Restore factories to bulk_execute | P1993R0

Jared Hoberock | jhoberock@nvidia.com

2019-11-25

Abstract. In P1933, we argued that in order to integrate bulk execution with a senders and receivers-based programming
model, the “shared factory” parameter of bulk_execute’s (P0443) interface should be eliminated. In retrospect, we realize
that our rationale was flawed. This paper recommends that factories be restored.

Executive Summary

P0443R11’s formulation of bulk_execute removed its shared factory parameter as we suggested in P1933.
In retrospect, we recognize that this was the wrong decision for P0443, because:

e Correct use of shared variables may require inefficient out-of-band dynamic allocation.

e Efficient use of shared variables may require out-of-band and non-standard executor-specific optimizations.

e bulk_execute’s resulting sender_of<void> is only useful for signaling work completion and cannot communicate a
result.

Restoring shared factories to bulk_execute’s interface brings shared variables and results in-band, enabling uniform use of
bulk_execute and executor-specific optimizations. Additionally, a result factory increases the usefulness of bulk_execute’s
resulting sender by allowing the communication of a result value.

The existing bulk_execute interface of P0443R11:

template<class F>
sender_of<void> bulk_execute(F f, size_t n);

Proposed:

template<class F, class RF, class SF>
sender_of<invoke_result_t<RF>> bulk_execute(F f, size_t, RF result_factory, SF shared_factory) ;

Shared variables

Shared variables represent transient shared state required by parallel algorithm implementations. Such state may include
temporary scratchpads of partial results or objects necessary to synchronize execution agents. This state is discarded once the
group of execution agents completes.

Past versions of P0443 passed shared variables indirectly via invocable factories rather than directly as parameters because

e Important types of shared state are not movable (e.g. synchronization primitives such as std: :atomic) and cannot be
passed as parameters.
e Envisioned extensions of bulk_execute to agent hierarchies assigns separate instances of shared state per group.

In P0443R11, any shared state used during a bulk_execute must be communicated out-of-band, as discussed below.

Analysis of rationale for eliminating shared factories

In P1933, we explored the idea of a “successor executor”:

The purpose of a successor executor is to make explicit the ordering of tasks submitted through an executor.



Such an executor would be the result of a call to bulk_execute and act as an ordering primitive allowing clients to sequence
work created by calls to execute or bulk_execute by creating dependent work via the resulting successor. However, successor
executors were not adopted by P0443R11. Instead, PO433R11’s bulk_execute returns a sender and fulfills an equivalent role.

We anticipated that successor executors would create problems for shared factories and suggested eliminating them:

However, an implicit task still hides within bulk_execute’s current specification. Namely, the destructor of the
shared object created by the shared factory must be invoked after the bulk work completes. If successor executors
are adopted, we suggest eliminating this implicit join point by removing shared factories.

Unlike unadopted successor executors, the senders returned by bulk_execute explicitly represent in-band join points suitable
for ending the lifetime of the shared state. In other words, PO443R11 bulk_execute’s adoption of senders does not suffer
from problems created by shared state.

Finally, we reasoned that the functionality of shared factories could be replicated efficiently and generically by clients of
bulk_execute:

Fortunately, efficient implementations of shared state we are familiar with may be efficiently reintroduced by a
client via inspection of the executor’s properties.

We now realize that reasoning was flawed, for reasons discussed below.

bulk_execute’s P0443R11 interface is insufficient

The following code examples demonstrate the use of shared variables with different types of P0443R11 bulk executors.

// inline executor
int share _me = ...;

// capturing a stack variable by reference is safe because bulk_execute always blocks
bulk_execute(ex, [&share_me] (size_t i) {
foo(share_me) ;

}, n);

// new thread executor
// heap-allocating a shared_ptr is necessary because bulk_execute never blocks
auto share_me = std::make_shared<int>(...);

// capture the shared_ptr by value
bulk_execute(ex, [share_me](size_t i) {
foo(*share_me) ;

}, n);

// CUDA executor

// heap-allocating a unique_ptr via a special CUDA-specific allocator is necessary because
// * my_cuda_executor never blocks and

// * the GPU cannot normally access system memory

auto share_me = my_make_cuda_unique<int>(...);

// capture the raw pointer by value

int* raw_ptr = share_me.get();

bulk_execute(ex, [raw_ptr](size_t i) {
foo(*raw_ptr);

}, n);

// arrange to destroy the unique_ptr after the bulk_execute completes using an out-of-band interface
ex.and_then_destroy_ptr_out_of_band(std: :move(share_me));

// Alternatively:



bulk_execute(ex, []J(size_t i) {
// use out-of-band, CUDA-specific means to create a statically-allocated shared variable
__shared__ int share_me;
foo(share_me) ;

}, n);

Note that in all examples, both the surrounding code and the body of the lambda differs based on how the shared variable is
allocated. This complicates correct and efficient use of shared variables in generic code.

After proposed

The following code examples demonstrate how the introduction of shared factories enables the uniform use of shared variables
and enables optimizations unavailable to bulk_execute’s P0443R11 interface.

