
2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application

The Java HotSpot™
Virtual Machine Client
Compiler: Technology
and Application

Robert Griesemer
Srdjan Mitrovic
Senior Staff Engineers
Sun Microsystems, Inc.

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 2

Overall Presentation Goal

 Learn about “Java HotSpot” compilation in
the Java HotSpot™ Virtual Machine, and the
Client Compiler

 Understand how the Client Compiler deals with
specific Java programming language features

 Get to know tuning and trouble-shooting
techniques and compiler version differences

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 3

Learning Objectives

 As a result of this presentation, you will
be able to:
 Understand “Java HotSpot compilation”
 Write better code in the Java programming

language
 Improve the performance of your applications
 Try work-arounds in case of compiler issues
 Understand the impact of different versions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 4

Speakers’ Qualifications

 Robert Griesemer is a principal architect of
the Java HotSpot VM and the Client Compiler
 Robert has more than a decade of experience

with programming language implementation
 He has been with the Java HotSpot team since

its inception in 1994

 Srdjan Mitrovic is a principal architect of the
Java HotSpot Client Compiler
 Srdjan has more than a decade of experience

with compilers and run-time systems
 He has been with the Java HotSpot

team since 1996

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 5

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 6

Compilation in the
Java HotSpot™ VM

 VM configurations

 Compilation steps

 On-stack replacement

 Deoptimization

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 7

VM Configurations

libjvm.so / jvm.dll

Core VM ?

Java OS Libraries

OS
Hardware

Client
Compiler

Server
Compiler

java
java -hotspot

java -server

topic of this talk

Ty
pi

ca
l J

av
a

VM
 S

of
tw

ar
e

St
ac

k

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 8

Compilation Steps

 Every method is interpreted first

 Hot methods are scheduled for compilation
 Method invocations
 Loops

 Compilation can be foreground/background
 Foreground compilation default for Client VM
 Background compilation in parallel

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 9

On-Stack Replacement (1)

 Choice between interpreted/compiled
execution

 Problem with long-running interpreted methods
 Loops!

 Need to switch to compiled method in the
middle of interpreted method execution
 On-Stack Replacement (OSR)

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 10

On-Stack Replacement (2)

Stack
Before OSR

void m1() {
 ...
 while (i < n-1) {
 // OSR here
 ...
 }
 ...
}

Stack
After OSR

OSR

m1
interpreted

frame

m0 frame m0 frame

m1
 compiled

frame

dead m1
frame

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 11

Deoptimization (1)

 Compile-time assumptions may become
invalid over time
 Class loading

 Debugging of program desired
 Single-stepping

 Active compiled methods become invalid
 Need to switch to interpreted method in the

middle of compiled method execution
 Deoptimization

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 12

Deoptimization (2)

T3 m3(...) {
 ...
 // Deopt. here
}

T2 m2(...) {
 m3(...);
}

T1 m1() {
 ...
 m2(...);
 ...
}

Stack

Deopt.

m0 frame

m1
interpreted

m2
interpreted

m3 interpr.

m0 frame

comp. m1
w/ inlined
m2, m3
frame

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 13

Quick Summary

 Client VM differs from Server VM in compiler

 Hotspots trigger compilation
 Compiled method invocation
 OSR

 Class loading, debugging changes
compile-time assumptions
 Deoptimization

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 14

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 15

Structure of the Client Compiler

 Frontend

 Optimizations

 Backend

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 16

Front-End

 Parsing
 Reading and analyzing method bytecodes

 Intermediate Representation (IR)
 Internal representation for a method
 Control Flow Graph (CFG)
 Retain as much bytecode info as possible

 Optimizations
 Code Order

 Reorder CFG for code generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 17

Intermediate Representation

Bytecodes

 0 aload_1
 1 bipush 46
 3 invokevirtual #139
 6 istore_2
 7 iload_2
 8 ifgt 18
11 aload_0
12 getfield #2
15 invokevirtual #93
18 aload_1
19 iconst_0
20 ...

basic block

instructions

successor(s)

CFG

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 18

Optimizations

 Constant folding

 Simple form of value numbering

 Load elimination

 Dead code elimination

 Block elimination

 Null check elimination

 Inlining

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 19

Class Hierarchy Analysis (1)

 Dynamic pruning of receiver class set
 Static calls instead of virtual calls
 Inlining across virtual calls
 Faster type tests

 Class Hierarchy Analysis (CHA)
 Analysis of loaded classes
 Can change over time
 Effective

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 20

Class Hierarchy Analysis (2)

A
virtual m

B
virtual m

D
virtual n

C
virtual m

E
virtual n

F

extends

loaded
unloaded

G
virtual m

A a;
B b;
C c;
D d;
E e;
F f;
G g;

a.m A.m, B.m
b.m B.m
d.m A.m
d.n D.n
f.m A.m
f.n D.n

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 21

Backend

 Register Allocation

 Low-Level IR (LIR)
 JDK™ 1.4 release only
 Some additional optimizations

 Code Generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 22

Code Generation

Machine code:

pushl %ebp
movl %esp,%ebp
subl 40,%esp
movl %eax,-4(%esp,1)
movl %eax,-8(%esp,1)
movl 8(%ebp),%esi
cmpl 24(%ebp),%esi
jge 0xaeeff5
movl 8(%ebp),%esi
cmpl 0,%esi
jge 0xaeef03
movl 0x0,8(%ebp)
...

