2.4. Rationally chain connected varieties.

Definition 9.2.16. A variety X over an algebraically closed field k is ra-
tionally chain connected if there exists a variety B, a proper morphism
C — B whose fibers are connected unions of rational curves, and a rational
map C --» X such that the induced rational map C xg C --+ X x X is
dominant.

If X is rationally chain connected, then a general pair (x,z’) of points
on X can be joined by a chain of rational curves, i.e., there exist points
xo, ..., Ty With zg = x and z, = 2’ such that for ¢ = 0,1,...,n — 1, the
points x; and x;41 can be joined by a rational curve.

Although rational chain connectedness seems weaker than rational con-
nectedness, the definitions turn out to be equivalent under mild hypotheses:

Theorem 9.2.17 (JKMM92b, (2.1)] and |[Kol96, Theorem IV.3.10.3]). A
smooth variety X over a field of characteristic 0'is rationally chain connected
if and only if it is rationally connected.

Theorem [9.2.17 implies that rational connectedness behaves well in fam-
ilies:

Theorem 9.2.18 (Deformation invariance of rational connectedness
[KMM92b, 2.4]). Let k be an algebraically closed field of characteristic 0.
Let S be a connected k-variety. Let m: X — S be a smooth proper morphism
with geometrically integral fibers. If one fiber is rationally connected, then
all fibers are rationally connected.

Sketch of proof. One shows that
e the set-of s € S such that the fiber 7—!(s) has a very free rational curve
is open; and
e the set of s € S such that the fiber 771(s) is rationally chain connected

is closed.

By Theorems [9.2.74] and [0.2.17] both sets equal the set of s € S such that
7n71(s) is rationally connected. A nonempty open and closed subset of a
connected space is the whole space. O

9.2.5. Fano varieties.

Definition 9.2.19. Let X be a nice variety over a field &, and let wyx be its

(=1

canonical sheaf. Call X Fano if w?é is ample.
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Example 9.2.20. If X = P", then w?}(fl) ~ O(n + 1) [Har77, Exam-
ple 11.8.20.1], so X is Fano.

Example 9.2.21. Let X be a nice curve. A line bundle . on X is ample if

and only if deg.Z > 0; applying this to w?}(*l) shows that X is Fano if and
only if 2 — 2¢g > 0, which holds if and only if g = 0.

Example 9.2.22. A nice hypersurface of degree d in P" is Fano if-and only
if d <n.

Proposition 9.2.23. Let L O k be an extension of fields, and let X be a
k-variety. Then X s Fano if and only Xy, is Fano.

Proof. The formation of wx commutes with base change, so the same is
true of w;e;(_l). Also, the property that a'line bundle has global sections
determining a closed immersion is unaffected by field extension, so ampleness
is unaffected by field extension; see |[EGA IVq, 2.7.2]| for a more general
statement. O

Let X be a Fano variety. Let m = dim X. Let K be a canonical divisor
on X. If —K is very ample, then the complete linear system |— K| embeds X
as a subvariety of some P, and the degree of this subvariety is the number of
points (counted with multiplicity) resulting from cutting it with m general
hyperplanes in P"; equivalently, this degree equals the self-intersection num-
ber (—K)™on X. In general, —K is only ample, but some positive integer
multiple of —K is very ample, so again (—K)™ is positive. We define the
degree of X as (—K)™.

@ ‘Warning 9.2.24. The property of being Fano is not invariant under bira-
tional maps between nice varieties. See Remark [9.4.6]

9.2.6. Implications. Throughout this section, X is a nice variety of dimen-
sion d > 1 over C. The following diagram summarizes the known implications
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between the properties we have been discussing:
rational

+

stably rational

#

unirational Fano

rationally chain connected <—=> rationally connected ——=> H°(X,Q%™) =0V¥m > 1
£

uniruled

K = —0OQ.

The symbol # means that the properties are not equivalent, i.e., that there
is a known counterexample to the converse of the implication.

