
APPENDIX 1

Summary of PostScript commands

This Appendix offers a summary of PostScript operators useful for producing mathematical figures. Most have

already been introduced. In addition, a few that are likely to be more rarely used than the rest are explained here.
This is a large list, but by no means a complete list of PostScript commands. The PostScript reference manual

(‘Red Book’) contains a complete list by function as well as a list in alphabetical order in which the operators are

described in occasionally invaluable detail.

There are many operators even in this restricted list, but fortunately most commands are very close to normal

English usage and should be easy to remember.

The symbol ∅ means no arguments, or no return value.

1. Mathematical functions

Arguments Command Left on stack; side effects
x y add x + y
x y sub x − y
x y mul xy
x y div x/y
x y idiv the integral part of x/y
x y mod the remainder of x after division by y

x abs the absolute value of x
x neg −x
x ceiling the integer just above x
x floor the integer just below x
x round x rounded to nearest integer
x truncate x with fractional part chopped off

x sqrt square root of x
y x atan the polar argument of the point (x, y)

x cos cosx (x in degrees)

x sin sin x (x in degrees)
x y exp xy

x ln ln x
x log log x (base 10)

rand a random number

PostScript works with two kinds of numbers, integers and real. Real numbers are floating point, with a limited
number of decimals of accuracy. Arguments for some operations, such as repeat, must be integers. I leave as an

exercise to tell whether ceiling etc. return—i.e. leave on the stack—integers or real numbers. Many operations

have an implicit range restriction—i.e. sqrt must be applied to a non­negative number.

Appendix 1. Summary of PostScript commands 2

2. Stack operations

x pop ∅
x y exch y x

x dup x x
xn−1 . . . x0 n i roll xi−1 . . . x0 xn−1 . . . xi

This rolls the top n elements on the stack around by a shift up of i elements. For example, if the stack holds 1
2 3 4 5 (from the bottom up) then 5 2 roll changes it to 4 5 1 2 3. It is more efficient if more complicated

to do stack operations than access them by variable names, although the extra efficiency is often not worth the
inconvenience of having to keep track of what’s what on the stack.

xn−1 . . . x0 n copy xn−1 . . . x0 xn−1 . . . x0

A good trick for debugging is to combine copy and roll to view in a terminal window the top n items on the

stack. The best way to do this (where n = 3):

3 copy [4 1 roll] ==

xi . . . x0 i index xi . . . x0 xi

3. Arrays

[begins an array

] closes an array

an array a length number of items in the array a
a i get ai

a i x put −

Sets the i­th entry of a equal to x. The way to remember the order of the arguments here is to think of this as

formally equivalent to a[i] x def.

a i j getinterval ai . . . aj

n array an empty array of length n with null entries

The null item in PostScript is like nothing . . . else.

a aload a0 . . . a`−1 a (` is the length of a)

This essentially just unpacks a onto the stack, but also puts a itself on top. If you want just to unpack a, use the
pair aload pop.

An array in PostScript is what in other languages is called a pointer, which is to say it is stored in PostScript as an
address in the machine where the items in the array are stored. The practical importance of this is that if a is an

array then the sequence a dup doesn’t make a new copy of the data stored by a, but only a copy of the address

where the data is stored. The sequence

a [exch aload pop]

will make a new array with the same data as a.

4. Dictionaries

name item def makes an entry in the current dictionary

n dict puts a dictionary of n null entries on the stack
dictionary d begin opens d for use

end closes the last dictionary opened

Dictionaries in PostScript keep track of variable names and their current values. There may be several dictionaries

in use at any moment; they are stored on a stack (the dictionary stack) and searched from the top down. The

command begin puts a dictionary on this stack and end pops it off. So begin and end should be nested pairs.

Appendix 1. Summary of PostScript commands 3

something bind used before def to construct a procedure immediately

Normally, when defining a procedure, the names occurring in it are left as strings, without attempting to look up

their values when the definition is made. These names are looked up when the procedure is called. But when

bind is used, the names that do occur in dictionaries are evaluated immediately.

