
Theories, Methods and Tools in Program Comprehension:

Past, Present and Future

Margaret-Anne Storey

Department of Computer Science,

University of Victoria, Canada

E-mail: mstorey@uvic.ca

Abstract

Program comprehension research can be

characterized by both the theories that provide rich

explanations about how programmers comprehend

software, as well as the tools that are used to assist in

comprehension tasks. During this talk I will review
some of the key cognitive theories of program

comprehension that have emerged over the past thirty

years. Using these theories as a canvas, I will then

explore how tools that are popular today have evolved

to support program comprehension. Specifically, I
will discuss how the theories and tools are related and

reflect on the research methods that were used to

construct the theories and evaluate the tools. The

reviewed theories and tools will be further

differentiated according to human characteristics,

program characteristics, and the context for the
various comprehension tasks. Finally, I will predict

how these characteristics will change in the future and

speculate on how a number of important research

directions could lead to improvements in program

comprehension tools and methods.

1. Introduction

Challenges in understanding programs are all too

familiar from even before the days of the first software

engineering workshop [1]. Since that time, the field of

program comprehension as a research discipline has

evolved considerably. The goal of our community is to

build an understanding of these challenges, with the

ultimate objective of developing more effective tools

and methods. From these early days we have come to

accept that there is no silver bullet [2], but the

community has made advances which have helped

software engineers tackle important problems such as

the Y2K problem.

We now have a wide variety of theories that

provide rich explanations of how programmers

understand programs and can provide advice on how

program comprehension tools and methods may be

improved. In response to these theories, and in some

cases in parallel to the theory development, many

powerful tools and innovative software processes have

evolved to improve comprehension activities.

The field of program comprehension research has

been rich and varied, with various shifts in paradigms

and research cultures during the last few decades. A

multitude of differences in program characteristics,

programmer ability and software tasks have led to

many diverse theories, research methods and tools. In

this paper, I provide a review of this work in an

attempt to create a landscape of program

comprehension research. Such a view emphasizes how

the theories and tools are related and should reveal if

parts of the landscape have not received much

attention. This review, combined with an excursion to

newer areas of software engineering theory and

practice, directs us to specific areas for the future of

program comprehension research.

This paper is organized as follows. In Section 2, I

provide a brief overview of comprehension theories

and describe how programmer, program and task

variability can impact comprehension strategies. In

Section 3, the implications of cognitive theories on tool

requirements are considered and several theories that

specifically address tool support are reviewed. In

Section 4, I briefly describe comprehension tools and

refer back to the theories about tool support. In Section

5, I look to the future and predict how programmer and

program characteristics are likely to vary in the near

term. Building on these predicted changes, I then

suggest, in Section 6, how research methods, theories

and tools will evolve in the future. The paper

concludes in Section 7.

2. A review of cognitive theories

Francois Détienne’s book, “Software Design -

Cognitive Aspects” [3], provides an excellent review

of the history of cognitive models and related

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

experiments over the past twenty or so years. She

delves back to a time, in the early 1970’s, when

experiments were done without theoretical frameworks

to guide the evaluations. Consequently, it was neither

possible to understand nor to explain to others why one

tool might be superior to other tools.

The lack of theories was recognized as being

problematic. As the field of program comprehension

matured, research methods and theories were borrowed

from other areas of research, such as text

comprehension, problem solving and education. Using

these theoretical underpinnings, cognitive theories

about how programmers understand programs and how

tools could support comprehension were developed.

Perceived benefits of having these models include

having rich explanations of behaviour that would lead

to more efficient processes and methods as well as

improved education procedures [4].

In this section, I first review some of the influential

cognitive theories in program comprehension research.

I then discuss how the programmer, program and task

characteristics impact comprehension. First, some

terminology is defined.

2.1 Concepts and terminology

A mental model describes a developer's mental

representation of the program to be understood

whereas a cognitive model describes the cognitive

processes and temporary information structures in the

programmer’s head that are used to form the mental

model. Cognitive support assists cognitive tasks such

as thinking or reasoning [5].

Programming plans are generic fragments of code

that represent typical scenarios in programming. For

example, a sorting program will contain a loop which

compares two numbers in each iteration [6].

Beacons are recognizable, familiar features in the

code that act as cues to the presence of certain

structures [7]. Rules of programming discourse

capture the conventions of programming, such as

coding standards and algorithm implementations [6].

2.2 Top-down comprehension

Brooks theorizes that programmers understand a

completed program in a top-down manner where the

comprehension process is one of reconstructing

knowledge about the domain of the program and

mapping this knowledge to the source code [7]. The

process starts with a hypothesis about the general

nature of the program. This initial hypothesis is then

refined in a hierarchical fashion by forming subsidiary

hypotheses. Subsidiary hypotheses are refined and

evaluated in a depth-first manner. The verification (or

rejection) of hypotheses depends heavily on the

absence or presence of beacons [7].

Soloway and Ehrlich [6] observed that top-down

understanding is used when the code or type of code is

familiar. They observed that expert programmers use

beacons, programming plans and rules of programming

discourse to decompose goals and plans into lower-

level plans. They noted that delocalized plans

complicate program comprehension.