Some remarks:

e Unirational varieties of dimension 1 are rational. Separably unirational
varieties of dimension 2 are rational. In higher dimensions, unirational
does not imply rational; even over C. In fact, there are several invariants
that can be used to.prove nonrationality:

— Intermediate Jacobian: Every smooth cubic 3-fold X in P* is unira-
tional, but-Clemens and Griffiths proved that X is never rational.
They proved that the intermediate Jacobian J3(Y) of a rational
3-fold Y is a product of Jacobians of nice curves, but J3(X) does
not have this form |[CG72, (0.12)]. Beauville, Colliot-Théléne, San-
suc, and Swinnerton-Dyer constructed a nice 3-fold X that is stably
rational but not rational [BCTSSD85|; their nonrationality proof
again relied on the intermediate Jacobian.

— Birational automorphism group: Some (and maybe all) smooth
quartic 3-folds X in P* are unirational [Seg60, V.19], but Iskov-
skikh and Manin proved that such X are never rational [IMT71].
In fact, they showed that Bir X is isomorphic to Aut X, which is
finite [IMM63], Theorem 2|, while Bir P? is enormous.

— Torsion in H3(X,Z): Artin and Mumford gave the example of a
double cover X of P? branched along a quartic surface [AM72, §2].
They showed that X is not rational by showing that H?(X, Z)ors
is a birational invariant of 3-folds that distinguishes X from P3
|[AMT72, Proposition 1]. In fact, for the same reason, X is not even
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stably rational. The group H? (X, Z)tors can also be interpreted as
the unramified cohomology group H2 (X, Q/Z).

— Higher unramified cohomology: Colliot-Théléne and Ojanguren con-
structed a nice 6-fold X such that the unramified cohomology group
H2,.(X,Q/Z) is nonzero even though H2 (X,Q/Z) = 0; the former
implies that X is not stably rational [CTO®89|. For rationally con-
nected varieties, the group H3 (X, Q/Z) also measures the failure
of the integral Hodge conjecture |[CTV12, Théoréme 1.1].

The theorem that Fano varieties in characteristic 0 are- rationally
connected was proved independently in |[Cam92, Corollaire 3.2] and
[KMM92a, Theorem 0.1].

It is expected that there exist Fano varieties (and hence rationally con-
nected varieties) that are not unirational. For instance, smooth hyper-
surfaces of degree n in P™ are Fano, but maybe for large n they are not
unirational.

It is easy to construct rationally connected varieties that are not Fano,
or even rational varieties that are not Fano. See Remark for
example.

Mumford conjectured that X is rationally connected if and only if
HY(X,Q%™) = 0 for all m > 1 [Kol96, Conjecture IV.3.8.1]. This
is known for d < 3 [KMM92b| Theorem 3.2]. (Here Qx is the sheaf
of 1-forms, not the canonical sheaf, so Q?}m is a vector bundle of rank
dam.)

If C is a curve of positive genus, then C x P! is uniruled, but not
rationally connected, because any rational curve in C' x P! maps to a
point under the projection to C.

It is conjectured that uniruled is equivalent to Kk = —ooc.

Remark 9.2.25. It is not known whether there exists a single nice hyper-
surface of degree at least 4 that is rational.

9.2.7. Non-algebraically closed ground fields.

Definition 9.2.26. Let X be a nice variety over an arbitrary field k. Call
X rational, unirational, separably unirational, ruled, uniruled, separably
uniruled, rationally connected, separably rationally connected, or ratio-
nally chain connected, if X7 is.

If we want to say that the property truly holds over k, we use the prefix

k-. For instance, X is k-unirational if there exists a dominant rational map
Pfgf --+ X for some N > 0.
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Conjecture 9.2.27 (Colliot-Théléne). Let X be a nice variety over a num-
ber field k. Suppose that X is rationally connected. Then the Brauer—Manin
obstruction to the local-global principle is the only obstruction.