5. Conditionals

The first few return ‘boolean’ constants true or false. A few others have boolean values as arguments.

false false (boolean constant)
true true (boolean constant)

x y eq x = y?

x y ne x 6= y?
x y ge x ≥ y?

x y gt x > y?
x y le x ≤ y?

x y lt x < y?

s t and s and t are both true?
s t or at least one of s and t is true?

s not s is not true?

s { . . . } if executes the procedure if s is true
s { . . . }{ . . .} ifelse executes the first procedure if s is true, otherwise the second

6. Loops

i h f { . . . } for steps through the loop from i to f , incrementing by h

The tricky part of this is that at the start of each loop it leaves the loop variables i, i + h, i + 2h on the stack. It is

safest to use this only with integer loop variables.

n { . . . } repeat executes the procedure n times
{ . . . } loop executes the procedure until exit is called from within the procedure

∅ exit exits the loop it is contained in

∅ quit stops everything
a { . . . } forall loops through the elements of a, leaving each in turn on the stack

{.}{.}{.}{.} pathforall loops through the current path (see below)

The four arguments to pathforall are procedures to be called in the course of looking at the current path. This

is a tricky command, but it can produce spectacular effects. A path is a special kind of array. Each element in it is

one of the four commands x y moveto, x y lineto, x[1] y[1] x[2] y[2] x[3] y[3] curveto, closepath.
The data are expressed in device coordinates. The command pathforall loops through the elements of the

current path, pushing its arguments on the stack and then executing the corresponding procedure. For example,
the following segment displays the current path.

{ [3 1 roll (moveto)] == }

{ [3 1 roll (lineto)] == }

{ [7 1 roll (curveto)] == }

{ [(closepath)] == }

pathforall

The values of the coordinates are in the current user coordinates.

7. Conversions

x s cvs an initial substring of the string s expressing x
x cvi x converted to integer

Appendix 1. Summary of PostScript commands 4

8. File handling and miscellaneous

a string s run executes the file s
showpage changes a page

a procedure exec executes a procedure
a name load loads the value associated to the name

− save puts a copy of the entire current state on the stack
state restore restores the state on the stack

Thus

save /SavedState exch def

...

SavedState restore

will save and restore a snapshot of a state.

type tells what type the object at the top of the stack is

It pops that object from the stack, so you will likely want to use dup and type together. This is one of the more
complicated PostScript operators. First of all, what it returns is one of the following names

arraytype an array
booleantype a boolean like true or false

dicttype a dictionary

fonttype a font
integertype an integer like 1
marktype a [

nametype a name like /x

nulltype a null object

operatortype an operator like add
realtype a real number like 3.14159
stringtype a string like (x)

or possibly one of a few types I haven’t introduced.

Second, what it returns is an executable object, which means if you apply to it the exec operator it will execute
whatever has been defined by you to be associated to that name. Thus after

/arraytype { dup length = == } def

/integertype { = } def

the sequence dup type exec will display and pop the object at the top of the stack if it is an integer, display

and pop it and its length if it is an array, and give you an undefined error otherwise. This allows you to have
a procedure do different things, depending on what kind of arguments you are passing to it. The PostScript

operator transform behaves like this, for example, detecting whether the top of the stack contains a matrix or a
number.

9. Display

x = pops x from the stack and displays it on the terminal

x == almost the same as =

The most important difference between the two is that the operator == displays the contents of arrays, while =

does not. One curious difference is how they handle strings. Thus (x) = displays x in the terminal window
while (x) == displays (x). In particular, it is useful when using terminal output for debugging to know that ()

= produces an empty line.

Appendix 1. Summary of PostScript commands 5

. . . stack displays the whole stack (but not arrays), not changing it

. . . pstack same as stack. but also displays arrays

string s print prints a string; has better format control than the others

The difference between = and == is that == will display arrays and = will not. Sometimes this is a good thing, and
sometimes not; sometimes arrays will be huge and displaying them will fill up your screen with garbage. The

difference between stack and pstack is the same.