2.3 Bottom-up comprehension

The bottom-up theory of program comprehension

assumes that programmers first read code statements

and then mentally chunk or group these statements into

higher level abstractions. These abstractions (chunks)

are aggregated further until a high-level understanding

of the program is attained [8]. Shneiderman and

Mayer's cognitive framework differentiates between

syntactic and semantic knowledge of programs [8].

Syntactic knowledge is language dependent and

concerns the statements and basic units in a program.

Semantic knowledge is language independent and is

built in progressive layers until a mental model is

formed which describes the application domain.

Pennington also describes a bottom-up model [9].

She observed that programmers first develop a control-

flow abstraction of the program which captures the

sequence of operations in the program. This model is

referred to as the program model and is developed

through the chunking of microstructures in the text

(statements, control constructs and relationships) into

macrostructures (text structure abstractions) and by

cross-referencing these structures. Once the program

model has been fully assimilated, the situation model is

developed. The situation model encompasses

knowledge about data-flow abstractions and functional

abstractions (the program goal hierarchy).

2.4 Opportunistic and systematic strategies

Littman et al. observed programmers enhancing a

personnel database program [10]. They observed that

programmers either systematically read the code in

detail, tracing through the control-flow and data-flow

abstractions in the program to gain a global

understanding of the program, or that they take an as-

needed approach, focusing only on the code relating to

a particular task at hand. Subjects using a systematic

strategy acquired both static knowledge (information

about the structure of the program) and causal

knowledge (interactions between components in the

program when it is executed). This enabled them to

form a mental model of the program. However, those

using the as-needed approach only acquired static

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

knowledge resulting in a weaker mental model of how

the program worked. More errors occurred since the

programmers failed to recognize causal interactions

between components in the program.

Letovsky observed activities called inquiries [11].

An inquiry may consist of a programmer asking a

question, conjecturing an answer, and then searching

through the code and documentation to verify the

answer. Inquiry episodes often occur as a result of

delocalized plans.

2.5 The Integrated Metamodel

The Integrated Metamodel, developed by von

Mayrhauser and Vans, builds on the previous three

models as well as the knowledge based model by

Letovsky [11]. Their model consists of four major

components [12]. The first three components describe

the comprehension processes used to create mental

representations at various levels of abstraction and the

fourth component describes the knowledge base

needed to perform a comprehension process:

• The top-down (domain) model is usually invoked

and developed using an as-needed strategy, when

the programming language or code is familiar. It

incorporates domain knowledge as a starting point

for formulating hypotheses.

• The program model may be invoked when the code

and application is completely unfamiliar. The

program model is a control-flow abstraction.

• The situation model describes data-flow and

functional abstractions in the program. It may be

developed after a partial program model is formed

using systematic or opportunistic strategies.

• The knowledge base consists of information needed

to build these three cognitive models. It represents

the programmer's current knowledge and is used to

store new and inferred knowledge.

Understanding is formed at several levels of

abstraction simultaneously by switching between the

three comprehension processes.

2.6 Program characteristics

Programs that are carefully designed and well

documented will be easier to understand, change or

reuse in the future. Pennington's experiments showed

that the choice of language has an effect on

comprehension processes [9]. COBOL programmers

consistently fared better at answering questions related

to data-flow than FORTRAN programmers, and

FORTRAN programmers consistently fared better than

COBOL programmers for control-flow questions.

Object-oriented (OO) programs are often seen as a

more natural fit to problems in the real world because

of ‘is-a’ and ‘is-part-of’ relationships in a class

hierarchy and structure, but others argue that objects do

not always map easily to real world problems [3]. In

OO programs, abstractions are achieved through

encapsulation and polymorphism [3]. Message-passing

is used for communication between class methods and

hence programming plans are dispersed (i.e. scattered)

throughout classes in an OO program.

2.7 Individual programmer differences

There are many individual characteristics that will

impact how a programmer tackles a comprehension

task. These differences also impact the requirements

for a supporting tool. There is a huge disparity in

programmer ability and creativity which cannot be

measured simply by their experience.

Vessey presents an exploratory study to investigate

expert and novice debugging processes [13]. She

classified programmers as expert or novice based on

their ability to chunk effectively. She notes that experts

used breadth-first approaches and at the same time

were able to adopt a system view of the problem area,

whereas novices used breadth-first and depth-first

approaches but were unable to think in system terms.

Détienne also notes that experts make more use of

external devices as memory aids [3]. Experts tend to

reason about programs according to both functional

and object-oriented relationships and consider the

algorithm, whereas novices tend to focus on objects.

2.8 Task variability

Program comprehension is not an end goal, but

rather a necessary step in achieving some other

objective, such as fixing an error, reusing code, or

making changes to a program. Obviously the type and

scope of the ultimate programming task will have an

impact on the comprehension process followed. If a

task is a simple one, the change will probably only

affect a small portion of the code. For more complex

changes, the programmer will have to consider global

interactions thus requiring that the programmer obtain

a thorough understanding of the causal relationships in

the entire program.

Pennington's research showed that a task requiring

recall and comprehension resulted in a programmer

forming a program model (control-flow abstraction) of

the software whereas a task to modify the program

resulted in a programmer forming a situation model

containing data-flow and functional information [9].

For a programmer, a reuse task requires that they

first understand the source problem, retrieve an

appropriate target solution, and then adapt the solution

to the problem. The mapping from the problem to the

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

solution is often done using analogical reasoning [3]

and may involve iterative searching through many

possible solutions.