See [PV04) Remark 3.3| for the history of Conjecture [9.2.27

9.3. Classification of surfaces

9.3.1. Proper birational morphisms.
(References: |Lic68|, [Lip69, §27|, [Mor82, Chapter 2, Section 3|)

9.3.1.1. Terminology. Throughout Section [9.3.1] we use the following termi-
nology. A regular surface is a regular integral separated noetherian scheme
X of dimension 2. A curve in X is an integral codimension 1 subscheme
C C X such that C is proper over some field k£ (the latter condition is au-
tomatic if X itself is proper over k). The properness assumption is there
so that for any divisor D on X we may define C.D := deg, Ox(D)|c
(cf. [Lic68|, 1.§1]); since there may be more than one possibility for & given
C, we write (C.D);, when necessary. Curves are called skew if they do not
intersect. Call a curve C' contractible if there is a proper birational mor-
phism f: X — Y to another regular surface such that f(C) is a closed point
P €Y and f restricts to an isomorphism from X — C to Y — {P}. (Some
authors relax the regularity requirement on Y and allow Y to be only normal
at P; see |[Lip69, §27|.) If C'is contractible, then Y, P, and f are uniquely
determined up to isomorphism: the key point is that normality forces Oy p
to equal (e Ox,» € k(X). Call a curve C a (—1)-curve if C' ~ P} and
(C.C) = —1 for some field L; then call L = H(C, 0¢) the constant field
of C.

9.3.1.2. Blowing up a reqular surface at a closed point. The blowup of a
regular surface Y at a closed point P is another regular surface X with
a proper. birational morphism X — Y [Lic68, II.A.1.5]. In this case, the
fiber above P is a contractible curve C' C X called the exceptional divisor.
Moreover, C is a (—1)-curve with constant field k(P) |Lic68| Propositions
I1.A.2.9 and 11.A.2.8].

9.3.1.3. Factorization of birational maps. Any finite composition of blowups

as above is a birational morphism. Part @ of the following is a converse.

Theorem 9.3.1 (Factorization of birational morphisms). Let f: X — Y be
a proper birational morphism between reqular surfaces.

(a) The morphism f factors as a sequence of blowups at closed points.

(b) If moreover X is smooth over a field k and f is a k-morphism, then
(i) Y is smooth over k, and
(ii) each point P blown up in (a)) is such that k(P)/k is separable.
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Proof.

(a) See |Lic68, Theorem 1.15|.

(b) (This proof is loosely inspired by |[Coo88|.) By working our way down
the sequence of blowups, it suffices to handle the case in which X =
Blp Y for some regular surface Y and closed point P € Y.

(ii) Factor [k(P) : k] as si, where s is the separable degree and 7 is
the inseparable degree. By Section the exceptional divisor
C C X is isomorphic to Pll{( P) and satisfies

C.C = k(P) : k] (C.C)w(py = —[k(P) : k] = —si.

On the other hand, since k(P) ®; k is a product of 5 local rings
each of length i over itself, the pullback of C' to a divisor on X
equals Z‘;:l iD; for some skew integral divisors-Dj; C Xz conjugate
to each other; thus C.C' = Y7%_,(iD;).(iDy) = 5i?D1.D1. So si?
divides —si. Hence ¢ = 1; i.e., k(P)/k is separable.

(i) By Proposition [3.5.22iil), ¥ is smooth at P. On the other hand,
Y —{P} is isomorphic to an open subscheme of the smooth scheme
BlpY, so Y — {P} is smooth. Hence Y is smooth. O

Theorem 9.3.2 (Factorization of birational maps). Let ¢: X --» Y be a
birational map between regqular proper surfaces over a field k.

(a) There exists a reqular surface Z with proper birational morphisms f and
g forming a commutative diagram of rational maps

z
N
Xx---2_ _.y

(b) The rational map ¢ factors into blowups at closed points and inverses of
such-blowups.

Proof.

