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Abstract. Let K be a field that is complete with respect to a nonarchimedean absolute
value such that K has a countable dense subset. We prove that the Berkovich analytification
V an of any d-dimensional quasi-projective scheme V over K embeds in R2d+1. If, moreover,
the value group of K is dense in R>0 and V is a curve, then we describe the homeomorphism
type of V an by using the theory of local dendrites.

1. Introduction

In this article, valued field will mean a field K equipped with a nonarchimedean absolute
value | | (or equivalently with a valuation taking values in an additive subgroup of R).
Let K be a complete valued field. Let V be a quasi-projective K-scheme. The associated
Berkovich space V an [Ber90, §3.4] is a topological space that serves as a nonarchimedean
analogue of the complex analytic space associated to a complex variety. (Actually, V an

carries more structure, but it is only the underlying topological space that concerns us
here.) Although the set V (K) in its natural topology is totally disconnected, V an is arcwise
connected if and only if V is connected; moreover, the topological dimension of V an equals
the dimension of the scheme V [Ber90, Theorems 3.4.8(iii,iv) and 3.5.3(iii,iv)]. Also, V an is
locally contractible: see [Ber99,Ber04] for the smooth case, and [HL12, Theorem 13.4.1] for
the general case. Although Berkovich spaces are not always metrizable, they retain certain
countability features in general; cf. [Fav11] and [Poi13].

Our goal is to study the topology of V an under a countability hypothesis on K with its
absolute value topology. For instance, we prove the following:

Theorem 1.1. Let K be a complete valued field having a countable dense subset. Let V
be a quasi-projective K-scheme of dimension d. Then V an is homeomorphic to a topological
subspace of R2d+1.

Remark 1.2. The hypothesis that K has a countable dense subset is necessary as well as
sufficient. Namely, K embeds in (A1

K)an, so if the latter embeds in a separable metric space
such as Rn, then K must have a countable dense subset.
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Remark 1.3. The hypothesis is satisfied when K = Qp or Fp((t)). It is satisfied also when K
is the completion of an algebraic closure of a completion of a global field k, i.e., when K is

Cp := Q̂p or its characteristic p analogue F̂p((t)), because the algebraic closure of k in K is
countable and dense. It follows that the hypothesis is satisfied also for any complete subfield
of these two fields.

Recall that a valued field is called spherically complete if every descending sequence of balls
has nonempty intersection. Say that K has dense value group if | | : K× → R>0 has dense
image, or equivalently if the value group is not isomorphic to {0} or Z.

Remark 1.4. The separability hypothesis fails for any spherically complete fieldK with dense
value group. Proof: Let (ti) be a sequence of elements of K such that the sequence |ti| is
strictly decreasing with positive limit. For each sequence ε = (εi) with εi ∈ {0, 1}, define

Uε := {x ∈ K : |x−
∑n

i=1 εiti| < |tn| for all n} .
The Uε are uncountably many disjoint open subsets of K, and each is nonempty by definition
of spherically complete.

Let us sketch the proof of Theorem 1.1. We may assume that V is projective. The key is a
result that presents V an as a filtered limit of finite simplicial complexes. Variants of this limit
description have appeared in several places in the literature (see the end of [Pay09, Section 1]
for a summary); for convenience, we use [HL12, Theorem 13.2.4], a version that does not
assume that K is algebraically closed (and that proves more than we need, namely that the
maps in the inverse limit can be taken to be strong deformation retractions). Our hypothesis
on K is used to show that the index set for the limit has a countable cofinal subset. To
complete the proof, we use a well-known result from topology, Proposition 3.1, that an inverse
limit of a sequence of finite simplicial complexes of dimension at most d can be embedded
in R2d+1.

Remark 1.5. If we wanted to prove only that the space V an in Theorem 1.1 is metrizable,
we could avoid the use of [HL12, Theorem 13.2.4], and instead simply use the Urysohn
metrization theorem, as we now explain. Let K0 be a countable dense subset of K. Let
A be the (countable) set of polynomials in K[x1, . . . , xn] whose nonzero coefficients lie in
K0. Suppose that D is a Berkovich n-dimensional polydisk. For each a ∈ A, let ra be an
upper bound for a on D. The map sending a seminorm on K[x1, . . . , xn] to its values on
A embeds D in the space

∏
a∈A[0, ra] with the product topology, and the latter is second

countable, so D is second countable. Next, (An
K)an is a countable union of such polydisks

D, and for any affine variety V0 the space V an
0 is a subspace of some (An

K)an, and for any
finite-type K-scheme V , the space V an is a finite union of such spaces V an

0 , so all of these
are second countable. If V is a proper K-scheme, then V an is also compact and Hausdorff
[Ber90, Theorems 3.4.8(ii) and 3.5.3(ii)], so the Urysohn metrization theorem applies to
V an. More generally, if V is any separated finite-type K-scheme, Nagata’s compactification
theorem [Nag62] (see [Lüt93,Con07] for modern treatments) provides an open immersion of
V into a proper K-scheme V , and then V an is a subspace of V an, so V an is metrizable again.