2.9 Discussion: Research implications

Many of the researchers that developed the

traditional cognitive theories for program

comprehension discuss the implications of the

developed theories on tool design and in some cases

also discuss how education and program design could

be improved to address program understanding

challenges. In many cases, the connection to tools and

how they could be improved or evaluated according to

the theories could be stronger. Moreover, some of

these results were also criticized because the

researchers studied novice programmers doing

fabricated tasks [14]. Vans and von Mayrhauser are

notable exceptions. Despite these criticisms, program

comprehension research does contain many gems of

advice on how tools can be improved. The advantage

for tool designers is that they can use these theories to

help them understand, not only what features are

needed, but also to help them understand why some

features may not be appropriate or sufficient to assist

comprehension tasks.

3. Theories and tool support

What features should an ideal tool to support

program comprehension have? Of course, “program

comprehension tools” only play a supporting role in

other software engineering activities of design,

development, maintenance, and redocumentation. As

we saw in the last section of this paper, there are many

characteristics which influence the cognitive strategies

the programmers used and in turn influence the

requirements for tool support. In this section, I look in

general terms at tool requirements but these should be

refined for a tool to be deployed in a particular context.

First I extract and synthesize tool requirements based

on our prior discussion on cognitive theories. I then

look at specific research that recommends tool

features.

3.1 Cognitive models and tool implications

Browsing support: The top-down process requires

browsing from high-level abstractions or concepts to

lower level details, taking advantage of beacons in the

code; bottom-up comprehension requires following

control-flow and data-flow links, both novices and

experts can benefit from tools that support breadth-first

and depth-first browsing; and the Integrated

Metamodel suggests that switching between top-down

and bottom-up browsing should be supported. Flexible

browsing support also will help to offset the challenges

from delocalized plans.

Searching: Tool support is needed when looking for

code snippets by analogy and for iterative searching.

Also inquiry episodes should be supported by allowing

the programmer to query on the role of a variable,

function etc.

Multiple views: Programming environments should

provide different ways of visualizing programs. One

view could show the message call graph providing

insight into the programming plans, while another view

could show a representation of the classes and

relationships between them to show an object-centric

or data-centric view of the program. These orthogonal

views, if easily accessible, can facilitate

comprehension, especially when combined.

Context-driven views: The size of the program and

other program metrics will influence which view is the

preferred one to show a programmer browsing the code

for the first time. For example, in an object-oriented

program, it is usually preferable to show the

inheritance hierarchy as the initial view. However, if

the inheritance hierarchy is flat, it may be more

appropriate to show a call graph as the default view.

Additional cognitive support: Experts need external

devices and scratchpads to support their cognitive

tasks, whereas novices need pedagogical support to

help them access information about the programming

language and the corresponding domain.

3.2 Tool requirements explicitly identified

Several researchers studied expert programmers in

industrial settings and consequently recommended

specific requirements for improving tools to support

comprehension. Others built on their own personal or

colleagues’ experiences to recommend needed tool

features. I review several of these efforts here and list

the tool requirements they recommended.

Biggerstaff notes that one of the main difficulties in

understanding comes from mapping what is in the code

to the software requirements – he terms this the

concept assignment problem [15]. Although automated

techniques can help locate programming concepts and

features, it is challenging to automatically detect

human oriented concepts. The user may need to

indicate a starting point and then use slicing techniques

to find related code. It may also be possible for an

intelligent agent (that has domain knowledge) to scan

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

the code and search for candidate starting points. From

Biggerstaff’s research prototypes he found that queries,

graphical views and hypertext were important tool

features.

Von Mayrhauser and Vans, from their research on

the Integrated Metamodel, make an explicit

recommendation for tool support for reverse

engineering [12]. They determined basic information

needs according to cognitive tasks and suggested the

following tool capabilities to meet those needs:

• Top-down model: on-line documents with keyword

search across documents; pruning of call tree based

on specific categories; smart differencing features;

history of browsed locations; and entity fan-in.

• Situation model: provide a complete list of domain

sources including non-code related sources; and

visual representation of major domain functions.

• Program model: Pop-up declarations; on-line cross-

reference reports and function count.

K. Wong also discusses reverse engineering tool

features [49]. He specifically mentions the benefits of

using a “notebook” to support ongoing comprehension.

Singer and Lethbridge also observed the work

practices of software engineers [16]. They explored the

activities of a single engineer, a group of engineers,

and considered company-wide tool usage statistics.

Their study led to the requirements for a tool that was

implemented and successfully adopted by the

company. Specifically they suggested tool features to

support “just-in-time comprehension of source code”.

They noted that engineers after working on a specific

part of the program quickly forget details when they

move to a new location. This forces them to rediscover

information at a later time. They suggest that tools

need the following features to support rediscovery:

• Search capabilities so that the user can search for

code artifacts by name or by pattern matching.

• Capabilities to display all relevant attributes of the

items retrieved as well as relationships among items.

• Features to keep track of searches and problem-

solving sessions, to support the navigation of a

persistent history.