(a) This is a consequence of [Lip69, Theorem 26.1].
(b) Combine () with Theorem [9.3.1](al). O

9.3.1.4. Criteria for contractibility. One would like an intrinsic criterion for
contractibility of a curve C' C X, instead of a criterion involving an unspec-
ified proper birational morphism to some unspecified Y. For smooth pro-
jective varieties X over an algebraically closed field, Castelnuovo gave the
following criterion: C'is contractible if and only if C' ~ ]P’/ll€ and C.C = —1
|[Har77, Theorem V.5.7|. Here is the generalization to regular surfaces.
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Theorem 9.3.3 (Criteria for contractibility). Let X be a regular surface
that is proper over a noetherian ring A. For a curve C C X mapping to a
point in Spec A, the following are equivalent.

(i) C is contractible.

(ii) There is a reqular surface Y proper over A, a closed point P € Y, and
an A-isomorphism X ~ BlpY sending C to the exceptional divisor.

(iii) C is a (—1)-curve.

If X is a nice surface over a field A =k, then additional equivalent. criteria
may be given (in these, K denotes a canonical divisor on X):

(iv) C.C <0 and C.K < 0.

(v) Cr, =i, E; for some Gp-orbit {En, ..., En} of skew (—1)-curves on
Xy, with constant field ks. In this case, C.C' = —n, C.K = —n, and C
is geometrically reduced.

Proof.

:: The proper birational morphism- contracting C factors into
blowup morphisms, by Theorem [9.3.1]- Since C' is integral, there can be only
one blowup.

:>: This was mentioned already in Section

:: (This is the difficult part.) The morphism X — Spec A is
projective (|[Lip69| Corollary 27.2]), so this is a special case of |Lip69, The-
orem 27.1].

From now on, X is-a nice surface over a field k.

([ii)=(v): By.Theorem X ~ BlpY for some nice Y and closed
point P € Y with k(P)/k separable. Then X}, is the blowup of Y}, along the
subscheme P, which consists of a &j-orbit in Y (ks), so Cy, is as described.
We can compute C.C' and C.K after base extension to ks: since E;.E; = 0
for i-=£ j, all the quantities are the sum of the quantities for the individual
E;. We have E;.F; = —1 and E;.K = —1 (see Exercise , so the results
follow. Finally, (% is a disjoint union of copies of PL so C is geometrically

E?
reduced.
:>: We have —n < 0.
([iv)=>(): See the proof of [Mor82, Theorem 2.7|. O

Corollary 9.3.4. Let X be a nice surface over a field k. Every (—1)-curve
on Xz is definable over kg, i.e., is the base extension of a (—1)-curve on Xj,
with constant field k.

Proof. We may assume that k is separably closed. Let D be a (—1)-curve
on Xz. Let C be its image under X3 — X . As divisors on Xz, we have
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C; = qD for some ¢ > 1. Thus C.C <0 and C.K < 0. By @ in The-
orem C is a (—1)-curve with constant field ks and C' is geometrically
reduced. Thus C; = D. O

For more general contractibility criteria, including the case of blowing
down entire configurations of curves at once, see |[Art62, Theorems 2.3, 2.7,
and 2.9], [Art66, Corollary 7|, and |[Lip69, Theorem 27.1].

9.3.1.5. Minimal surfaces.

Definition 9.3.5. Let X be a regular surface. Call X relatively minimal
if every proper birational morphism from X to another regular surface is an
isomorphism. If in addition, every birational map from a regular surface Y
to X is a morphism, call X minimal.

Proposition 9.3.6. A regular surface X is relatively minimal if and only
if it does not contain a curve C satisfying one of the equivalent conditions
of Theorem[9.3.3. In particular, a nice surface X over a field k is relatively
minimal if and only if X, does not contain_a &y-orbit of skew (—1)-curves
with constant field ks.

Corollary 9.3.7. Relative minimality is unchanged by inseparable extension

of the base field.

@ Warning 9.3.8. Relative minimality can be lost under separable extension
of the base field. It can happen that X}, contains (—1)-curves but that each
such curve intersects one of its other Galois conjugates.