Remark 1.6. Although V an is metrizable, it typically has no canonical metric. To be precise,
if K is nondiscrete, there is no metric on (P1

K)an that is Aut(P1
K)-invariant. This is because

Aut(P1
K) acts transitively on pairs of points of P1(K), so all distances would have be the
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same, contradicting the fact that the subspace topology on P1(K) induced from (P1
K)an is

the usual, nondiscrete one. See Remark 8.7, however.

Remark 1.7. It seems likely also that Theorem 1.1 holds for any separated finite-type K-
scheme V of dimension d.

Our article is organized as follows. Sections 2 and 3 give a quick proof of Proposition 3.1.
Section 4 proves a result needed to replace K by a countable subfield, in order to obtain
a countable index set for the inverse limit. Section 5 combines all of the above to prove
Theorem 1.1. The final sections of the paper study the topology of Berkovich curves: after
reviewing and developing the theory of dendrites and local dendrites in Sections 6 and 7,
respectively, we show in Section 8 how to obtain the homeomorphism type of any Berkovich
curve over K as above. For example, as a special case of Corollary 8.2, we show that (P1

Cp
)an

is homeomorphic to a topological space first constructed in 1923, the Ważewski universal
dendrite [Waż23], depicted in Figure 1.1

2. Approximating maps of finite simplicial complexes by embeddings

If X is a topological space, a map f : X → Rn is called an embedding if f is a homeo-
morphism onto its image. For compact X, it is equivalent to require that f be a continuous
injection. When we speak of a finite simplicial complex, we always mean its geometric real-
ization, a compact subset of some Rn. A set of points in Rn is said to be in general position
if for each m ≤ n− 1, no m+ 2 of the points lie in an m-dimensional affine subspace.

Lemma 2.1. Let X be a finite simplicial complex of dimension at most d. Let ε ∈ R>0.
For any continuous map f : X → R2d+1, there is an embedding g : X → R2d+1 such that
|g(x)− f(x)| ≤ ε for all x ∈ X.

Proof. The simplicial approximation theorem implies that f can be approximated within
ε/2 by a piecewise linear map g0. For each vertex xi in the corresponding subdivision of X,
in turn, choose yi ∈ R2d+1 within ε/2 of g0(xi) so that the yi are in general position. Let
g : X → R2d+1 be the piecewise linear map, for the same subdivision, such that g(xi) = yi.
Then g is injective, and g is within ε/2 of g0, so g is within ε of f . �

3. Inverse limits of finite simplicial complexes

Proposition 3.1. Let (Xn)n≥0 be an inverse system of finite simplicial complexes of dimen-
sion at most d with respect to continuous maps pn : Xn+1 → Xn. Then the inverse limit
X := lim←−Xn embeds in R2d+1.

Proof. For m ≥ 0, let ∆m ⊆ Xm × Xm be the diagonal, and write (Xm × Xm) − ∆m =⋃∞
n=mCmn with Cmn compact. For 0 ≤ m ≤ n, let Dmn be the inverse image of Cmn in

Xn ×Xn. Let Kn =
⋃n
m=1Dmn. Since Kn is closed in Xn ×Xn, it is compact.

For n ≥ 0, we inductively construct an embedding fn : Xn → R2d+1 and numbers αn, εn ∈
R>0 such that the following hold for all n ≥ 0:

1 We believe that ours is the first topologically accurate depiction of (P1
Cp
)an in the literature: to obtain

the correct topology, the branches emanating from each branch point must have diameters tending to 0. In
our depiction, all branches (including branches of . . . of branches) are similar; but eventually, at a scale too
small to see on the page, they must cease to meet at equal angles and their diameters should decrease faster
than geometrically, in order to avoid unwanted intersections.
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Figure 1. The Berkovich projective line over Cp, also known as the Ważewski
universal dendrite.
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(i) If (x, x′) ∈ Kn, then |fn(x)− fn(x′)| ≥ αn.
(ii) εn < αn/4.
(iii) εn < εn−1/2 (if n ≥ 1).
(iv) If x ∈ Xn+1, then |fn+1(x)− fn(pn(x))| ≤ εn.
Let f0 : X0 → R2d+1 be any embedding (apply Lemma 2.1 to a constant map, for instance).
Now suppose that n ≥ 0 and that fn has been constructed. Since fn is injective and Kn

is compact, we may choose αn ∈ R>0 satisfying (i). Choose any εn ∈ R>0 satisfying (ii)
and (iii). Apply Lemma 2.1 to pn ◦ fn to find fn+1 satisfying (iv). This completes the
inductive construction.

Now
∑∞

i=n εi < 2εn < αn/2 by (iii) and (ii). Let f̂n be the composition X → Xn
fn→ R2d+1.