Erdös and Sneed designed a tool to support

maintenance following many years of experience in the

maintenance and reengineering industry. They

proposed that the following seven questions need to be

answered for a programmer to maintain a program that

is only partially understood [17]:

1. Where is a particular subroutine/procedure invoked?

2. What are the arguments and results of a function?

3. How does control flow reach a particular location?

4. Where is a particular variable set, used or queried?

5. Where is a particular variable declared?

6. Where is a particular data object accessed?

7. What are the inputs and outputs of a module?

3.3 Discussion: Ways of knowing

In our quest to discover effective features to support

program comprehension, we see that there are many

different ways of knowing. On the one hand, we can

use the empirical approach which leads to the

construction of theories about program comprehension

strategies and proposed tools. On the other hand,

researchers may use practical experience and intuition

to propose what is needed in a tool. Given the

variability in comprehension settings, both approaches

contribute to answering this complex question.

4. Tool research

The field of program comprehension research has

resulted in many diverse tools to assist in program

comprehension. Program understanding tools can be

roughly categorized according to three categories [18]:

extraction, analysis and presentation. Extraction tools

include parsers and data gathering tools. Analysis tools

do static and dynamic analyses to support activities

such as clustering, concept assignment, feature

identification, transformations, domain analysis,

slicing and metrics calculations. Presentation tools

include code editors, browsers, hypertext, and

visualizations. Integrated software development and

reverse engineering environments will usually have

some features from each category. The set of features

they support is usually determined by the purpose for

the resulting tool or by the focus of the research.

It is possible to examine each of these environments

and to recover the motivation for the features they

provide by tracing back to the cognitive and tool

theories. For example, the well known Rigi system

[19] has support for multiple views, cross-referencing

and queries to support bottom-up comprehension. The

Reflexion tool [20] has support for the top-down

approach through hypothesis generation and

verification. The Bauhaus tool [21] has features to

support clustering (identification of components) and

concept analysis. The SHriMP tool [22] provides

navigation support for the Integrated Metamodel, i.e.

frequent switching between strategies. And the

Codecrawler tool [23] uses visualization of metrics to

support understanding of an unfamiliar system and to

identify bottlenecks and other architectural features.

Theories also play a role in the evaluation of these

environments. They can be used as a first step in

performing a heuristic evaluation of the environment

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

and in describing what the environment does and does

not do. Secondly, they can be used to help guide

evaluations and to assist in presenting results.

5. Programmer and program trends

Any paper or talk that attempts to predict the future,

always discusses how risky and difficult such an

endeavour is. Fortunately, it is less risky to closely

examine current trends and predict what will occur in

the very near future. Tilley and Smith, in 1996, wrote a

thought-provoking paper entitled “Coming Attractions

in Program Understanding” [18]. I follow a similar

approach to that of Tilley and Smith, and keep the

distance to the horizon short by looking at the near

future. To guide theory and tool predictions, I first

consider how some of the programmer and program

characteristics will evolve in the near future.

5.1 Programmer characteristics

Program comprehension everywhere: The need to

use computers and software intersects every walk of

life. Programming, and hence program comprehension,

is no longer a niche activity. Scientists and knowledge

workers in many walks of life have to use and

customize software to help them do science or other

work. In our research alone, we have already worked

alongside scientists from the forestry, astronomy and

medical science domains that are using and developing

sophisticated software without a formal education in

computer science. Consequently, there is a need for

techniques to assist in non-expert and end-user

program comprehension. Fortunately, there is much

work in this area (especially at conferences such as

Visual Languages and the PPIG group -

www.ppig.org), where they investigate how

comprehension can be improved through tool support

for spreadsheet and other end user applications.

Sophisticated users: Currently, advanced visual

interfaces are not often used in development

environments. A large concern by many tool designers

is that these advanced visual interfaces require

complex user interactions. However, tomorrow’s

programmers will be more familiar with game software

and other media that displays information rapidly and

requires sophisticated user controls. Consequently, the

next generation of users will have more skill at

interpreting information presented visually and at

manipulating and learning how to use complex

controls.

Globally distributed teams: Advances in

communication technologies have enabled globally

distributed collaborations in software development.

Distributed open source development is having an

impact on industry. The most notable examples are

Linux and Eclipse. Some research has been conducted

on studying collaborative processes in open source

projects [24-26], but more research is needed to study

how distributed collaborations impact comprehension.

5.2 Program characteristics

Distributed applications and web-based applications

are becoming more prevalent with technologies such as

.NET, J2EE and web services. One programming

challenge that is occurring now and is likely to

increase, is the combination of different paradigms in

distributed applications, e.g. a client side script sends

XML to a server application.

Higher levels of abstraction: Visual composition

languages for business applications are also on the

increase. As the level of abstraction increases,

comprehension challenges are shifting from code

understanding to more abstract concepts.

Aspect-oriented programming: The introduction of

aspects as a construct to manage scattered concerns

(delocalized plans) in a program has created much

excitement in the software engineering community.

Aspects have been shown to be effective for managing

many programming concerns, such as logging and

security. However, it is not clear how aspects written

by others will improve program understanding,

especially in the long term. More empirical work is

needed to validate the assumed benefits of aspects.

Improved software engineering practices: The more

informed processes that are used for developing

software today will hopefully lead to software that is

easier to comprehend in the future. Component-based

software systems are currently being designed using

familiar design patterns, and other conventions. Future

software may have traceability links to requirements,

and improved documentation such as formal program

specifications. Also, future software may have

autonomic properties, where the software self-heals

and adapts as its environment changes – thus in some

cases reducing time spent on maintenance.