Theorem 9.3.9 (Existence of relatively minimal models). Let X be a nice
surface over a field k. Then there exists a proper birational morphism from
X to some relatively minimal surface.

Proof. If not, then one could iteratively blow down orbits of (—1)-curves on
Xk, as in Theorem forever. But then one could do the same over k,
which is impossible by the proof of [Har77, Theorem V.5.8|. O

@ Warning 9.3.10. There can exist more than one relatively minimal surface
in a birational equivalence class, as the following example shows.

Example 9.3.11. The obvious isomorphism A' x A’ — A? defines a bi-
rational map P! x P! --s P2 indeterminate only at P := (00,00). The
indeterminacy can be resolved by blowing up P on P! x P! to produce a
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surface X fitting in a diagram

More explicitly, the strict transforms of P! x {oo} and {oo} x P! are skew
(—1)-curves in X, and blowing them down produces P2. Both P* x'P! and
IP? are relatively minimal, but not minimal.

On the other hand, we have the following.

Proposition 9.3.12 (Uniqueness of minimal models). If X; and Xy are
minimal regular surfaces in the same birational equivalence class, then they
are isomorphic.

Proof. The inverse rational maps Xj --=»"Xs and X5 --» X; extend to
morphisms whose composition in either order is the identity. O

9.3.1.6. Fibered surfaces. Thereis a variant of the theory of minimal surfaces
in which everything is fibered over a noetherian scheme S. To obtain this
variant, change ‘“regular surface” to “regular surface equipped with a proper
morphism to S”, and change “proper birational morphism” to “proper bira-
tional S-morphism” ‘everywhere; this also changes the notions of relatively
minimal and minimal. Then in Theorem [9.3.3] consider only curves C' that
map to a closed point in S.

A key setting is the one in which S is the spectrum of a discrete valuation
ring, or more generally an integral separated Dedekind scheme. If Z is
a nice curve of genus g > 1 (or more generally, a regular proper integral
curve of positive arithmetic genus) over the function field of such an S, then
among regular surfaces proper over S with generic fiber Z, there exists a
minimal one: this is a consequence of |[Lic68| Theorem 4.4]. It is unique by
Proposition and is called the minimal regular proper model of Z.
See also |[Chi86|.

9.3.2. Surfaces over algebraically closed fields.

(Reference: [Mor82| Chapter 2|)

Definition 9.3.13. Let X be a nice variety over a field. Let D be a divisor
on X. Then
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(i) D is numerically equivalent to 0 if D.C' = 0 for all closed integral
curves C' on X.

(ii) D is nef (numerically effective) if D.C' > 0 for all closed integral curves
C on X.

The same terminology applies to the line bundle associated to D.

Theorem 9.3.14 (Minimal models of surfaces). Let k be an algebraically
closed field. Let X be a relatively minimal nice surface over k, with canonical
divisor K. Then exactly one of the following holds:

(1) X is rational or ruled (in which case k(X) = —o0), or
(ii) K is nef (in which case k(X) € {0,1,2} and X is minimal).

Proof. See [Mor82, Corollary 2.2 and Lemma 2.4]. O

A more refined classification is possible. For the rest of Section [9.3.2
we assume that k is algebraically closed and X is a relatively minimal nice
surface over k. First, one can subdivide according to the Kodaira dimension
k= k(X):
9.3.2.1. K= —o0.

Rational surfaces. The only Hirzebruch surface F), that contains a (—1)-
curve is Fy, which is isomorphic to the blowup of P? at a point. Therefore
the rational surfaces

Foy,P? F, F, ..
are all relatively minimal. One can show that every rational relatively min-
imal surface is isomorphic to one of these. We have Fy ~ P! x P!.

Ruled surfaces.-Given a nice curve C and a rank 2 vector bundle & on
C, the ruled surface P& — C' is relatively minimal. Every ruled relatively
minimal surface is isomorphic to one of these.

