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1. Partition and Related Functions 
 
 
Reverse, rotate and random shuffle are the most important examples of index-based 
permutations, that is, permutations that rearrange a sequence according to the original 
position of the elements without any consideration for their values. Now we are going to 
study a different class of permutation algorithms, predicate-based permutations. The 
positions into which these algorithms move elements in a sequence depend primarily on 
whether they satisfy a given condition, not only on their original position. 
 
Most of the algorithms in this section are based on the notion of partition: dividing 
elements in a range into good and bad according to a predicate. One of the tasks of the 
present chapter is to show the richness of the algorithmic space surrounding partition. We 
will find use for many of the functions that we studied before, such as find, reduce and 
rotate. We will discover many techniques and interfaces that will serve us well in the 
following chapters. 
 

Definitions 
 
1. A range is partitioned according to a given predicate if every element in the range that 
satisfies the predicate precedes every element that does not satisfy the predicate. 
 
2.  An iterator m into a partitioned range [f, l) is called a partition point if every 
element in the range [f, m) satisfies the predicate and no element in the range [m, 
l) satisfies it. 
 
For example, if G stands for good (satisfying), B for bad(unsatisfying) elements then the 
following range [f, l) is partitioned and m is its partition point: 
 
GGGGGBBB 
^    ^  ^ 
f    m  l 
 
Notice, that as we have seen in cases of other algorithms, partition requires N + 1 
different values of iterators to describe all possible partition points of a sequence of N 
elements. Indeed, if we have N elements in a sequence the number of good elements in it 
varies between 0 and N, having, therefore, N + 1 distinct values. 
 
 
We can check if a range is partitioned using the following function: 
 
template <typename I,  // I models Input Iterator 
  typename P>  // P models Unary Predicate 
bool is_partitioned(I f, I l, P p) 
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{ 
 return l == find_if(find_if_not(f, l, p), l, p); 
} 
 
The function checks that there are no good elements that follow a bad element. 
 
If we know the partition point m we can verify the partitioning with: 
 
template <typename I,  // I models Input Iterator 
  typename P>  // P models Unary Predicate 
bool is_partitioned(I f, I m, I l, P p) 
{ 
 return all(f, m, p) && none(m, l, p); 
} 
 
 
If a range is partitioned according to some predicate we can easily find its partition point 
by calling: 
 
find_if_not(f, l, p) 
 
Later in this section we shall see that it is often possible to find the partition point much 
faster. 
 
Quiz: How is it possible to find the partition point faster? 
 
There could be many different permutations of a range that give us a partitioned range. If 
we have a range with U good elements and V bad elements the number of different 
partitioned permutations is equal to U!V!.   
 
Problem: How large must a range be to have different partitioned permutations 
irrespective of the number of good and bad elements in it? 
 

Forward Partition Algorithm (Lomuto)  
 
In order to partition a range [f, l) in place we start with an inductive assumption: 
 
Let us assume that we managed to partition a range up to some point n and the present 
partition point is m. We can illustrate the current state with the picture: 
 
 GGGGGGGGBBBBBBB?????? 
 ^       ^      ^     ^ 
     f       m      n     l 
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where G stands for “good” (satisfying), B for “bad”(unsatisfying) and ? stands for 
“untested”. Then we know that: 
 
 assert(all(f, m, p) && none(m, n, p)); // invariant 
 
We do not know anything about the value at n. Before we check if it satisfies the 
predicate we need to assure that we have not reached the end of the range. But if 
somehow we did, we are done.  Indeed if n is equal to l then our loop invariant becomes 
equivalent to the second version of is_partitioned which happens to be the 
postcondition of the function that we are trying to implement. It is evident that we should 
return the partition point. Indeed, we have it available and it might be - and in reality 
almost invariably is - useful to the caller.  
 
Now we have the innermost part of our program: 
 
 assert(all(f, m, p) && none(m, n, p)); // invariant 
 if (n == l) return m; 
 
Since we have not reached the end of the range we can test the next element. 
 
If the element to which n points does not satisfy the predicate, we can simply advance n 
and our invariant still holds. Otherwise, we swap a good element pointed to by n with a 
(usually) bad element pointed to by m and we can advance both m and n with our 
invariant holding. 
 
Quiz: Can there ever be the case that m points to a good element? Would the invariant 
still hold if it does? 
 
