Proposing std: :is_specialization_of

Document #: WG21 P2098R0O

Date: 2020-02-13
Audience: LEWGT!™ = LEWG = LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Bob Steagall <bob.steagall.cpplgmail.com>

Contents

1 Introduction 1 4 Acknowledgments. 4

2 Proposal. 2 5 Bibliography 4

3 Proposed wording 3 6 Document history 4
Abstract

[P2078R0] “proposes the addition [to the standard library] of a new unary type traits class
template, is_complex<T>.” Recognizing that there are numerous similar traits templates that
could profitably be added to the standard library, this paper proposes to add instead a single,
more general trait that can be straightforwardly customized via a simple alias, to obtain any

such trait as needed.

1 Introduction

To think is to forget a difference, to generalize, to abstract.
— JORGE LUIS BORGES

Generalizations, like brooms, ought not to stand in a corner
forever; they ought to sweep as a matter of course.

— JOHN LUKACS

[P2078RO] “proposes the addition [to the standard library] of a new unary type traits class
template, is_complex<T>.” Such a trait can be straightforwardly implemented as follows:

1
2
3

template< class T >
struct
is_complex : std::false_type;

template< class U >
struct
is_complex<std::complex<U>> : std::true_type;

template< class T >
inline constexpr bool
is_complex v = is_complex<T>::value;

Copyright © 2020 by Walter E. Brown. All rights reserved.

mailto:webrown.cpp@gmail.com
mailto:bob.steagall.cpp@gmail.com

2 P2098RO: Proposing std: :is_specialization_of

However, there are numerous very similar trait templates that could profitably be added to the
standard library.

For example, each of the following exemplifies a useful trait much like the above is_complex<T>.
Further, the authors know that these and many others have already been implemented (albeit
under an uglified or slightly different name, in some cases) using essentially the same technique
as was used above to implement is_complex<T>.

is_reference_ wrapper<T>,
is_string<T>,
is_pair<T>,

is_tuple<T>,
is_vector<T>,

and many more!

Therefore, this paper proposes to add instead a single, more general trait that can be
straightforwardly customized via a simple alias, to obtain any such trait as needed.

2 Proposal

As motivated above, we propose to add a more general is_specialization_of trait to the
standard library. Such a trait can be defined along the following lines such that it corresponds to
true_type when a given type is a specialization of a given template; otherwise, it corresponds to
false_type when the given type is not a specialization of that given template:

1 template< class T

2 , template<class...> class Primary >
3 sStruct

4 is_specialization of : false_type;

6 template< template<class...> class Primary

7 , class... Args >

8 sStruct

9 is_specialization of< Primary<Args...>, Primary> : true_type;

11 template< class T

12 , template<class...> class Primary >

13 inline constexpr bool

14 is_specialization of v = is_specialization of<T, Primary>::value;
Given the above primitive, we can produce [P2078RO0]’s proposed is_complex<T> as follows:

1 template< class T >

2 using

3 is_complex = is_specialization_of<T, std::complex>;

5 template< class T >
6 1nline constexpr bool
7 is_complex v = is_specialization_of_ v<T, std::complex>;

Each of the other examples listed in §1 can be produced in like manner. This frees programmers
from the need to comprehend the intricacies of template template parameters (a topic often not
well-understood by non-experts). Moreover, the nature of the proposed trait is such that it can be
used in a very wide variety of contexts, not just within namespace std.

P2098RO: Proposing std: :is_specialization_of 3

Finally, investigation has revealed that there is prior art for this proposal, as MSVC’s standard
library implementation provides this exact trait!, and uses it in the manner proposed herein.

The proposed name, is_specialization_of, is admittedly slighly longer than some consider
convenient. While shorter names? are of course possible, we prefer the proposed longer name in
the interest of clarity of purpose: we believe that the longer name succinctly and correctly captures
the mission of the trait and follows the naming precedent of the long-standing is_base_of trait.

For all the reasons above, we believe the is_specialization_of trait to be a worthy candidate
for C++23 standardization.

3 Proposed wording?

3.1 After adjusting yyyymm, below, so as to denote this proposal’s month of adoption, insert
the following line among the similar directives following [version.syn]/2:

#define _ cpp_lib_is_specialization of yyyymmL // also in <type_ traits>

3.2 Augment [meta.type.synop] as shown:

namespace std {

template<class Base, class Derived>
struct is_pointer_ interconvertible_ base_ of;
template<class T, template<class...> Primary>
struct is_specialization_of;

template<class Base, class Derived>
inline constexpr bool is_pointer_interconvertible_base of v
= is_pointer_interconvertible base_of<Base, Derived>::value;
template<class T, template<class...> Primary>
inline constexpr bool is_specialization_of_ v
= is_specialization_of<T,Primary>::value;

3.3 Augment Table [tab:meta.rel] (Type relationship predicates) as shown:

ITheir trait is found in their <type_traits> header under the uglified name _Is_specialization, with an equiva-
lent implementation to that shown above.

2Examples of such shorter names include is_specialization, specializes, is_spec_of, and the like.
3Proposed additions (there are no deletiens) are based on [N4849]. Editorial instructions and drafting notes look like
this .

4 P2098RO: Proposing std: :is_specialization_of

Primary Condition Comments

template<class Base, class Derived is unambiguously If Base and Derived are
Derived>

struct is_pointer -

interconvertible base_of;

template<class T, T is a specialization
class<...> Primary> struct ([temp.spec]) of Primary
is_specialization_of;

4 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

5 Bibliography

[N4849] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/

SC22/WG21 document N4849 (pre-Prague mailing), 2020-01-14. https://wg21.link/n4849.

[P2078R0O] Bob Steagall: “Add new traits type std: :is_complex<T>.” ISO/IEC JTC1/SC22/WG21 docu-
ment P2078RO (pre-Prague mailing), 2020-01-13. https://wg21.link/P2078RO.

6 Document history

Rev. Date Changes

0 2020-02-13 e Published as P2098R0, post-Prague mailing, incorporating minor guidance from very fa-
vorable (1017101010) LEWG-I review of a draft of this paper.

https://wg21.link/n4849
https://wg21.link/P2078R0

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposal
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Document history