Diverse sources of information: The program

comprehension community, until quite recently, mostly

focused on how static and dynamic analyses of source

code, in conjunction with documentation, could

facilitate program comprehension. Modern software

integrated development environments, such as the

Eclipse Java development environment, also manage

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

other kinds of information such as bug tracking, test

cases and version control. This information, combined

with human activity information such as emails and

instant messages, will be more readily available to

support analysis in program comprehension. Domain

information should also be more accessible due to

model driven development and the semantic web.

6. Future methods, theories and tools

In this section, I now consider how methods,

theories and tools may evolve in response to the

predicted programmer and program changes.

6.1 Research methods

In recent years there has been a high expectation in

the research community that tools should be subject to

some sort of evaluation. Case studies of industrial

systems are often used as a mechanism for

demonstrating that a technique can efficiently and

robustly perform the expected analysis. In some cases,

we may also need evidence that the approach is useful

for and usable by less sophisticated developers.

Many techniques, especially those utilized in

presentation tools, are evaluated using experiments.

Conducting empirical work and experiments in

program comprehension is always a challenging

endeavour. There are two main research paradigms, the

quantitative and the qualitative [27]. The quantitative

approach, the traditional approach in program

comprehension, assumes that reality is objective and is

independent from the researcher. Quantitative studies

are more formal and factors are isolated before the

study. They are performed in context free situations,

and the studies are seen as reliable and repeatable. The

qualitative approach, the constructivist approach,

assumes that the researcher interacts with what is

observed and that context is important. The study is

more informal and hypotheses about the results are

formed inductively. The key results from qualitative

research are patterns and theories which lead to initial

or further understanding.

For the most part, cognitive models and tool

evaluations in program comprehension have been

determined through quantitative approaches. However,

the conditions for program comprehension are so

complex and varied, that many researchers are

recognizing that qualitative approaches conducted in

more ecologically valid settings may be very

insightful. This shift to conducting research in

industrial settings brings with it many logistical

challenges. Observations can be hard to do in industry

and may result in vast amounts of data that is difficult

to analyze. Observations can also be disruptive and

could be subject to the Hawthorne effect (e.g. a

programmer may change her behaviour because she is

observed).

To address these issues, several researchers are also

collecting instrumented data after the tool is deployed

in an industrial setting. This data collection technique

shows much promise as it captures information on the

context of tool use as well as accurate information

about how a tool is used over a longer period of time.

However, such results can also be misleading. A lack

of adoption is not enough to indicate that a tool is not

useful as there are many barriers to adoption (e.g.

seemingly trivial usability issues can impede usage of a

tool). There have been several ICSE workshops (2003,

2004) which have discussed adoption of software tools.

As a community, there have been some shared

evaluation efforts -- the use of guinea pigs (i.e.

benchmarks) and collaborative tool demonstrations

[28]. These efforts give researchers a mechanism to

compare their tools with others, and learn more about

different and similar approaches to research.

Irrespective of the evaluation technique used,

theoretical underpinnings will benefit the evaluations

as the results will be easier to interpret. Although our

long term goal may be to build better tools, we need to

understand why they are better than other approaches.

6.2 Theories

As the programming workforce and technology

changes, learning theories [29] will become more

relevant to end-users doing programming-like tasks.

Theories are currently being developed to describe the

social and organizational aspects of program

comprehension [25]. Richer cognitive theories about

how aspect oriented programming will impact

comprehension in the longer term need to be further

developed. More theories about the collaborative

nature of program comprehension, both co-located and

distributed, are needed.

It is becoming clear to many in the field, that

developing theories on program comprehension is an

ambitious undertaking. This is mostly due to the large

variability in the possible conditions for any

experiment. It is important as a community to have

many data points; this will enable future researchers to

do a meta-analysis of results from several experiments

so that common trends and issues can be extracted.

This phenomenon can be compared to efforts in the

clinical trial community where many studies have to be

done to understand how a drug interacts with other

drugs and different kinds of individuals.

In our research community, we need to document

and present results in such a way that others can make

sense of our data and conclusions. Researchers

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

evaluating presentation tools and user interfaces for

program comprehension tools could benefit from the

work of Walenstein and Green et al.: Walenstein

proposes a methodology for evaluating cognitive

support in [5] and Green’s Cognitive Dimensions [30]

provides a language and framework that can be used

for evaluating presentation tools. More work is needed

to understand how we can combine results and benefit

from collaborative efforts in empirical work.

6.3 Tools

Faster tool innovations: The use of frameworks as an

underlying technology for software tools is leading to

faster tool innovations as less time needs to be spent

reinventing the wheel. A prime example of how

frameworks can improve tool development is the

Eclipse framework (see www.eclipse.org). Eclipse

was specifically designed with the goal of creating

reusable components which would be shared across

different tools. The research community benefits from

this approach in several ways. Firstly, they are able to

spend more time writing new and innovative features

as they can reuse the core underlying features offered

by Eclipse and its plug-ins; and secondly, researchers

can evaluate their prototypes in more ecologically valid

ways as they can compare their new features against

existing industrial tools.