9.3.2.2. k£ = 0. In this section, we assume that chark # 2; see |BMT6)|
for the full details in characteristic 2. The minimal surfaces of Kodaira
dimension 0 are the abelian surfaces (2-dimensional abelian varieties), K3
surfaces (nice surfaces X with H'(X, 0x) = 0 and K = 0), and quotients
of these by a finite group scheme acting freely. A quotient so obtained that
is not an abelian surface or a K3 surface is either

e a bielliptic surface (see Definition [8.6.2)), or

e an Enriques surface (a quotient of a K3 surface by an étale group scheme
of order 2).

Example 9.3.15. If G is a finite subgroup scheme of an abelian surface A
acting by translation on A, then A/G is another abelian surface, with an
isogeny A — A/G.
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Example 9.3.16 (Bielliptic surface). Let E; and E3 be elliptic curves. Let
t € Ey(k) be of order exactly 2. Let G = Z/27Z act on E; x Es so that the
nontrivial element acts as (z,y) — (z + ¢, —y) for some nontrivial ¢t € Ea(k)
of order 2. Let X be the quotient of Fy x Fs by the action of G. Then
X is a bielliptic surface. If X were an abelian surface, then the morphism
Fy x E5 — X would be a homomorphism up to translation, so its geometric
fibers, the G-orbits in (E; x Es)(k), would all be cosets of one subgroup,
but they are not. If X were a K3 surface, it would be algebraically simply

connected, but X has E; X Es as a nontrivial connected finite étale cover.

9.3.2.3. kK = 1. All surfaces with x = 1 are elliptic surfaces, surfaces fibered
over a curve C such that all but finitely many fibers are of genus 1, except
that if k is of characteristic 2 or 3, there are also quasi-elliptic surfaces,
which are fibered into singular curves of arithmetic genus 1. But not all
elliptic (or quasi-elliptic) surfaces X have k = 1; in general all one can say
is k € {—00,0,1}. If the base curve C is of genus at least 2, then k = 1 is
guaranteed, but if C' has genus 0 or 1, then .one needs to know more about
X to determine k.

9.3.2.4. kK = 2. These are, by definition, surfaces of general type. As a
warmup, recall that curves of general type can be classified by their genus
g € {2,3,...}, and for each g, there is a quasi-projective variety M, whose
k-points correspond to the isomorphism classes of genus g curves. There is
an analogue for surfaces, in which g is replaced by a pair of integers (e, K2).
Here e is the topological Euler characteristic, defined by

4
6= (*1)2‘ dim HiBetti(Xa Q)
=0
if Kk =C, or.by
4
e:= Z(—l)i dim HZ, (X, Q)
=0

if k is an arbitrary algebraically closed field, where £ is a prime chosen so that
¢ # char k. And K? is the self-intersection of a canonical divisor. It is not
known what the range of possibilities for (e, K?) is, but for fixed (e, K?), the
general type minimal surfaces over C are parameterized by a coarse moduli
space that is a quasi-projective variety |Gie77].

Definition 9.3.17. Let k& be an algebraically closed field. A nice k-variety
X of arbitrary dimension is called a minimal model if K is nef. When X
is a surface, this notion coincides with the notion of minimal surface given
in Definition because of Theorem and the multiple examples of
relatively minimal rational and ruled surfaces.

9.3.3. Surfaces over arbitrary fields.
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(Reference: |Mor82, Chapter 2, Section 3])

Definition 9.3.18. Let X be a nice surface over a field k. The group Num X
is the quotient of Pic X by the subgroup of classes of line bundles numerically
equivalent to 0. We have Num X ~ Z* for some p > 1 called the Picard
number of X.

% Warning 9.3.19. The Picard number is unchanged by inseparable extension
of the base field, but it can grow under separable extension. For example, let
X = Resc/r P!. Then X¢ ~ IP)(%: X IP’}C, so Pic X¢ ~ Z2, but complex conjuga-
tion interchanges the coordinates, so by Exercise Pic X is isomorphic
to the diagonal copy of Z in Z2. Thus p(X) = 1 and p(X¢) = 2.