// inline executor
struct my_inline_executor {

template<class F, class SF>

my_sender bulk_execute(F f, size_t n, SF shared_factory) const {
// statically-allocate the shared variable on the stack
auto share_me = shared_factory();

// invoke f
for(size_t i = 0; i < n; ++i) {
f(i, share_me);

}

return {};
}
};

// new thread executor
struct my_new_thread_executor {
template<class F>
void execute(F&& f) const {
std: :thread(decay_copy(f)) .detach();
}

template<class F, class SF>
my_sender bulk_execute(F f, size_t n, SF shared_factory) const {
if(n > 0) {
execute ([=]{
// statically-allocate shared state on agent 0’s stack
auto share_me = shared_factory();
std::latch latch(n - 1);

// create additional agents
for(size_t i = 1; i < n; ++i) {
// capture shared state by reference
execute ([f, &share_me, &bl (size_t i) {
// invoke f in additional agents
f(i, share_me);

// signal agent i’s completion
latch.count_down();
}
}

// invoke f in agent 0O
£(0, share_me);



// wait for additional agents to complete
latch.wait();
s
}

return {};
}
};

Importantly, this optimization is unavailable to P0443R11’s bulk_execute because the latch required to manage the shared
variable’s life on the stack cannot be introduced by a client of bulk_execute’s P0443R11 interface.

// CUDA executor
struct my_cuda_executor {

template<class F, class SF>
my_sender bulk_execute(F f, size_t n, SF shared_factory) const {
my_cuda_executor_kernel<<<1,n>>>([=] __device__
{
// statically-allocate the shared variable in on-chip memory
__shared__ std::invoke_result_t<SF> share_me;

// invoke the factory in agent O
if (threadIdx.x == 0) {
share_me = shared_factory();

}

// all agents wait for the shared state to be ready
__syncthreads();

// all agents call f
f (threadIdx.x, share_me);

// all agents wait for f to complete
__syncthreads();

// destroy the shared state in agent O
if (threadIldx.x == 0) {
destroy(share_me) ;
}
¥

return {};
}
}

The addition of the shared factory parameter allows uniform usage of bulk_execute with shared state:

template<class E>
void generic_function(E ex, size_t n) {
auto shared_factory = []{ return share_me; };
ex.bulk_execute([](size_t i, auto& share_me) {
foo(share_me) ;
}, n);
}

Note that the orthogonal details of the sender returned by bulk_execute in these code examples is omitted for brevity.

Returning a result from bulk_execute

In prior revisions of P0443, bulk_execute was a one-way fire-and-forget operation. Any communication of work completion
or results required out-of-band side effects on memory or non-standard extensions to the executor interface. With P0443R11’s



introduction of a sender result, bulk_execute became two-way. This enhancement allows communication of the bulk task’s
completion, but still requires side-effects to communicate a value, even though the sender is the obvious channel through
which to communicate a result.

We should sieze this enhancement opportunity by allowing the sender returned by bulk_execute to transport a value
representing the result of the bulk task.

What is the result of an invocation of bulk_execute? It cannot simply be the result of the user’s function, because each
agent produces one of these. In principle, it could be some sort of reduction of these results. However, such a design would
further complicate bulk_execute and place additional burden on the executor implementation. Moreover, a reduction would
not be general enough to cover all use cases, anyway.

Another possibility is to return the value of the shared variable, which would otherwise be discarded. However, this design is
still not general enough for bulk_execute, for at least two reasons. In general, the result of a bulk task is different from the
shared state necessary to compute it. Moreover, some types of transient shared state are not movable.

The most general design would allow the client to programatically coordinate the agents to produce any result they wish.
This may be achieved by restoring a result factory to the interface:

template<class F, class RF, class SF>
sender_of<invoke_result_t<RF>> bulk_execute(F f, size_t n, RF result_factory, SF shared_factory);

For example, consider a pedagogical integer sum reduction:

template<class E>
sender_of<int> compute_sum(E ex, vector<int>& values) {
return bulk_execute(ex, [&, final_agent = make_shared<void>()](size_t i, int& result, atomic<int>& partial)
// all agents contribute to the partial result
partial += values[i];

// the last agent out assigns the result
if(final_agent.unique()) {
result = partial;

}

1},

values.size(),

[1{ return 0; %},

[1{ return atomic<int>{}; }

)3
}

This example is inefficient, but correct in general. Optimizations of compute_sum may be introduced generically by inspecting
the bulk_guarantee property of the executor and introducing the appropriate kind of synchronization and shared state.

Finally, note that this proposed interface for bulk_execute is simply the restoration of P0443’s old
bulk_twoway_execute operation, with the result future replaced by a sender.

Summary

P1933’s rationale to eliminate bulk_execute’s factory-based design was flawed and irrelevant to the design of bulk_execute
which eventually arrived in PO443R11. Because of this, factories must be restored to ensure that bulk_execute can serve as
a low-level foundation for building parallel algorithm implementations. Our proposed interface for bulk_execute is more
complex than found in P0443R11, but the advantages of uniform usage and optimization opportunities are worth the added
complexity. Moreover, the resulting sender becomes much more useful and will allow convenient higher-level interfaces to be
built on top (e.g. see P1897) to hide the low-level complexity of factories and shared state.

Wording

Wording for this proposal will be introduced in the next revision of this paper as a diff to P0443R11 and submitted to the
pre-Prague mailing.



	Executive Summary
	Shared variables
	Analysis of rationale for eliminating shared factories
	bulk_execute's P0443R11 interface is insufficient
	After proposed
	Returning a result from bulk_execute
	Summary
	Wording