Mix ‘n match tools: In Section 5, I described

understanding tools according to three categories:

extraction, analysis and presentation. Given a suite of

tools that all plug in to the same framework, together

with a standard exchange format (such as GXL),

researchers will be able to more easily try different

combinations of tools to meet their research needs.

This should result in increased collaborations and more

relevant research results. Such integrations will also

lead to improved accessibility to repositories of

information related to the software including code,

documentation, analysis results, domain information

and human activity information. Integrated tools will

also lead to fewer disruptions for programmers.

Recommenders and search: Software engineering

tools, especially those developed in research, are

increasingly leveraging advances in intelligent user

interfaces (e.g. tools with some domain or user

knowledge). Recommender systems are being

proposed to guide navigation in software spaces.

Examples of such systems include Mylar [31] and

NavTracks [32]. Mylar uses a degree of interest model

to filter non-relevant files from the file explorer and

other views in Eclipse. NavTracks provides

recommendations of which files are related to the

currently selected files. Deline et al. also discuss a

system to improve navigation [33]. The FEAT tool

suggests using concern graphs (explicitly created by

the programmer) to improve navigation efficiency and

enhance comprehension [34].

Search technologies, such as Google, show much

promise at improving search for relevant components,

code snippets and related code. The Hipikat tool [35]

recommends relevant software artifacts based on the

developer’s current project context and development

history. The Prospector system recommends relevant

code snippets [36]. It combines a search engine with

the content assist in Eclipse to help programmers use

complex APIs. A paper in press [37] also proposes

using structures to create code recommendations

during evolution tasks.

Although this work in search and recommendations

is quite new, it shows much promise and it is expected

to improve navigation in large systems while reducing

the barriers to reusing components from large libraries.

Adaptive interfaces: Software tools typically have

many features which may be overwhelming not only

for novice users, but also for expert users. This

information overload could be reduced through the use

of adaptive interfaces. The idea is that the user

interface can be tailored automatically, i.e. will self-

adapt, to suit different kinds of users and tasks.

Adaptive user interfaces are now common in Windows

applications such as Word. Eclipse has several novice

views (such as Gild [38] and Penumbra) and Visual

Studio has the Express configuration for new users.

However, neither of these mainstream tools currently

have the ability to adapt or even be easily manually

adapted to the continuum of novice to expert users.

Visualizations have been the subject of much research

over the past ten to twenty years. Many visualizations,

and in particular graph-based visualizations, have been

proposed to support comprehension tasks. Some

examples of research tools include Seesoft [39], Bloom

[40], Rigi [41], Landscape views [42], sv3D [43], and

Codecrawler [23]. In our work, we developed the

SHriMP tool [22] to provide support for the Integrated

Metamodel of comprehension. Our goal was also to

facilitate navigation between different layers of

abstractions, and to help navigation through

delocalized plans. Graph visualization is used in many

advanced commercial tools such as Klocwork,

Imagix4D and Together. UML diagrams are also

common place in mainstream development tools.

One challenge with visualizing software is scale

and knowing at what level of abstraction details should

be shown, as well as selecting which view to show.

More details about the user’s task combined with

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

metrics describing the program’s characteristics (such

as inheritance depth) will improve how visualizations

are currently presented to the user. A recommender

system could suggest relevant views as a starting point.

Bull proposes the notion of model driven visualization

[44]. He suggests creating a tool for tool designers and

expert users that recommends useful views based on

characteristics of the model and data.

Collaborative support: As software teams increase in

size and become more distributed, collaborative tools

to support distributed software development activities

are more crucial. In research, there are several

collaborative software engineering tools being

developed such as Jazz and Augur [45, 46]. There are

also some collaborative software engineering tools

deployed in industry, such as CollabNet, but they tend

to have simple tool features to support communication

and collaboration, such as version control, email and

instant messaging. Current industrial tools lack more

advanced collaboration features such as shared editors.

Although collaborative tools for software engineering

have been a research topic for several years, there has

been a lack of adoption of many of the approaches

such as shared editors in industry and a lack of

empirical work on the benefits of these tools. Another

area for research that may prove useful is the use of

large screen displays to support co-located

comprehension. O’Reilly et al. [47] propose a war

room command console to share visualizations for

team coordination. There are other research ideas in

the CSCW (computer supported collaborative work)

field that could be applied to program comprehension.

Domain and pedagogical support: The need to

support domain experts that lack formal computer

science training will necessarily result in more domain-

specific languages and tools. Non-experts will also

need more cognitive scaffolding to help them learn

new tools, languages and domains more rapidly.

Pedagogical support, such as providing examples by

analogy, will likely be an integral part of future

software tools. The work discussed above on

recommending code examples is also suggested at

helping novices and software immigrants (i.e.

programmers new to a project). Results from the

empirical work also suggest that there is a need for

tools to help programmers learn a new language.

Technologies such as TXL [48] can play a role in

helping a user see examples of how code constructs in

one language would appear in a new language.

6.4 Discussion: Back to the Future

It is an interesting exercise to travel back and look

at Tilley and Smith’s paper from 1996 on “Coming

Attractions in Program Understanding” [18]. Some of

the predictions they had then for technologies which

would be available within five years did mature as they

predicted. They suggested that mature technologies

would be leveraged, which is now the case with mature

off the shelf technologies such as Windows’

components and the Eclipse framework. They also

predicted that web interfaces and hypertext would play

a bigger role. Many modern tools now use web

interfaces for navigating software resources. Tailorable

user interfaces are now common place, as are more

advanced pattern matching facilities.