The following builds on the work of many people, including Castelnuovo,
Enriques, Manin, Iskovskikh, and Mori.

Theorem 9.3.20. Let k be a field. Let X be a nice k-surface, and let K be
a canonical divisor. Then at least one of the following properties holds:
(i) X is not relatively minimal (see Proposition[9.3.6).
(ii) p=1 and —K is ample.
(iii) p =2 and X is a conic bundle over a nice k-curve Y such that for every
y €Y, the fiber Xy is isomorphic to an irreducible and geometrically
reduced k(y)-curve of degree 2 in Pi(y) (i.e., each geometric fiber is

either a smooth conic or_a union of two intersecting lines defined over
a separable quadratic extension, each a Galois conjugate of the other).

(iv) K is nef.

Moreover, these four classes of varieties are pairwise disjoint, except that
some surfaces satisfy both and .

Proof. See |Mor82, Theorem 2.7|. For the classification of surfaces satis-
fying both (i) and (i), see [Isk79, Theorem 4. O
Corollary 9.3.21.

(a) A rational surface over k is birational (over k) to either a del Pezzo
surface (see Section|9.4)) or a conic bundle over a conic.

(b) A ruled surface over k is birational to a conic bundle over a nice k-curve.

Remark 9.3.22. The arithmetic of del Pezzo surfaces will be discussed

in detail in Section . For the arithmetic of conic bundles, see [SkoO1,
Chapter 7).

Corollary 9.3.23. Let k be a separably closed field.

(a) The relatively minimal rational surfaces over k are P* and the Hirzebruch
surfaces F,, forn € {0} U{2,3,...}.
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(b) The relatively minimal ruled surfaces over k with base of positive genus
are the surfaces P& — Y, where Y is a nice k-curve of positive genus
and & is a rank 2 vector bundle on'Y .

Proof. In Theorem [9.3.20] we are in case or . If , then X3 ~ IP’%,
so X ~ P? by Remark [4.5.9

If 7 then the conic bundle X corresponds to an element of
H'(Y,PGLy) — H*(Y,G,,) = BrY,

but the latter is trivial by Theorem [6.9.7. Thus X ~ P& for some rank 2
vector bundle & on Y. Finally, if Y itself is a conic, then Y ~ P! (Re-
mark again), and the classification of vector bundles on P! shows that
& ~ 0 @ O(n) for some n > 0. Finally, P& is relatively minimal if and only
if (P&)z is relatively minimal, which holds if and only n # 1. O

Proposition 9.3.24 ([Wei56|). Let k be a finite field F;. Let X be a nice
rational surface over k. Then

#X (k) = ¢* + (tr Frob, | Pic X7)q + 1,
and X has a k-point.

Proof. Apply Proposition [0.2.6] to Xz and then use the Lefschetz trace for-
mula (7.5.18) to obtain the formula. Since tr Frob, | Pic X3 € Z, we obtain
#X (k) =1 (mod q), so X (k) # 0. O

Remark 9.3.25. As mentioned in in Section the final conclusion
of Proposition [0.3.24] generalizes to rationally chain connected nice varieties
|Esn03| Corollary 1.3].

9.4. Del Pezzo surfaces

(Reference: |Kol96, I11.3])

Recall from Section [0.2.5] that a Fano variety is a nice variety for which
—K (an anticanonical divisor) is ample.

Definition 9.4.1. A del Pezzo surface is a (nice) Fano variety of dimension
2.

Let X be a del Pezzo surface. According to the general definition for
Fano varieties in Section the degree of X is the positive integer d :=
(-K).(—-K) = K.K. Tt then turns out that dimH%(X,-K) = d + 1
|Kol96, Corollary I111.2.3.5.2], and that —K is very ample when d > 3
|Kol96, Proposition I11.3.4.3]. Thus, if d > 3, then |-K| embeds X as
a degree d surface in P,
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9.4.1. Del Pezzo surfaces over a separably closed field.