Since we know that eventually n will reach l our program is almost done: 
 
while (true) { 
 assert(all(f, m, p) && none(m, n, p)); // invariant 
 if (n == l)  

return m; 
 if (p(*n)) { 

swap(*n, *m); 
++m; 

 } 
 ++n; 
} 
 
We observe that for any range [f, l) we can find our inductive base by starting with 
both m and n being equal to f. Or, stating it differently, it is really easy to partition an 
empty range and find its partition point. And since now we have both the starting point 
for our induction and the inductive step, we obtain: 
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template <typename I,  // I models Forward Iterator 
  typename P>  // P models Unary Predicate 
I partition_forward_unoptimized(I f, I l, P p) 
{ 
 I m = f; 
 I n = f; 
 while (n != l) { 
  if (p(*n)) { 

swap(*n, *m); 
++m; 

  } 
  ++n; 
 } 
 assert(is_partitioned(f, m, l, p)); 
 return m; 
} 
 
Remark: It is interesting that this excellent algorithm is not in the C++ standard which 
requires bidirectional iterators for partition. I had known, implemented, and taught this 
algorithm for quite some time – since I first read about it in Bentley’s column in CACM 
in the mid-eighties. But my original STL proposal does, somehow, specify bidirectional 
iterators for both partition and stable_partition. Both of them were corrected 
in SGI STL, but most vendors are still behind. This little thing has been bothering me for 
over 10 years now; the most bothersome part being the fact of omission. How did it 
happen? I suspect that the explanation is quite simple: while in the early 90ties I already 
understood the idea of reducing every algorithms to its minimal requirements, and I also 
knew that the same operation could be implemented using better algorithms when we 
know more about the data to which they are applied, I was not yet fully aware of the need 
to provide an algorithm for the weakest case, if such an algorithm is available. It took 
several more years to understand the importance of “filling the algorithmic space.” 
 
How many operations does the algorithm perform? The number of the applications of the 
predicate is exactly equal to the length of the range. And that is, indeed, the minimal 
number possible.  
 
Assuming that N is the length of a range solve the following problems: 
 
Problem: Prove that it is not possible to find the partition point with fewer than N 
predicate applications. 
 
Problem: Prove that if it is not required to return a partition point then it is possible to 
partition a non-empty range with fewer than N predicate applications. [Jon Brandt]  
 
Problem: Prove that even without returning a partition point it is not possible to 
partition a range with fewer than N-1 predicate applications. 
 



Alex Stepanov Page 5 7/26/2005 

While the algorithm is optimal in terms of the number of application of the predicate it 
clearly does more swaps than necessary. Indeed, it does one swap for every good element 
in the sequence. But it is absolutely unnecessary to do it when there is no preceding bad 
element. We can, therefore, produce an optimized version of the algorithm that skips over 
all the good elements in the beginning of the range. We can also optimize away one of 
the iterator variables: 
 
template <typename I,  // I models Forward Iterator 
  typename P>  // P models Unary Predicate 
I partition_forward_1(I f, I l, P p) 
{ 
 f = find_if_not(f, l, p); 
 if (f == l) return f; 
 I n = f;  
 while (++n != l) 
  if (p(*n)) { 

swap(*n, *f); 
++f; 

  } 
 return f; 
} 
 
While it seems to be a worthwhile optimization, in reality it is not very useful since the 
average number of good elements in front of the first bad element is going to be very 
small. We are, therefore, saving just a constant number of operations in a linear 
algorithm, which, in general, is not a very useful optimization. The main reason for doing 
it is esthetic: the optimized version is not going to do any swaps if a range is already 
partitioned, which is a “nice” (but not practically useful) property.   
 
Problem: What is the average number of good elements in front of the first bad 
element? 
  
Now the number of swaps is going to be equal to the number of the good elements that 
appear in the range after the first bad element. While it is “optimal” for this algorithm, it 
is clearly excessive. For example, if we have a sequence of one bad element followed by 
four good elements: 
 
BGGGG 
 
our program is going to perform four swaps, while a partitioned sequence can be obtained 
with a single swap of the first and the fifth elements. It is easy to see that on the average 
there will be approximately N/2 good elements after a bad element and, therefore, on the 
average the algorithm will do N/2 swaps. 
 
What is the minimal number of swaps that are needed for partition? Well, as a matter of 
fact the question is not particularly interesting. In terms of minimal number of moving 
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operations we should ask about what is the minimal number of moves that are needed to 
partition a given range. The answer is simple: if we have a range with U good elements 
and V bad elements and there are K bad elements amongst the first U elements of the 
range, then we need 2K+1 moves to partition the range (assuming, of course, that K is not 
equal to 0). Indeed, K bad elements are out of place and so there are K good elements that 
are originally positioned outside of their final destination. To move these 2K elements we 
need at least 2K moves and we need one extra location where we need to save one of the 
elements to enable us to initiate the sequence of moves.  
 