For x ∈ X, (iv) implies |f̂n+1(x) − f̂n(x)| ≤ εn, so the maps f̂n converge uniformly to a
continuous map f : X → R2d+1 satisfying |f(x)− fn(xn)| < αn/2.

We claim that f is injective. Suppose that x = (xn) and x′ = (x′n) are distinct points
of X. Fix m such that xm 6= x′m. Fix n ≥ m such that (xm, x

′
m) ∈ Cmn. Then (xn, x

′
n) ∈

Dmn ⊆ Kn. By (i), |fn(xn)− fn(x′n)| ≥ αn. On the other hand, |f(x)− fn(xn)| < αn/2 and
|f(x′)− fn(x′n)| < αn/2, so f(x) 6= f(x′). �

Remark 3.2. Proposition 3.1 was proved in the 1930s. Namely, following a 1928 sketch by
Menger, in 1931 it was proved independently by Lefschetz [Lef31], Nöbeling [Nöb31], and
Pontryagin and Tolstowa [PT31] that any compact metrizable space of dimension at most d
embeds in R2d+1. The proofs proceed by using Alexandroff’s idea of approximating compact
spaces by finite simplicial complexes (nerves of finite covers), so even if it not obvious that
the 1931 result applies directly to an inverse limit of finite simplicial complexes of dimension
at most d (i.e., whether such an inverse limit is of dimension at most d), the proofs still
apply. And in any case, in 1937 Freudenthal [Fre37] proved that a compact metrizable space
is of dimension at most d if and only if it is an inverse limit of finite simplicial complexes
of dimension at most d. See Sections 1.11 and 1.13 of [Eng78] for more about the history,
including later improvements.

4. Berkovich spaces over noncomplete fields

Berkovich analytifications were originally defined only when the valued field K was com-
plete [Ber90, Sections 3.4 and 3.5]. For a quasi-projective variety V over an arbitrary valued
field K, there are two approaches to defining the topological space V an:
1. Use the same definition as for complete fields in [Ber90], in terms of seminorms.
2. Use a definition as in [HL12, Section 13.1] in terms of types over K ∪ R.
As shown in [HL12, Section 13.1], these two definitions yield homeomorphic topological
spaces when K is complete. One advantage of the second definition is that it can be used in
more general situations, for fields with a valuation whose value group is not contained in R.
But given the aims of this paper, we will use the first definition from now on.

The following proposition shows that no new spaces arise by allowing noncomplete fields:
it would have been equivalent to define V an as (VK̂)an (the subscript denotes base extension).

Proposition 4.1. Let K ≤ L be an extension of valued fields such that K is dense in L.
Let V be a quasi-projective K-variety. Then (VL)an is naturally homeomorphic to V an.
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Proof. This follows by tracing through the construction of V an in [Ber90, Sections 3.4
and 3.5]. The key point is that each multiplicative seminorm on K[t1, . . . , tn] is the restric-
tion of a unique multiplicative seminorm on L[t1, . . . , tn], obtained as the unique continuous
extension. �

Remark 4.2. Proposition 4.1 can be proved also for the second definition, in terms of types
not extending the value group, even for fields with value group not contained in R; the
restriction map remains bijective. This shows that the two definitions produce homeomorphic
topological spaces for any valued field K with value group contained in R, even when K is
not complete.

5. Embeddings of Berkovich spaces

Proposition 5.1. Let K be a valued field having a countable dense subset. Let V be a
projective K-scheme of dimension d. Then V an is homeomorphic to an inverse limit lim←−Xn

where each Xn is a finite simplicial complex of dimension at most d and each map Xn+1 → Xn

is continuous.

Proof. First suppose that K is countable. Since V is projective, V an is compact, so we may
apply [HL12, Theorem 13.2.4] to V an to obtain that V an is a filtered limit of finite simplicial
complexes over an index set I. Since K is countable, the proof of [HL12, Theorem 13.2.4]
shows that I may be taken to be countable, so our limit may be taken over a sequence, as
desired.

Now assume only that K has a countable dense subset. Since V is of finite presentation
over K, it is the base extension of a projective scheme V0 over a countable subfield K0 of K.
By adjoining to K0 a countable dense subset of K, we may assume that K0 is dense in K.
By Proposition 4.1, V an is homeomorphic to (V0)

an, which has already been shown to be an
inverse limit of the desired form. �

Proposition 5.2. Let K be a complete valued field. If U is an open subscheme of V , then
the induced map Uan → V an is a homeomorphism onto an open subspace.

Proof. This is a consequence of the construction of V an by gluing the analytification of affine
open subschemes of V : see step (2) in the proof of [Ber90, Theorem 3.4.1], and see [Ber90,
Proposition 3.4.6(8)] for the statement itself; in that section, the valuation on K is assumed
to be nontrivial, but as remarked in the first sentence of the proof of [Ber90, Theorem 3.5.1],
the same argument works when the valuation is trivial. �

Theorem 1.1 follows immediately from Propositions 3.1, 5.1, and 5.2.

