g JavaOne

fj\ s 2001 Worldwide

The Java HotSpot™
Virtual Machine Client
Compiler: Technology
and Application

Robert Griesemer

Srdjan Mitrovic
Senior Staff Engineers
Sun Microsystems, Inc.

Overall Presentation Goal

Learn about "Java HotSpot” compilation in
the Java HotSpot" Virtual Machine, and the
Client Compiler

Understand how the Client Compiler deals with
specific Java programming language features

Get to know tuning and trouble-shooting
techniques and compiler version differences

JavaOne

Learning Objectives

As a result of this presentation, you will
be able to:

Understand “Java HotSpot compilation”

Write better code in the Java programming
language

Improve the performance of your applications
Try work-arounds in case of compiler issues
Understand the impact of different versions

JavaOne

Speakers’ Qualifications

Robert Griesemer is a principal architect of
the Java HotSpot VM and the Client Compiler

Robert has more than a decade of experience
with programming language implementation

He has been with the Java HotSpot team since
its inception in 1994

Srdjan Mitrovic is a principal architect of the
Java HotSpot Client Compiler

Srdjan has more than a decade of experience
with compilers and run-time systems

He has been with the Java HotSpot
team since 1996

JavaOne

Presentation Agenda

Compilation in the Java HotSpot™ VM

JavaOne

Compilation in the
Java HotSpot" VM

VM configurations
Compilation steps
On-stack replacement
Deoptimization

Quick summary

JavaOne

VM Configurations

topic of this talk

libjym.so / jvm.dlI

java
Client java -hotspot
G Compiler J P

java -server

Java [eRNRGEHES Server

Compiler

OS

Hardware

Typical Java VM Software Stack

JavaOne

Compilation Steps

Every method is interpreted first

Hot methods are scheduled for compilation
Method invocations
Loops

Compilation can be foreground/background
Foreground compilation default for Client VM
Background compilation in parallel

JavaOne

On-Stack Replacement (1)

Choice between interpreted/compiled
execution

Problem with long-running interpreted methods
Loops!

Need to switch to compiled method in the
middle of interpreted method execution

On-Stack Replacement (OSR)

JavaOne

On-Stack Replacement (2)

Stack Stack
1 Before OSR After OSR T
OSR -
m1
— compiled
frame
void ml () {
_ m1 .. dead m1
interpreted while (i < n-1) { frame
frame

// OSR here

mO frame } o mO frame
(U | —

Deoptimization (1)

Compile-time assumptions may become
invalid over time

Class loading

Debugging of program desired
Single-stepping

Active compiled methods become invalid

Need to switch to interpreted method in the
middle of compiled method execution

Deoptimization

JavaOne

Deoptimization (2)

T3 m3(...) {

// Deopt. here

}

T2 m2(...) {
m3(...);

}

Tl ml() {
m2(...);

1

comp. m1
w/ inlined

m2, m3
frame

mO frame
"-—

Stack

Deopt.

1

m3 interpr.

m2
interpreted

m1
interpreted

mO frame

Quick Summary

Client VM differs from Server VM in compiler

Hotspots trigger compilation

Compiled method invocation
OSR

Class loading, debugging changes
compile-time assumptions

Deoptimization

JavaOne

Presentation Agenda

Structure of the Client Compiler

JavaOne

Structure of the Client Compiler

Frontend
Optimizations
Backend

Quick summary

JavaOne

Front-End

Parsing
Reading and analyzing method bytecodes
Intermediate Representation (IR)
Internal representation for a method
Control Flow Graph (CFG)
Retain as much bytecode info as possible
Optimizations
Code Order
Reorder CFG for code generation

JavaOne

Intermediate Representation

Bytecodes

0 aload 1

1 bipush 46

3 invokevirtual #139
6

7

8

1store_2
iload 2
ifgt 18 —)

11 aload O instructions
12 getfield #2

15 invokevirtual #93
18 aload 1

19 iconsE;O I
20 ...

i

JavaOne

Optimizations

Constant folding

Simple form of value numbering
Load elimination

Dead code elimination

Block elimination

Null check elimination

Inlining

JavaOne

Class Hierarchy Analysis (1)

Dynamic pruning of receiver class set
Static calls instead of virtual calls
Inlining across virtual calls
Faster type tests

Class Hierarchy Analysis (CHA)
Analysis of loaded classes
Can change over time
Effective

JavaOne

Class Hierarchy Analysis (2)

A a; A a.m=pA.m, B.m
B b; virtual m b.m=pB.m
C c; d.m=p-A.m
D d; B = d.n =$D.n
E e; virtual m | virtual n f.m=»>Am
F f; f.n =»D.n
G g; _ _

A ey

virtual m virtual n

F
_ G
| loaded virtual m

JavaOne

Backend

Register Allocation

Low-Level IR (LIR)

JDK™ 1.4 release only
Some additional optimizations

Code Generation

JavaOne

Code Generation

nstructions

Machine code:

pushl %ebp

movl
subl
movl
movl
movl
cmpl
Jge

movl
cmpl
jge

movl

sesp, sebp

40, %esp
%eax, -4 (%esp,1)
%eax, -8 (%esp,1)
8 (%ebp) , %esi
24 (%ebp) ,%esi
Oxaeeffb

