
2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application

The Java HotSpot™
Virtual Machine Client
Compiler: Technology
and Application

Robert Griesemer
Srdjan Mitrovic
Senior Staff Engineers
Sun Microsystems, Inc.

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 2

Overall Presentation Goal

 Learn about “Java HotSpot” compilation in
the Java HotSpot™ Virtual Machine, and the
Client Compiler

 Understand how the Client Compiler deals with
specific Java programming language features

 Get to know tuning and trouble-shooting
techniques and compiler version differences

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 3

Learning Objectives

 As a result of this presentation, you will
be able to:
 Understand “Java HotSpot compilation”
 Write better code in the Java programming

language
 Improve the performance of your applications
 Try work-arounds in case of compiler issues
 Understand the impact of different versions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 4

Speakers’ Qualifications

 Robert Griesemer is a principal architect of
the Java HotSpot VM and the Client Compiler
 Robert has more than a decade of experience

with programming language implementation
 He has been with the Java HotSpot team since

its inception in 1994

 Srdjan Mitrovic is a principal architect of the
Java HotSpot Client Compiler
 Srdjan has more than a decade of experience

with compilers and run-time systems
 He has been with the Java HotSpot

team since 1996

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 5

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 6

Compilation in the
Java HotSpot™ VM

 VM configurations

 Compilation steps

 On-stack replacement

 Deoptimization

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 7

VM Configurations

libjvm.so / jvm.dll

Core VM ?

Java OS Libraries

OS
Hardware

Client
Compiler

Server
Compiler

java
java -hotspot

java -server

topic of this talk

Ty
pi

ca
l J

av
a

VM
 S

of
tw

ar
e

St
ac

k

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 8

Compilation Steps

 Every method is interpreted first

 Hot methods are scheduled for compilation
 Method invocations
 Loops

 Compilation can be foreground/background
 Foreground compilation default for Client VM
 Background compilation in parallel

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 9

On-Stack Replacement (1)

 Choice between interpreted/compiled
execution

 Problem with long-running interpreted methods
 Loops!

 Need to switch to compiled method in the
middle of interpreted method execution
 On-Stack Replacement (OSR)

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 10

On-Stack Replacement (2)

Stack
Before OSR

void m1() {
 ...
 while (i < n-1) {
 // OSR here
 ...
 }
 ...
}

Stack
After OSR

OSR

m1
interpreted

frame

m0 frame m0 frame

m1
 compiled

frame

dead m1
frame

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 11

Deoptimization (1)

 Compile-time assumptions may become
invalid over time
 Class loading

 Debugging of program desired
 Single-stepping

 Active compiled methods become invalid
 Need to switch to interpreted method in the

middle of compiled method execution
 Deoptimization

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 12

Deoptimization (2)

T3 m3(...) {
 ...
 // Deopt. here
}

T2 m2(...) {
 m3(...);
}

T1 m1() {
 ...
 m2(...);
 ...
}

Stack

Deopt.

m0 frame

m1
interpreted

m2
interpreted

m3 interpr.

m0 frame

comp. m1
w/ inlined
m2, m3
frame

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 13

Quick Summary

 Client VM differs from Server VM in compiler

 Hotspots trigger compilation
 Compiled method invocation
 OSR

 Class loading, debugging changes
compile-time assumptions
 Deoptimization

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 14

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 15

Structure of the Client Compiler

 Frontend

 Optimizations

 Backend

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 16

Front-End

 Parsing
 Reading and analyzing method bytecodes

 Intermediate Representation (IR)
 Internal representation for a method
 Control Flow Graph (CFG)
 Retain as much bytecode info as possible

 Optimizations
 Code Order

 Reorder CFG for code generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 17

Intermediate Representation

Bytecodes

 0 aload_1
 1 bipush 46
 3 invokevirtual #139
 6 istore_2
 7 iload_2
 8 ifgt 18
11 aload_0
12 getfield #2
15 invokevirtual #93
18 aload_1
19 iconst_0
20 ...

basic block

instructions

successor(s)

CFG

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 18

Optimizations

 Constant folding

 Simple form of value numbering

 Load elimination

 Dead code elimination

 Block elimination

 Null check elimination

 Inlining

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 19

Class Hierarchy Analysis (1)

 Dynamic pruning of receiver class set
 Static calls instead of virtual calls
 Inlining across virtual calls
 Faster type tests

 Class Hierarchy Analysis (CHA)
 Analysis of loaded classes
 Can change over time
 Effective

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 20

Class Hierarchy Analysis (2)

A
virtual m

B
virtual m

D
virtual n

C
virtual m

E
virtual n

F

extends

loaded
unloaded

G
virtual m

A a;
B b;
C c;
D d;
E e;
F f;
G g;

a.m A.m, B.m
b.m B.m
d.m A.m
d.n D.n
f.m A.m
f.n D.n

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 21

Backend

 Register Allocation

 Low-Level IR (LIR)
 JDK™ 1.4 release only
 Some additional optimizations

 Code Generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 22

Code Generation

Machine code:

pushl %ebp
movl %esp,%ebp
subl 40,%esp
movl %eax,-4(%esp,1)
movl %eax,-8(%esp,1)
movl 8(%ebp),%esi
cmpl 24(%ebp),%esi
jge 0xaeeff5
movl 8(%ebp),%esi
cmpl 0,%esi
jge 0xaeef03
movl 0x0,8(%ebp)
...