6. Dendrites

When V is a curve, more can be said about V an. But first we recall some definitions and
facts from topology.

6.1. Definitions. A continuum is a compact connected metrizable space (the empty space is
not connected). A simple closed curve in a topological space is any subspace homeomorphic
to a circle. A dendrite is a locally connected continuum containing no simple closed curve.
Dendrites may be thought of as topological generalizations of trees in which branching may
occur at a dense set of points. A point x in a dendrite X is called a branch point if X − {x}
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has three or more connected components; these components are then called the branches at
x.

6.2. Ważewski’s theorems. The following three theorems were proved by Ważewski in his
thesis [Waż23].2

Theorem 6.1. Up to homeomorphism, there is a unique dendrite W such that its branch
points are dense in W and there are ℵ0 branches at each branch point.

The dendrite W in Theorem 6.1 is called the Ważewski universal dendrite.

Theorem 6.2. Every dendrite embeds in W .

Theorem 6.3. Every dendrite is homeomorphic to the image of some continuous map
[0, 1]→ R2.

6.3. Pointed dendrites. A pointed dendrite is a pair (X,P ) where X is a dendrite and
P ∈ X. An embedding of pointed dendrites is an embedding of topological spaces mapping
the point in the first to the point in the second. Let P be the category of pointed dendrites,
in which morphisms are embeddings. By the universal pointed dendrite, we meanW equipped
with one of its branch points w.

Theorem 6.4. Every pointed dendrite (X,P ) admits an embedding into the universal pointed
dendrite (W,w).

Proof. Enlarge X by attaching a segment at P in order to assume that P is a branch point
of X. Theorem 6.2 yields an embedding i : X ↪→ W . Then i(P ) is a branch point of W . By
[Cha91, Proposition 4.7], there is a homeomorphism j : W → W mapping i(P ) to w. Then
j ◦ i is an embedding (X,P )→ (W,w). �

Proposition 6.5. Any dendrite admits a strong deformation retraction onto any of its
points.

Proof. In fact, a dendrite admits a strong deformation retraction onto any subcontinuum [Ill96].
�

7. Local dendrites

7.1. Definition and basic properties. A local dendrite is a continuum such that every
point has a neighborhood that is a dendrite. Equivalently, a continuum is a local dendrite
if and only if it is locally connected and contains at most a finite number of simple closed
curves [Kur68, §51, VII, Theorem 4(i)]. Local dendrites are generalizations of finite connected
graphs, just as dendrites are generalizations of finite trees.

Proposition 7.1.
(a) Every subcontinuum of a local dendrite is a local dendrite.

2Actually, Ważewski used a different, equivalent definition: for him, a dendrite was any image D of a
continuous map [0, 1] → Rn such that D contains no simple closed curve. A dendrite in Ważewski’s sense
is a dendrite in our sense by [Nad92, Corollary 8.17]. Conversely, a dendrite in our sense embeds in R2

by [Nad92, Section 10.37] (or, alternatively, is an inverse limit of finite trees by [Nad92, Theorem 10.27]
and hence embeds in R3 by Proposition 3.1), and is a continuous image of [0, 1] by the Hahn–Mazurkiewicz
theorem [Nad92, Theorem 8.14].
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(b) An open subset of a local dendrite is arcwise connected if and only if it is connected.
(c) A connected open subset U of a local dendrite is simply connected if and only if it contains

no simple closed curve.
(d) A dendrite is the same thing as a simply connected local dendrite.

Proof.
(a) This follows from the fact that every subcontinuum of a dendrite is a dendrite [Kur68,

§51, VI, Theorem 4].
(b) This follows from [Why71, II, (5.3)].
(c) If U contains a simple closed curve γ, [BJ52, Theorem on p. 174] shows that γ cannot

be deformed to a point, so U is not simply connected. If U does not contain a simple
closed curve, then the image of any simple closed curve in U is a dendrite, and hence by
Proposition 6.5 is contractible, so U is simply connected.

(d) This follows from (c). �

7.2. Local dendrites and quasi-polyhedra. Recall from [Ber90, §4.1] that a connected
locally compact Hausdorff space X is called a (one-dimensional) quasi-polyhedron if all con-
nected open subsets of X are countable at infinity and X admits a basis consisting of open
subsets U such that U − U is finite and such that, for every x, y ∈ U , there exists a unique
closed subset contained in U which is homeomorphic to the unit interval with endpoints x
and y. We now relate the notion of quasi-polyhedron to that of local dendrite.

Proposition 7.2.
(a) A connected open subset of a local dendrite is a quasi-polyhedron.
(b) A compact metrizable quasi-polyhedron is the same thing as a local dendrite.
(c) A compact metrizable simply connected quasi-polyhedron is the same thing as a dendrite.
(d) A compact metrizable quasi-polyhedron is special in the sense of [Ber90, Definition 4.1.5].