Some of their predictions, however, are “still coming”

and indeed overlap the predictions in this paper. These

include: computer support collaborative understanding;

access to alternative sources of data through natural

language processing; data filters to allow the

programmer to focus on relevant information;

conceptual and domain modeling techniques; use of

intelligent agents in a “maintainer’s handbook” and

more advanced visual interfaces. These suggestions are

still under development but today seem within closer

reach. Whether these themes will reappear in another

‘prophecy’ paper, written ten years from now, only

time will tell.

7. Conclusions

As a community, we can be proud of our

achievements over the past thirty years. As the

landscape of comprehension research evolves, the

future looks bright. We can anticipate that advances

in program comprehension will increase, in part due to

recent enabling technologies, such as sophisticated

frameworks to support the more rapid construction and

integration of tools, and advanced technologies such as

context-aware and history-aware search and intelligent

user interfaces. In parallel to these tool advances, there

are now more researchers from both within computer

science and from other disciplines that are interested in

understanding more about the cognitive and social

aspects of program comprehension. These researchers

are now equipped with more appropriate research

methods that can help to reveal more understanding

about program comprehension needs and how these

needs may be met through tool and process support. As

the field of software engineering matures and the

possibilities for more advanced and pervasive software

increase, the field of program comprehension promises

to be an exciting area for future research.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Acknowledgements
My thanks to Janice Singer, Hausi Muller, Robert

Lintern, Adam Murray, and Jim Cordy for ideas,

feedback and encouragement while writing this paper.

References
[1] NATO Software Engineering Conference, Garmisch,
Germany, 7-11 Oct 1968.

[2] Brooks, Frederick P., "No Silver Bullet: Essence and
Accidents of Software Engineering," Computer, Vol. 20, No.
4, pp. 10-19, April 1987.

[3] Francoise Détienne, “Software Design -- Cognitive
Aspects”, Springer Practitioner Series, 2001.

[4] Luke Hohmann, “Journey of the Software Professional:
The Sociology of Software Development”, 1996.

[5] Andrew Walenstein, “Observing and Measuring
Cognitive Support: Steps Toward Systematic Tool
Evaluation and Engineering”, 11th Intl. Workshop on
Program Comprehension (IWPC'03), pp. 185-195, May
2003.

[6] E. Soloway and K. Ehrlich, “Empirical studies of
programming knowledge”, IEEE Transactions on Software
Engineering, pp. 595-609, SE-10(5), September 1984.

[7] Ruven Brooks, “Towards a theory of the comprehension
of computer programs”, International Journal of Man-
Machine Studies, pp. 543-554, vol. 18, 1983.

[8] B. Shneiderman and R. Mayer, “Syntactic/semantic
interactions in programmer behavior: A model and
experimental results”, International Journal of Computer and
Information Sciences, pp. 219-238, 8(3), 1979.

[9] N. Pennington, “Stimulus structures and mental
representations in expert comprehension of computer
programs”, Cognitive Psychology, pp. 295-341, vol 19, 1987.

[10] D.C. Littman, J. Pinto, S. Letovsky, and E. Soloway,
“Mental models and software maintenance”, In Empirical
Studies of Programmers, pp. 80-98, 1986.

[11] S. Letovsky, “Cognitive processes in program
comprehension”, In Empirical Studies of Programmers, pp.
58-79, 1986.

[12] A. von Mayrhauser and A.M. Vans, “From code
understanding needs to reverse engineering tool capabilities”,
In Proceedings of CASE'93, pp. 230-239, 1993.

[13] I. Vessey, “Expertise in debugging computer programs:
A process analysis”, International Journal of Man-Machine
Studies, pp. 459-494, vol 23, 1985.

[14] Bill Curtis, “By the way, did anyone study any real
programmers?”, Empirical studies of programmers, pp. 256-
262, 1986.

[15] T.J. Biggerstaff, B. W. Mitbander and D. Webster, “The
concept assignment problem in program understanding”,
Proceedings of the 15th international conference on Software
Engineering, pp. 482-498, 1993.

[16] J. Singer, T. Lethbridge, N. Vinson and N. Anquetil,
“An Examination of Software Engineering Work Practices”,
Proceedings of CASCON '97, pp. 209-223, 1997.

[17] K. Erdös and H. M. Sneed, “Partial Comprehension of
Complex Programs (enough to perform maintenance)”,
Proceedings of the 6th International Workshop on Program
Comprehension, pp. 98-105, 1998.

[18] S. R. Tilley and D.B. Smith, “Coming Attractions in
Program Understanding”, Technical Report CMU/SEI-96-
TR-019, 1996.

[19] H.A. Muller and K. Klashinsky, “Rigi: A system for
programming-in-the-large”, In Proceedings of the 10th
International Conference on Software Engineering (ICSE
'10), pp. 80-86, April 1988.

[20] G.C. Murphy, D. Notkin and K. Sullivan, “Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models”, In Proceedings of Foundations of
Software Engineering, pp. 18-28, October 1995.

[21] T. Eisenbarth, R. Koschke and Daniel Simon, “Aiding
Program Comprehension by Static and Dynamic Feature
Analysis”, In Proceedings of the IEEE International
Conference on Software Maintenance, November 2001.