As for print, it is a much fancier way to display items—more difficult to use, but with output under better

control. For example

(x =) print

x () cvs print

(\n) print

will display "x = " plus the current value of x on a single line. What’s tricky is that print displays only strings,

so everything has to be converted to one first. That’s what cvs does. The (\n) is a string made up of a single
carriage return, because otherwise print doesn’t put one in.

Implicitly the value of x here is converted to a string.

10. Graphics state

∅ gsave saves the current graphics state, installs a new copy of it

∅ grestore brings back the last graphics state saved

The graphics state holds data such as the current path, current line width, current point, current colour, current

font, etc. These data are held on the graphics stack, and gsave and grestore put stuff on this stack and then

remove it. They should always occur in nested pairs. All changes to the graphics state have no effect outside a
pair. It is a good idea to encapsulate inside a gsave ... grestore pair all fragments of a PostScript program

that change the graphics state to draw something, unless you really want a long­lasting change.

We have seen three stacks used by a PostScript interpreter—the operator stack which is used for calculations,stack:operator:5

the dictionary stack which controls access to variable names, and the graphics stack. There is one other stack,stack:dictionary:5stack:graphics:5

the execution stack, which is used to keep track of what procedures are currently running, but the user has littlestack:execution:5

explicit control over it, and it is not important to know about it.

x setlinewidth sets current linewidth to x (in current units)
currentlinewidth the current linewidth in current units

x setlinecap determines how lines are capped

x setlinejoin determines how lines are joined
[. . .] x setdash sets current dash pattern

For example [3 2] 1 setdash makes it a sequence of dashes 3 units long and blanks 2 units long each, with an
offset of 1 unit at the beginning.

Experimentation with setdash can be interesting. The initial array specifying the on/off pattern can be long and
complicated, and itself produced by a program. Go figure.

g setgray sets current colour to a shade of grey
r g b setrgbcolor sets current colour

In both of these, the arguments should be in the range [0, 1].

Appendix 1. Summary of PostScript commands 6

11. Coordinates

Here, a matrix is an array of 6 numbers. The CTM is the Current Transformation Matrix.

∅ matrix puts a matrix on the stack
matrix m defaultmatrix fills m with the default TM, leaves it on the stack

m currentmatrix fills the matrix with the current CTM, leaves it
x y translate translates the origin by [x, y]
a b scale scales x by a, y by b
A rotate rotates by Ac degrees
m concat multiplies the CTM by m
m setmatrix sets the current CTM to m

identmatrix the identity matrix
x y transform x′ y′, transform of x y by the CTM

x y m transform x′ y′, transform of x y by m
x y itransform x′ y′, transform of x y by the inverse of the CTM

x y m itransform x′ y′, transform of x y by the inverse of m

There are also operators dtransform and idtransform that apply just the linear component of the matrices (todtransform:6idtransform:6

get relative position).

m1 m2 invertmatrix m2 (the matrix m2 is filled by the inverse of m1

12. Drawing

∅ newpath starts a new path, deleting the old one

∅ currentpoint the current point x y in device coordinates

In order for there to be a current point, a current path must have been started. Every path must begin with a

moveto, so an error message complaining that there is no current point probably means you forgot a moveto.

x y moveto begins a new piece of the current path

x y lineto adds a line to the current path

dx dy rmoveto relative move
dx dy rlineto relative line

x y r a b arc adds an arc from angle a to angle b, centre (x, y), radius r
x y r a b arcn negative direction

The operators arc and arcn are a bit complicated. If there is no current path under construction, it starts off at

the first angle and makes the arc to the second. If there is a current path already it adds to it a line from where it
ends to the beginning of the arc, before it adds the arc to the current path.

x1 y1 x2 y2 x3 y3 curveto adds a Bezier curve to the current path
dx1 dy1 dx2 dy2 dx3 dy3 rcurveto coordinates relative to the current point

∅ closepath closes up the current path back to the last point moved to

∅ stroke draws the current path
∅ fill fills the outline made by the current path

∅ clip clips drawing to the region outlined by the current path

∅ pathbbox x` y` xu yu

This returns four numbers llx lly urx ury on the stack which specify the lower left and upper right corners

of a rectangle just containing the current path.