Proof.
(a) Suppose that V is a connected open subset of a local dendrite X. By [Kur68, §51,

VII, Theorem 1], each point v of V has arbitrarily small open neighborhoods U with
finite boundary. We may assume that each U is contained in a dendrite. Since V is
locally connected, we may replace each U by its connected component containing x:
this can only shrink its boundary. Now each U , as a connected subset of a dendrite, is
uniquely arcwise connected [Why71, p. 89, 1.3(ii)]. So these U satisfy [Ber90, Defini-
tion 4.1.1(i)(a)].

By Proposition 7.8(a) (whose proof does not use anything from here on!), X is home-
omorphic to a compact subset of R3, so every open subset of X is countable at infinity
(i.e., a countable union of compact sets). Thus V is a quasi-polyhedron.

(b) If X is a local dendrite, it is a quasi-polyhedron by (a) and compact and metrizable by
definition.

Conversely, suppose that X is a compact metrizable quasi-polyhedron. In particular,
X is a continuum. Condition (a2) in [Ber90, Definition 4.1.1] implies that X is locally
connected and covered by open subsets containing no simple closed curve. By compact-
ness, this implies that there is a positive lower bound ε on the diameter of simple closed
curves in X. By [Kur68, §51, VII, Lemma 3], this implies that X is a local dendrite.

(c) Combine (b) and Proposition 7.1(d).
8



(d) A dendrite is special since each partial ordering as in [Ber90, Definition 4.1.5] arises
from some x ∈ X, and we can take θ there to be a radial distance function as in
[MO90, Section 4.6], which applies since dendrites are locally arcwise connected and
uniquely arcwise connected. A local dendrite is special since any simply connected sub-
quasi-polyhedron is homeomorphic to a connected open subset of a dendrite. �

7.3. The core skeleton. By [Ber90, Proposition 4.1.3(i)], any simply connected quasi-
polyhedron Q has a unique compactification Q̂ that is a simply connected quasi-polyhedron.
The points of Q̂−Q are called the endpoints of Q. Given a quasi-polyhedron X, Berkovich
defines its skeleton ∆(X) as the complement in X of the set of points having a simply
connected quasi-polyhedral open neighborhood with a single endpoint [Ber90, p. 76]. In the
case of a local dendrite, we can characterize this subset in many ways: see Proposition 7.4.

Lemma 7.3. Let X be a local dendrite. Let G be a subcontinuum of X containing all the
simple closed curves. Let C be a connected component of X − G. Then C is open in X
and is a simply connected quasi-polyhedron with one endpoint, and its closure C in X is a
dendrite intersecting G in a single point.

Proof. Since X is locally connected, X −G is locally connected, so C is open. By Proposi-
tion 7.2(a), C is a quasi-polyhedron. Since C contains no simple closed curve, it is simply
connected by Proposition 7.1(c).

The complement of C ∪ G is a union of connected components of X − G, so C ∪ G is
closed, so it contains C. Since X is connected, C 6= C, so #(C ∩G) ≥ 1.

If C had more than one endpoint, there would be an arc α in Ĉ connecting two of
them, passing through some c ∈ C since Ĉ − C is totally disconnected by [Ber90, Propo-
sition 4.1.3(i)]; the image of α under the induced map Ĉ → X together with an arc in G
connecting the images of the two endpoints would contain a simple closed curve passing
through c, contradicting the hypothesis on G. Also, each point in C ∩ G is the image of a
point in Ĉ − C. Now 1 ≤ #(C ∩G) ≤ #(Ĉ − C) ≤ 1, so equality holds everywhere. �

Proposition 7.4. Let X be a local dendrite. Each of the following conditions defines the
same closed subset ∆ of X.
(i) If X is a dendrite, ∆ = ∅; otherwise ∆ is the smallest subcontinuum of X containing

all the simple closed curves.
(ii) The set ∆ is the union of all arcs each endpoint of which belongs to a simple closed

curve.
(iii) The set ∆ is the skeleton ∆(X) defined in [Ber90, p. 76].

Proof. Let L be the union of the simple closed curves in X. If L = ∅, then X is a dendrite
and (i), (ii), (iii) all define the empty set. So suppose that L 6= ∅.

For each pair of distinct components of L, there is at most one arc α in X intersecting L in
two points, one from each component in the pair (otherwise there would be a simple closed
curve not contained in L). Let D be the union of all these arcs α with L. Any arc β in X
with endpoints in L must be contained in D, since a point of β outside D would be contained
in some subarc β′ intersecting L in just the endpoints of β′, which would then have to be
some α. Thus D is the union of the arcs whose endpoints lie in L. By Proposition 7.1(b), X
is arcwise connected, so D is arcwise connected. By definition, D is a finite union of compact
sets, so D is a subcontinuum.
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By Proposition 7.1(b), any subcontinuum Y ⊆ X is arcwise connected, so if Y contains
L, then for each α as above, Y contains an arc β with the same endpoints as α, and then
β = α (otherwise there would be subarcs of α and β whose union was a simple closed curve
not contained in L); thus Y ⊇ D. Hence D is the smallest subcontinuum containing L.