basic block

instructions

successor(s)

CFG

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 23

Quick Summary

 Frontend does
 Parse and analyze bytecodes
 Build and optimize IR
 Use CHA for very effective OO optimizations
 Reorder CFG for code generation

 Backend does
 LIR (JDK™ 1.4 release only)
 Register allocation, low-level optimizations
 Code generation

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 24

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 25

Implications for Code Written in
the Java™ Programming Language

 Accessors

 Usage of final

 Object allocation (new)

 Exception handling

 Other issues

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 26

Accessors

 Use accessors
 x_type get_x() { return _x; }

 void set_x(x_type x) { _x = x; }

 Abstracts from implementation

 Easier to maintain

 No performance penalty
 Inlining!

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 27

Usage of final

 Don’t use final for performance tuning

 CHA will do the work
 Where CHA can’t do it, final doesn’t

help either

 Keep software extensible

 No performance penalty
 Static calls
 Inlining

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 28

Object Allocation (new)

 Object allocation (new) inlined

 Works in most cases

 Extremely fast (~ 10–20 clock cycles)

 Do not manage memory yourself

 GC will slow down

 Larger memory footprint

 Keep software simple

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 29

Exception Handling

 Exception object creation is very expensive

 Stack trace

 Exception handling is not optimized

 Use it for exceptional situations

 Don’t use it as programming paradigm

 Don’t use instead of regular return

 Exception handling costs only when used

 Safe to declare exceptions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 30

Other Issues

 Client Compiler optimized for clean OO code
 “Hand-tuning” often counterproductive
 Generated code can be problematic

 Obfuscators

 Do not optimize prematurely
 Use profiling information

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 31

Quick Summary

 Write clean OO code
 Use accessors
 Use final by design only
 Use new for object allocation
 Use exception handling for exceptional cases

 Keep it simple, keep it clean

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 32

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 33

Miscellaneous

 Flags

 Built-in profiler

 Version differences

 When to use the client compiler

 Quick summary

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 34

Flags (1)

 No flag tuning for compiler required
 Use standard command line flags
 Special situations

 -Xint
 -XX:+PrintCompilation

 JDK™ 1.3.1, JDK™ 1.4 technology
 .hotspotrc
 .hotspot_compiler

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 35

Flags (2)

 Usage
 -XX:+FlagName, -XX:-FlagName

 Flags and default setting
 -BackgroundCompilation

 Foreground/background compilation
 +UseCompilerSafepoints

 May help in presence of crashes
 +StackTraceInThrowable

 Disable to turn off stack traces
in exceptions

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 36

Built-in Profiler

 Option: -Xprof
 E.g.: java -Xprof -jar Java2Demo.jar

 Statistical (sampling) flat profiler
 Not hierarchical

 Per thread
 Output when thread terminates

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 37

Sample Profiler Output

Flat profile of 27.38 secs (2574 total ticks): AWT-EventQueue-0

 Interpreted + native Method
 7.2% 0 + 90 sun.java2d.loops.Blit.Blit
 0.7% 0 + 9 sun.awt.windows.Win32BlitLoops.Blit
 ...
 19.8% 72 + 174 Total interpreted (including elided)

 Compiled + native Method
 9.2% 115 + 0 java.awt.GradientPaintContext.clip...
 ...
 15.0% 179 + 8 Total compiled (including elided)

 Thread-local ticks:
 51.7% 1330 Blocked (of total)
 0.2% 2 Class loader
 0.3% 4 Interpreter
 10.0% 124 Compilation
 0.5% 6 Unknown: running frame
 0.2% 2 Unknown: thread_state

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 38

Version Differences

Corresponding JDK™ 1.3 1.3.1 1.4
Unified source base n/y* yes yes
OSR yes yes yes
Simple inlining yes yes no
Full inlining no no yes
Deoptimization no no yes
More optimizations no no yes

* SPARC™ processor implementation only

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 39

When to Use the Client Compiler

 Client Compiler characteristics
 Fast compilation

 Quick startup time
 Small footprint

 Use for apps with same expectations
 Recommendation

 Try client and server, choose best
 java -hotspot

 java -server

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 40

Quick Summary

 No flag tuning required
 Help for special situations

 Profiler for program tuning

 Minor version differences only
 Faster code with JDK™ 1.4 release

 Try both compilers for optimal solution

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 41

Presentation Agenda

 Compilation in the Java HotSpot™ VM

 Structure of the Client Compiler

 Implications for Code written in the Java™
Programming Language

 Miscellaneous

 Summary, Demo, and Q&A

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 42

Overall Summary

 Java HotSpot™ compilation

 Client compiler internals

 Programming and tuning hints

 More information at the BOFs
 BOF-2697
 BOF-2639

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 43

References

 Robert Griesemer, Srdjan Mitrovic:
“A Compiler for the Java HotSpot™ Virtual
Machine”, in The School of Niklaus Wirth—
The Art of Simplicity, Morgan Kaufmann
Publishers, 2000, ISBN 1-55860-723-4

 Java HotSpot™ Technology Documents
http://java.sun.com/products/hotspot/
2.0/docs.html

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application

2696, The Java HotSpot™ Virtual Machine Client Compiler: Technology and
Application 45