Lemma 9.4.2. Let k be a separably closed field. Let X be a del Pezzo
surface over k. If C is a closed integral curve on X with C.C < 0, then C
is a (—1)-curve with constant field k.

Proof. Since —K is ample, C.(—K) > 0. Theorem [9.3.3|[iv)=(+) implies
that C' is a (—1)-curve with constant field k. O

Definition 9.4.3. Let 0 < r < 8. Points Py, ..., P. € P?(k) are in general
position if they are distinct and none of the following hold:

(i) Three of the P; lie on a line.
(ii) Six of the P; lie on a conic.

(iii) Eight of the P; lie on a singular cubic, with one of these eight points at
the singularity.

Theorem 9.4.4 (Classification of del Pezzo surfaces). Let k be a separably
closed field. Let X be a del Pezzo surface over k. Then exactly one of the
following holds:

o X ~P! x P! then deg X = 8.

o There exists v with 0 < r- < 8 such that X is the blowup of P2 at r
k-points in general position; then deg X =9 —r € {1,2,...,9}.

Proof. Let X — Y be a proper birational morphism to a relatively minimal
surface Y. By Corollary [0.3.23] Y ~ P? or Y ~ F,, for some n € {0} U Z>s.
A section of F, — P! has self-intersection —n |[Har77, Proposition V.2.9],
and its strict transform in X would have self-intersection at least as negative,
which contradicts-Lemma if n>2 Thus Y ~P? or Y ~ P! x PL. By
Theorem , X is obtained from Y by iteratively blowing up k-points.
The blowup of P! x P! at a k-point is isomorphic to the blowup of P? at two
k-points (Example , so we need only consider blowups of P?. If we
ever blow up a point on an exceptional curve from a previous blowup, the
strict transform C' of that exceptional curve in X would satisfy C.C' < —1,
contradicting Lemma Thus X is the blowup of P? at a finite subset
{P1,...,P.} of X(k). Since —K is ample, 0 < (—K).(-K)=K.K=9—r
(the last equality follows from [Har77, Proposition V.3.3]), so r < 8. If three
of the P; were on a line, the strict transform C of that line would satisfy
C.C <1-3 < =2, contradicting Lemma [9.4.2] The other restrictions on
the P; are similarly derived; see [Dem80, Théoréme 1(i)<(iii)]. O

Remark 9.4.5. If X is as in Theorem then Pic X ~ Z19~9: this is
true when X is P? or P! x P!, and blowing up a k-point adds a new factor of
Z |Har77, Proposition V.3.2]. One can also describe the canonical class and
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the intersection pairing on Pic X explicitly with respect to a suitable basis
[Man86, Theorem 23.8|.

Remark 9.4.6. If r > 9 and X is the blowup of P? at any r points, then
K.K=9—r<0,s0 X cannot be a del Pezzo surface. This shows that the
property of being a del Pezzo surface is not invariant under birational maps.

Proposition 9.4.7 (Exceptional curves on a del Pezzo surface). Let k be
a separably closed field. Let X — P? be the blowup of points x1,...,xy in
general position, where 0 < r < 8. Then the exceptional curves are the fibers
above the x; together with the strict transforms of the following curves-in P?:
(i) a line through 2 of the x;;
(ii) a conic through 5 of the x;;

(iii) a cubic passing through 7 of the x;, such that one of them is a double
point (on the cubic);

(iv) a quartic passing through 8 of the x;, such that three of them are double
points;

(V) a quintic passing through 8 of the x;; such that siz of them are double
points; and

(Vi) a sextic passing through 8 of the x;, such that seven of them are double
points and one of them is a triple point.

Proof. See [Man86, Theorem 26.2|. O

9.4.2. Del Pezzo surfaces over an arbitrary field. The proof of the
following