[22] M.-A. Storey, “Designing a Software Exploration Tool
Using a Cognitive Framework of Design Elements”,
Software Visualization, Guest editor: Kang Zhang. Kluwer,
March 2003.

[23] M. Lanza and S. Ducasse, “A Categorization of Classes
based on the Visualization of their Internal Structure: the
Class Blueprint”, In Proceedings of OOPSLA 2001, pp. 300-
311, ACM Press, 2001.

[24] A. Mockus, R. Fielding, and J.D. Herbsleb, “Two Case
Studies of Open Source Software Development: Apache and
Mozilla”, ACM Transactions on Software Engineering and
Methodology, 11, 3, pp. 309-346, 2002.

[25] C. Gutwin, R. Penner, and K. Schneider, “Group
Awareness in Distributed Software Development”, ACM
CSCW, pp. 72 - 81, 2004.

[26] D. M. German, "Decentralized open source global
software development, the GNOME experience", to appear in
Journal of Software Process: Improvement and Practice.

[27] J. W. Creswell, “Research Design, Qualitative and
Quantitative Approaches”, SAGE Publications, 1994.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

[28] M.-A. Storey, S.E. Sim and K. Wong, “A Collaborative
Demonstration of Reverse Engineering Tools”, ACM Applied
Computing Review, pp. 18-25, Spring 2003.

[29] C. Exton, “Constructivism and program comprehension
strategies”, 10th International Workshop on Program
Comprehension, pp. 281–284, June 2002.

[30] T. R. G. Green and M. Petre, "Usability Analysis of
Visual Programming Environments: A 'Cognitive
Dimensions’ Framework", Journal of Visual Languages and
Computing, 7(2), pp. 131-174, 1996.

[31] M. Kersten and G. Murphy, “Mylar: a degree-of-interest
model for IDEs”, International Conference on Aspect
Oriented Software Development, to appear, March 2005.

[32] J. Singer, R. Elves and M.-A. Storey, “NavTracks
Demonstration: Supporting Navigation in Software Space”,
submitted to International Workshop on Program
Comprehension, 2005.

[33] R. DeLine, A. Khella, M. Czerwinski and G. Robertson,
“Towards Understanding Programs through Wear-based
Filtering”, Softvis, to appear May 2005.

[34] M. P. Robillard and G.Murphy, “FEAT: A tool for
locating, describing, and analyzing concerns in source code”,
In Proceedings of the 25th International Conference on
Software Engineering, pp. 822-823, May 2003.

[35] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth,
“Hipikat: A project memory for software development.”
IEEE Transactions on Software Engineering, to appear in the
special issue on mining software repositories.

[36] D. Mandelin, L. Xu, R. Bodik and D. Kimelman,
“Mining Jungloids: Helping to Navigate the API Jungle”,
PLDI, to appear, 2005.

[37] R. T. Holmes and G. C. Murphy, “Using structural
context to recommend source code examples”, in
Proceedings of the International Conference on Software
Engineering, to appear, May 2005.

[38]] Storey, M.-A., J. Michaud, M. Mindel, M.
Sanseverino, D. Damian, D. Myers, D. German and E.
Hargreaves, “Improving the Usability of Eclipse for Novice
Programmers”, Eclipse Technology eXchange (eTX)
Workshop at OOPSLA 2003, October, 2003.

[39] T. Ball and S.G. Eick, “Software visualization in the
large”, IEEE Computer 29, 4, pp.33-43, 1996.

[40] S. P. Reiss, “An overview of BLOOM”, Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pp. 2-5, 2001.

[41] K. Wong, S.R. Tilley, H.A. Muller, and M.-A. Storey,
“Structural redocumentation: A case study”, IEEE Software,
12(1), pp. 46-54, January 1995.

[42] D.A. Penny, “The Software Landscape: A Visual
Formalism for Programming-in-the-Large”, PhD thesis,
University of Toronto, 1992.

[43] A. Marcus, L. Feng, J.I. Maletic, "Comprehension of
Software Analysis Data Using 3D Visualization", in
Proceedings of the IEEE International Workshop on
Program Comprehension (IWPC 2003), pp. 105-114, May
2003.

[44] R. I. Bull and M.-A. Storey, “Towards Visualization
Support for the Eclipse Modeling Framework”, A Research-
Industry Technology Exchange at EclipseCon, March 2005.

[45] S. Hupfer, L.-T. Cheng, S. Ross and J. Patterson,
“Introducing collaboration into an application development
environment”, In Proc. of the ACM Conference on Computer
Supported Cooperative Work, pp. 444-454, 2004.

[46] J. Froehlich and P. Dourish, “Unifying artifacts and
activities in a visual tool for distributed software
development teams”, In Proc. of the 26th International
Conference on Software Engineering, pp. 387-396, 2004.

[47] C. O'Reilly, D. Bustard and P. Morrow, “The War Room
Command Console [Shared Visualizations for Inclusive
Team Coordination]”, Softvis, to appear 2005.

[48] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider,
"Source Transformation in Software Engineering using the
TXL Transformation System", Journal of Information and
Software Technology, vol(44)13, pp. 827-837, October 2002.

[49] K. Wong, “The Reverse Engineering Notebook”, Ph.D.
Thesis, University of Victoria, 2000.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