Let ∆ be the ∆(X) of [Ber90, p. 76]. If x were a point in a simple closed curve γ in X
with a neighborhood Q as in the definition of ∆, then Q must contain γ, since otherwise
Q∩ γ would have a connected component homeomorphic to an open interval I, and the two
points of Î − I would map to two distinct points of Q̂ − Q, contradicting the choice of Q.
Thus ∆ ⊇ L. But D is the smallest subcontinuum containing L, so ∆ ⊇ D. On the other
hand, Lemma 7.3 shows that the points of X −D lie outside ∆. Hence ∆ = D. �

We call ∆ the core skeleton of X, since in [HL12, Section 10] the term “skeleton” is used
more generally for any finite simplicial complex onto which X admits a strong deformation
retraction. If ∆ 6= ∅, then ∆ is a finite connected graph with no vertices of degree less than
or equal to 1 [Ber90, Proposition 4.1.4(ii)].

7.4. G-dendrites.

Proposition 7.5. For a subcontinuum G of X, the following are equivalent.
(i) G contains the core skeleton of X.
(ii) G is a deformation retract of X.
(iii) G is a strong deformation retract of X.
(iv) There is a retraction r : X → G such that there exists a homotopy h : [0, 1] ×X → X

between h(0, x) = x and h(1, x) = r(x) satisfying r(h(t, x)) = r(x) for all t and x (i.e.,
“points are moved only along the fibers of r”); moreover, r is unique, characterized by
the condition that it maps each connected component C of X−G to the singleton C∩G.

Proof. First we show that a retraction r as in (iv) must be as characterized. Suppose that
C is a connected component of X −G. Any c ∈ C is moved by the homotopy along a path
ending on G, and if we shorten it to a path γ so that it ends as soon as it reaches G then γ
stays within X−G until it reaches its final point g and hence stays within C until it reaches
g; Hence g ∈ C ∩G, and r(c) = g. Thus r(C) ⊆ C ∩G. By Lemma 7.3, #(C ∩G) = 1, so r
is as characterized.

(i)⇒(iv): See [Ber90, Proposition 4.1.6] and its proof.
(iv)⇒(iii): Trivial.
(iii)⇒(ii): Trivial.
(ii)⇒(i): The result of deforming the inclusion of a simple closed curve γ in X is a closed

path whose image contains γ [BJ52, Theorem on p. 174], so if G is a deformation retract of
X, then G must contain each simple closed curve, so G contains the core skeleton. �

Given an embedding of local dendrites G ↪→ X, call X equipped with the embedding a G-
dendrite if the image of G satisfies the conditions of Proposition 7.5; we generally identify G
with its image. Let DG be the category whose objects are G-dendrites and whose morphisms
are embeddings extending the identity 1G : G→ G. Given a G-dendrite X and g ∈ G, let Xg

be the fiber r−1(g) with the point g distinguished; say that g is a sprouting point if Xg is not
a point. Theorem 7.6 below makes precise the statement that any G-dendrite is obtained by
attaching dendrites to countably many points of G. Recall that P is the category of pointed
dendrites, defined in Section 6.3.
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Theorem 7.6. There is a fully faithful functor F : DG →
∏

g∈G P sending a G-dendrite
X to the tuple of fibers (Xg)g∈G, and its essential image consists of tuples (Dg) such that
{g ∈ G : #Dg > 1} is countable.
Proof. Let X be a G-dendrite. For each g ∈ G, the homotopy restricts to a contraction
of Xg to g, so Xg is a (pointed) dendrite. By [Kur68, §51, IV, Theorem 5 and §51, VII,
Theorem 1], {g ∈ G : #Xg > 1} is countable.

The characterization of the retraction in Proposition 7.5(iv) shows that a morphism of
G-dendrites X → Y respects the retractions, so it restricts to a morphism Xg → Yg in P
for each g ∈ G. This defines F .

Given (Dg)g∈G ∈
∏

g∈G P with {g ∈ G : #Dg > 1} countable, choose a metric dDg on Dg

such that the diameters of the Dg with #Dg > 1 tend to 0 if there are infinitely many of
them. Identify the distinguished point of Dg with g. Let X be the set

∐
g∈GDg with the

metric for which the distance between x ∈ Dg and x′ ∈ Dg′ is{
dDg(x, x′), if g = g′,
dDg(x, g) + dG(g, g′) + dDg′

(g′, x′), if g 6= g′.

It is straightforward to check that X is compact and locally connected and that the map
G → X is an embedding. By Proposition 6.5, there is a strong deformation retraction of
Dg onto {g}; running these deformations in parallel yields a strong deformation retraction
of X onto G. Thus X is a G-dendrite. Moreover, F sends X to (Dg)g∈G. Thus the essential
image is as claimed.