8 (%ebp) , %esi
0,%esi
Oxaeef03
0x0, 8 (%sebp)

JavaOne

Quick Summary

Frontend does
Parse and analyze bytecodes
Build and optimize IR
Use CHA for very effective OO optimizations
Reorder CFG for code generation

Backend does
LIR (JDK™ 1.4 release only)
Register allocation, low-level optimizations
Code generation

JavaOne

Presentation Agenda

Implications for Code written in the Java™
Programming Language

JavaOne

Implications for Code Written in
the Java Programming Language

Accessors

Usage of £inal
Object allocation (new)
Exception handling
Other issues

Quick summary

JavaOne

Accessors

Use accessors
x type get x() { return x; }

void set x(x type x) { x = x; }

Abstracts from implementation
Easier to maintain

No performance penalty
Inlining!

JavaOne

Usage of final

Don’t use £inal for performance tuning

CHA will do the work

Where CHA can’'t do it, final doesn'’t
help either

Keep software extensible

No performance penalty
Static calls
Inlining

JavaOne

Object Allocation (new)

Object allocation (new) inlined

Works in most cases

Extremely fast (~ 10-20 clock cycles)
Do not manage memory yourself

GC will slow down

Larger memory footprint

Keep software simple

JavaOne

Exception Handling

Exception object creation is very expensive
Stack trace
Exception handling is not optimized
Use it for exceptional situations
Don’t use it as programming paradigm
Don’t use instead of regular return
Exception handling costs only when used

Safe to declare exceptions
JavaOne

Other Issues

Client Compiler optimized for clean OO code
“Hand-tuning” often counterproductive

Generated code can be problematic
Obfuscators

Do not optimize prematurely
Use profiling information

JavaOne

Quick Summary

Write clean OO code
Use accessors
Use £inal by design only

Use new for object allocation
Use exception handling for exceptional cases

Keep it simple, keep it clean

JavaOne

Presentation Agenda

Miscellaneous

JavaOne

Miscellaneous

Flags
Built-in profiler
Version differences

When to use the client compiler

Quick summary

JavaOne

Flags (1)

No flag tuning for compiler required
Use standard command line flags
Special situations

-Xint

-XX:+PrintCompilation

JDK™ 1.3.1, JDK™ 1.4 technology
.hotspotrc
.hotspot_compiler

JavaOne

Flags (2)

Usage
-XX:+FlagName, -XX:-FlagName
Flags and default setting
-BackgroundCompilation
Foreground/background compilation
+UseCompilerSafepoints
May help in presence of crashes

+StackTracelnThrowable

Disable to turn off stack traces
In exceptions

JavaOne

Built-in Profiler

Option: -Xprof
E.g.: java -Xprof -jar Java2Demo.jar

Statistical (sampling) flat profiler
Not hierarchical

Per thread
Output when thread terminates

JavaOne

Sample Profiler Output

Flat profile of 27.38 secs (2574 total ticks): AWT-EventQueue-0

Interpreted + native Method

7.2% o + 90 sun. java2d.loops.Blit.Blit
0.7% 0 + 9 sun.awt.windows.Win32BlitLoops.Blit
19.8% 72 + 174 Total interpreted (including elided)
Compiled + native Method
9.2% 115 + 0 java.awt.GradientPaintContext.clip...
15.0% 179 + 8 Total compiled (including elided)

Thread-local ticks:

51.7% 1330 Blocked (of total)
0.2% 2 Class loader

0.3% 4 Interpreter

10.0% 124 Compilation

0.5% 6 Unknown: running frame
0.2% 2 Unknown: thread state

JavaOne

Version Differences

Corresponding JDK"™ 1.3 1.31 14
Unified source base n/ly* yes yes
OSR yes yes yes
Simple inlining yes yes no

Full inlining no no yes
Deoptimization no no yes
More optimizations no no yes

* SPARC™ processor implementation only

JavaOne

When to Use the Client Compiler

Client Compiler characteristics

Fast compilation
Quick startup time

Small footprint
Use for apps with same expectations
Recommendation

Try client and server, choose best
java -hotspot

java -server

JavaOne

Quick Summary

No flag tuning required
Help for special situations

Profiler for program tuning

Minor version differences only
Faster code with JDK™ 1.4 release

Try both compilers for optimal solution

JavaOne

Presentation Agenda

Summary, Demo, and Q&A

JavaOne

Overall Summary

Java HotSpot™ compilation
Client compiler internals
Programming and tuning hints

More information at the BOFs
BOF-2697
BOF-2639

JavaOne

References

Robert Griesemer, Srdjan Mitrovic:

“A Compiler for the Java HotSpot™ Virtual
Machine”, in The School of Niklaus Wirth—
The Art of Simplicity, Morgan Kaufmann
Publishers, 2000, ISBN 1-55860-723-4

Java HotSpot™ Technology Documents

http://java.sun.com/products/hotspot/
2.0/docs.html

JavaOne

JavaOne

Sun's 2001 Worldwide Java Developer Conference’

Sun's 2001 Worldwide Java Developer Conference’