basic block

instructions

successor(s)

CFG

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 23

Quick Summary

 Frontend does
 Parse and analyze bytecodes
 Build and optimize IR
 Use CHA for very effective OO optimizations
 Reorder CFG for code generation

 Backend does
 LIR (JDK™ 1.4 release only)
 Register allocation, low-level optimizations
 Code generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 24

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 25

Implications for Code Written in
the Java™ Programming Language

 Accessors

 Usage of final

 Object allocation (new)

 Exception handling

 Other issues

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 26

Accessors

 Use accessors
 x_type get_x() { return _x; }

 void set_x(x_type x) { _x = x; }

 Abstracts from implementation

 Easier to maintain

 No performance penalty
 Inlining!

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 27

Usage of final

 Don’t use final for performance tuning

 CHA will do the work
 Where CHA can’t do it, final doesn’t

help either

 Keep software extensible

 No performance penalty
 Static calls
 Inlining

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 28

Object Allocation (new)

 Object allocation (new) inlined

 Works in most cases

 Extremely fast (~ 10–20 clock cycles)

 Do not manage memory yourself

 GC will slow down

 Larger memory footprint

 Keep software simple

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 29

Exception Handling

 Exception object creation is very expensive

 Stack trace

 Exception handling is not optimized

 Use it for exceptional situations

 Don’t use it as programming paradigm

 Don’t use instead of regular return

 Exception handling costs only when used

 Safe to declare exceptions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 30

Other Issues

 Client Compiler optimized for clean OO code
 “Hand-tuning” often counterproductive
 Generated code can be problematic

 Obfuscators

 Do not optimize prematurely
 Use profiling information

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 31

Quick Summary

 Write clean OO code
 Use accessors
 Use final by design only
 Use new for object allocation
 Use exception handling for exceptional cases

 Keep it simple, keep it clean

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 32

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 33

Miscellaneous

 Flags

 Built-in profiler

 Version differences

 When to use the client compiler

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 34

Flags (1)

 No flag tuning for compiler required
 Use standard command line flags
 Special situations

 -Xint
 -XX:+PrintCompilation

 JDK™ 1.3.1, JDK™ 1.4 technology
 .hotspotrc
 .hotspot_compiler

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 35

Flags (2)

 Usage
 -XX:+FlagName, -XX:-FlagName

 Flags and default setting
 -BackgroundCompilation

 Foreground/background compilation
 +UseCompilerSafepoints

 May help in presence of crashes
 +StackTraceInThrowable

 Disable to turn off stack traces
in exceptions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 36

Built-in Profiler

 Option: -Xprof
 E.g.: java -Xprof -jar Java2Demo.jar

 Statistical (sampling) flat profiler
 Not hierarchical

 Per thread
 Output when thread terminates

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 37

Sample Profiler Output

Flat profile of 27.38 secs (2574 total ticks): AWT-EventQueue-0

 Interpreted + native Method
 7.2% 0 + 90 sun.java2d.loops.Blit.Blit
 0.7% 0 + 9 sun.awt.windows.Win32BlitLoops.Blit
 ...
 19.8% 72 + 174 Total interpreted (including elided)

 Compiled + native Method
 9.2% 115 + 0 java.awt.GradientPaintContext.clip...
 ...
 15.0% 179 + 8 Total compiled (including elided)

 Thread-local ticks:
 51.7% 1330 Blocked (of total)
 0.2% 2 Class loader
 0.3% 4 Interpreter
 10.0% 124 Compilation
 0.5% 6 Unknown: running frame
 0.2% 2 Unknown: thread_state

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 38

Version Differences

Corresponding JDK™ 1.3 1.3.1 1.4
Unified source base n/y* yes yes
OSR yes yes yes
Simple inlining yes yes no
Full inlining no no yes
Deoptimization no no yes
More optimizations no no yes

* SPARC™ processor implementation only

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 39

When to Use the Client Compiler

 Client Compiler characteristics
 Fast compilation

 Quick startup time
 Small footprint

 Use for apps with same expectations
 Recommendation

 Try client and server, choose best
 java -hotspot

 java -server

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 40

Quick Summary

 No flag tuning required
 Help for special situations

 Profiler for program tuning

 Minor version differences only
 Faster code with JDK™ 1.4 release

 Try both compilers for optimal solution

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 41

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 42

Overall Summary

 Java HotSpot™ compilation

 Client compiler internals

 Programming and tuning hints

 More information at the BOFs
 BOF-2697
 BOF-2639

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 43

References

 Robert Griesemer, Srdjan Mitrovic:
“A Compiler for the Java HotSpot™ Virtual
Machine”, in The School of Niklaus Wirth—
The Art of Simplicity, Morgan Kaufmann
Publishers, 2000, ISBN 1-55860-723-4

 Java HotSpot™ Technology Documents
http://java.sun.com/products/hotspot/
2.0/docs.html

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 45