Given X, Y ∈ DG, and given morphisms fg : Xg → Yg in P for all g ∈ G, there exists
a unique morphism f : X → Y in DG mapped by F to (fg)g∈G; namely, one checks that
the union f of the fg is a continuous injection, and hence an embedding. Thus F is fully
faithful. �

7.5. The universal G-dendrite. Let G be a local dendrite. Given a countable subset
G0 ⊆ G, Theorem 7.6 yields a G-dendrite WG,G0 whose fiber at g ∈ G is the universal
pointed dendrite (W,w) if g ∈ G0 and a point if g /∈ G0. By Theorems 7.6 and 6.4, any
G-dendrite with all sprouting points in G0 admits a morphism to WG,G0 .

Now let G be a finite connected graph. Fix a countable dense subset G0 ⊆ G containing all
vertices of G. Define WG := WG,G0 , and call it the universal G-dendrite. Its homeomorphism
type is independent of the choice of G0, since the possibilities for G0 are permuted by the self-
homeomorphisms of G fixing its vertices. Any G-dendrite has its sprouting points contained
in some G0 as above (just take the union with a G0 from above), so every G-dendrite embeds
as a topological space into WG.
Theorem 7.7. Let X be a local dendrite, and let G be its core skeleton. Suppose that G 6= ∅,
that the branch points of X are dense in X, and that there are ℵ0 branches at each branch
point. Then X is homeomorphic to WG.
Proof. The vertices of G of degree 3 or more are among the branch points of X. After
applying a homeomorphism of G (to shift degree 2 vertices), we may assume that all the
vertices of G are branch points of X. Since the branch points of X are dense in X, the
sprouting points must be dense inG. For each sprouting point g ∈ G, the fiberXg satisfies the
hypotheses of Theorem 6.1, soXg is the universal pointed dendrite. ThusX is homeomorphic
to WG, by construction of the latter. �
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7.6. Euclidean embeddings.

Proposition 7.8.
(a) Every local dendrite embeds in R3.
(b) Let X be a local dendrite, and let G ⊆ X be a finite connected graph containing all the

simple closed curves. Then the following are equivalent:
(i) X embeds into R2.
(ii) G embeds into R2.
(iii) G does not contain a subgraph isomorphic to a subdivision of the complete graph

K5 or the complete bipartite graph K3,3.

Proof.
(a) A local dendrite is a regular continuum [Kur68, §51, VII, Theorem 1], and hence of

dimension 1, so it embeds in R3 as discussed in Remark 3.2.
(b) See [Kur30]. �

8. Berkovich curves

Finally, we build on [Ber90] (especially Section 4 therein) and the theory of local dendrites
to describe the homeomorphism type of a Berkovich curve. See also the forthcoming book
by Ducros [Duc12], which will contain a systematic study of Berkovich curves.

Theorem 8.1. Let K be a complete valued field having a countable dense subset. Let V be
a projective K-scheme of pure dimension 1.
(a) The topological space V an is a finite disjoint union of local dendrites.
(b) Suppose that V is also smooth and connected, and that K has nontrivial value group.

(i) If V an is simply connected, then V an is homeomorphic to the Ważewski universal
dendrite W .

(ii) If V an is not simply connected, let G be its core skeleton; then V an is homeomorphic
to the universal G-dendrite WG.

Proof.
(a) We may assume that V is connected, so V an is connected by [Ber90, Theorem 3.4.8(iii)].

Also, V an is compact by [Ber90, Theorem 3.4.8(ii)]. It is metrizable by Remark 1.5
(or Theorem 1.1). It is a quasi-polyhedron by [Ber90, Theorem 4.3.2 and the proof
of Corollary 4.3.3]: indeed, one may assume that K is algebraically closed and V is
reduced; since V is obtained from its normalization by glueing together a finite number
of closed points, we may assume that V is smooth; this case follows directly from [Ber90,
Theorem 4.3.2]. So V an is a local dendrite by Proposition 7.2.

(b) Let k be the residue field of K. Since K has a countable dense subset, k is countable,
so any k-curve has exactly ℵ0 closed points.

First suppose that K is algebraically closed. In particular K has dense value group.
Choose a semistable decomposition of V an (see [BPR12, Definition 5.15]). Each open
ball and open annulus in the decomposition is homeomorphic to an open subspace of
(P1

K)an, in which the branch points (type (2) points in the terminology of [Ber90, 1.4.4])
are dense by the assumption on the value group, so the branch points are dense in V an.
At each branch point, the branches are in bijection with the closed points of a k-curve
by [BPR12, Lemma 5.66(3)], so their number is ℵ0.
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Now suppose that K is not necessarily algebraically closed. Let K ′ be the completion
of an algebraic closure of K. Then [Ber90, Corollary 1.3.6] implies that V an is the
quotient of (VK′)an by the absolute Galois group of K. It follows that the branch points
of V an are the images of the branch points of (VK′)an, and that the branches at each
branch point of V an are in bijection with the closed points of some curve over a finite
extension of k. Thus, as for (VK′)an, the branch points of V an are dense, and there are
ℵ0 branches at each branch point.