∅ strokepath replaces the current path by its outline

a special dictionary shfill used for gradient fill

Appendix 1. Summary of PostScript commands 7

13. Displaying text

font name findfont puts the font on the stack

font s scalefont sets the size of the font (in current units), & leaves it on the stack

font setfont sets that font to be the current font

So that

/Helvetica-Bold findfont

12 scalefont

setfont

sets the current font equal to Helvetica­Bold at approximate height 12 units.

string s show displays s

The string is placed at the current point, and moves that current point to the end of the string. Usually it is

prefaced by a moveto. There must also be a current font set.

string s stringwidth wx wy , the shift caused by showing s

I.e. displaying a string moves the current point. This returns the shift in that point.

string s boolean t charpath the path this string would make if displayed.

Usetrue for filling or clipping the path,false for stroking it. In some circumstances these will produce somewhat

different results, and in particular the path produced by true might not be what you want to see stroked.

14. Errors

When a program encounters an error it displays a key word describing the type of error it has met. Here are some

of the more likely ones, roughly in the order of frequency, along with some typical situations that will cause them.

undefined A word has been used that is undefined. Often a typing error.
rangecheck An attempt has been made to apply an operation to something not in its range.

For example, -1 sqrt or [0 1] 2 get.

syntaxerror Probably an (or { without matching) or }.

typecheck An attempt to perform an operation on an unsuitable type of datum.
undefinedfilename An attempt to run a file that doesn’t exist.

undefinedresult 5 0 div

unmatchedmark] without a previous [.
dictstackoverflow Dictionaries have not been closed. Probably a begin without end.

15. Alphabetical list

Here is a list of all the operators described above, along with the section it can be found in.

= 9

== 9

[4

] 4

abs 1

add 1

aload 3

and 5

arc 12

arcn 12

array 3

atan 1

begin 4

bind 4

ceiling 1

charpath 13

clip 12

closepath 12

Appendix 1. Summary of PostScript commands 8

concat 11

concatmatrix 11

copy 2

cos 1

currentlinewidth 10

currentmatrix 11

currentpoint 12

curveto 12

cvi 6

cvs 6

def 4

defaultmatrix 11

dict 4

dictstackoverflow 14

div 1

dtransform 11

dup 2

end 4

eq 5

exch 2

exec 8

exit 6

exp 1

false 5

fill 12

findfont 13

floor 1

for 6

forall 6

ge 5

get 3

getinterval 3

grestore 10

gsave 10

gt 5

identmatrix 11

idiv 1

idtransform 11

if 5

ifelse 5

index 2

invertmatrix 11

itransform 11

le 5

length 3

lineto 12

ln 1

load 8

log 1

loop 6

lt 5

matrix 11

mod 1

moveto 12

mul 1

ne 5

neg 1

newpath 12

not 5

or 5

pathforall 6

pathbbox 12

pop 2

print 9

pstack 9

put 3

quit 6

rand 1

rangecheck 14

rcurveto 12

repeat 6

restore 8

rlineto 12

rmoveto 12

roll 2

rotate 11

round 1

run 7

save 8

scale 11

scalefont 13

setdash 10

setfont 13

setgray 10

setlinecap 10

setlinejoin 10

setlinewidth 10

setmatrix 11

setrgbcolor 10

shfill 12

show 13

showpage 8

sin 1

sqrt 1

stack 9

stringwidth 13

stroke 12

strokepath 12

sub 1

syntaxerror 14

transform 11

translate 11

true 5

truncate 1

Appendix 1. Summary of PostScript commands 9

typecheck 14

undefined 14

undefinedfilename 14

undefinedresult 14