Finally, according to whether G is simply connected or not, Theorem 6.1 or Theo-
rem 7.7 shows that V an has the stated homeomorphism type. �

Corollary 8.2. Let K be a complete valued field having a countable dense subset and dense
value group. Then (P1

K)an is homeomorphic to W .

Proof. It is simply connected by [Ber90, Theorem 4.2.1], so Theorem 8.1(b)(i) applies. �

Remark 8.3. Any finite connected graph with no vertices of degree less than or equal to 1
can arise as the core skeleton G in Theorem 8.1(b)(ii): see [Ber90, proof of Corollary 4.3.4].
In particular, there exist smooth projective curves V such that V an cannot be embedded
in R2.

Remark 8.4. Theorem 8.1 also lets us understand the topology of Berkovich spaces associated
to curves that are only quasi-projective. Let U be a quasi-projective curve. Write U = V −Z
for some projective curve V and finite subscheme Z ⊆ V . Then Zan is a closed subset of
V an with one point for each closed point of Z, and Uan = V an − Zan.

Remark 8.5. The smoothness assumption in Theorem 8.1(b) can be weakened to the state-
ment that the normalization morphism Ṽ → V has no fibers with three or more schematic
points.

Remark 8.6. If in Theorem 8.1(b) we drop any of the hypotheses, then the result fails; we
describe the situations that arise.

• If V is the non-smooth curve consisting of three copies of P1
K attached at a K-point

of each, then V an consists of three copies of W attached in the same way; this is
a dendrite, but it has a branch point of order 3, so it cannot be homeomorphic to
W . More generally, if the normalization Ṽ has three distinct schematic points above
some point a of V , the same argument applies.
• If V is disconnected, then so is V an, so it cannot be homeomorphic to W or WG. In
this case, V an is the disjoint union of the analytifications of the connected components
of V .
• Suppose that V is smooth and connected, butK has trivial value group. Then V an is a
dendrite consisting of ℵ0 intervals emanating from one branch point; cf. [Ber93, p. 71].
Equivalently, V an is the one-point compactification of |V | × [0,∞), where |V | is the
set of closed points of V with the discrete topology.

Remark 8.7. As is well-known to experts [Thu05, BPR12], there is a metrized variant of
Theorem 8.1. We recall a few definitions; cf. [MNO92]. An R-tree is a uniquely arcwise
connected metric space in which each arc is isometric to a subarc of R. Let A be a countable
subgroup of R, and let A≥0 (resp. A>0) be the set of nonnegative (resp. positive) numbers
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in A. An A-tree is an R-tree X equipped with a point x ∈ X such that the distance from
each branch point to x lies in A.

More generally, we may introduce variants that are not simply connected. Let us define an
R-graph to be an arcwise connected metric space X such that each arc of X is isometric to
a subarc of R and X contains at most finitely many simple closed curves. Define an A-graph
to be an R-graph X equipped with a point x ∈ X such that the length of every arc from x
to a branch point or to itself is in A. Given an A-graph (X, x), let B(X) be the set of points
y ∈ B not of degree 1 such that y is an endpoint of an arc of length in A≥0 emanating from
x. Then let E(X) be the A-graph obtained by attaching ℵ0 isometric copies of [0,∞) and
of [0, a] for each a ∈ A>0 to each y ∈ B(X) (i.e., identify each 0 with y). Let En(X) :=
E(E(· · · (E(X)) · · · )). The direct limit of the En(X) is an A-graph WA

X . If X is a point,
define WA :=WA

X , which is a universal separable A-tree in the sense of [MNO92, Section 2],
because it contains the space obtained by attaching only copies of [0,∞) at each stage; the
latter is the universal separable A-tree constructed in [MNO92, Theorem 2.6.1].

Let K be a complete algebraically closed valued field having a countable dense subset.
Let A be the value group of K, expressed as a Q-subspace of R. Let V be a projective
K-scheme of pure dimension 1. Let V an− be the subset of V an consisting of the complement
of the type (1) points (the points corresponding to closed points of V ). Then V an− admits a
canonical metric, whose existence is related to the fact that on the segments of the skeleta
of V an, away from the endpoints, one has an integral affine structure [KS06, Section 2]. If
V an− is simply connected, then V an− is isometric toWA; otherwise V an− is isometric toWA

G ,
where G is the core skeleton of V an with the induced metric.

Warning 8.8. The metric topology on V an− is strictly stronger than the subspace topology
on V an− induced from V an: see [FJ04, Chapter 5] and [BR10, Section B.6]. Nevertheless,
when V is smooth and complete, the topological space V an can be recovered from the metric
space V an−.
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