Problem: Design a partition algorithm that does 2K+1 moves. You do not have to 
assume that iterators are forward iterators. [Solution can be found later in this section] 
 
What is the number of iterator operations performed by partition_forward? It is 
clear that we need to do N iterator comparisons to watch for the end. Our present 
implementation will do an extra one, since it will compare an iterator returned by find 
which would not have been necessary if we decided to hand-inline find and obtained the 
following code sequence: 
 
template <typename I,  // I models Forward Iterator 
  typename P>  // P models Unary Predicate 
I partition_forward(I f, I l, P p) 
{ 
 while (true) { 

if (f == l) return f; 
  if (!p(*f)) break; 
  ++f; 
 } 
 I n = f;  
 while (++n != l) 
  if (p(*n)) { 

swap(*n, *f); 
++f; 

  } 
 return f; 
} 
 
In this context the optimization is not particularly useful since a single extra comparison 
does not really effect the performance (a small constant added to a linear function), but 
we encounter the same transformation in the next algorithm where the extra comparison 
appears in the inner loop. The transformation starts with the loop of find_if_not: 
 
while (f != l && p(*f)) ++f; 
 
and  provides two different exits depending on which part of the conjunction holds. The 
total number of iterator increments is equal to N + W where W is the number of good 
elements that follow the first bad element. As we remarked before, on the average it is 
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going to be approximately N + U – 2 where U is the number of good elements in the 
range.   
 
Remark: We do not know a partition algorithm that is more effective for forward 
iterators than the one we just described. We believe that in some fundamental sense it is 
optimal, but we do not even know how to state the problem. We typically analyze the 
algorithmic performance by counting one kind of operation. In reality we are dealing with 
several different operations. For partition we need predicate application and move (both 
of which depend on the type of elements) and iterator increment and equality (both of 
which depend on the iterator type). We have a general feeling that element operations are 
potentially costlier than iterator operations, since elements could be large while iterators 
are small. Such vague considerations usually allow us to produce algorithms that are 
satisfactory in practice, but there is something unsatisfying about it. It is possible that one 
can come up with axioms on the complexity measures of different operations that will 
allow us to prove optimality of certain algorithms. So far, we failed either to design such 
axioms or to interest others in solving such problems. 

Bidirectional Partition Algorithm (Hoare) 
 
While, as we shall see later, it is possible to implement a partition algorithm with a 
minimal number of moves, in practice it is usually sufficient to replace 2K +1 moves with 
K swaps, namely, discover all the K misplaced bad elements and swap them with K 
misplaced good elements. Our goal is to assure that every swap puts both the good 
element and the bad element in their final destination.  If we take the rightmost good 
element and the leftmost bad element we can be sure that if they are out of place we can 
put both in acceptable positions by swapping them. Indeed, we know that all the elements 
to the left of the leftmost bad element have to be good and are in their final destination; 
and similarly for the rightmost good element. So if they are out of place – the leftmost 
bad element is before the rightmost good element, then swapping them is putting both 
into acceptable locations. Finding the rightmost good element efficiently requires that we 
move from the right and that requires bidirectional iterators. 
 
The idea of the algorithm can be illustrated by the following picture: 
 
 GGGGGGGGB??????GBBBBB 
 ^       ^      ^     ^ 
     f0      f      l     l0 
 
Interchanging the elements pointed to by f and l will put them in the correct subranges: 
the bad element to the right of the partition point and the good element to the left of it. It 
is worthwhile to observe that the partition point is located somewhere in the range  
[f, l). 
 
We can start our implementation by first finding the new f, then finding the new l and 
then swapping them or returning whichever one is appropriate: 
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// use find_if_not to find the first bad element 
// use find_backward_if to find the last good element 
// check if the iterators crossed and return 
// swap bad and good elements 
 
Before we try to figure out how it works let us have a detour and learn about 
find_backward. 

Misplaced section: Find Backward 
 
<<We did not discuss finding backward in our chapter on find. The main reason for that 
was that our design for its interface might be better understood next to the first example 
of its use. But we might eventually decide to move it there.>> 
 
It is often important to find elements in a range while traversing it backwards. It seems to 
be an easy task; just take find and replace ++ with --:  
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I buggy_find_backward_if_1(I f, I l, P p) 
{ 
 while (f != l && !p(*l)) -–l; 
 return l; 
} 
 
This, of course, will not work since the first time around we will be dereferencing a past-
the-end iterator. We should remember that our ranges are semi-open intervals and the end 
iterator is not symmetrical with the begin iterator. It seems that we can compensate for it 
by writing: 
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I buggy_find_backward_if_2(I f, I l, P p) 
{ 
 while (f != l && !p(*--l)); 
 return l; 
} 
  
The problem now is that we cannot distinguish between finding a good element in the 
very beginning of the range – but at the end of our search – and not finding a good 
element at all. We can, of course find out which one is true by re-testing the first element, 
but it would require an extra test and would not be symmetric with the ordinary 
find_if. It would be terribly nice if we could transform a semi-open range [f, l) 
into a semi-open range [l, f). And we can do it if we just slightly modify our code by 
incrementing l before returning it when we find a good element: 
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template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I find_backward_if(I f, I l, P p) 
{ 
 while (true) { 
  if (f == l) return f; 
  if (p(*--l)) return ++l; 
 } 
} 
 
We return the first iterator if we do not find a good element; otherwise, we return the 
successor to the iterator pointing to the first good element from the right. (We assume 
that ranges grow from left to right.) 

End of misplaced section: Find Backward 
 
 
And now back to our partition. We will carefully write down the asserts: 
 
f = find_if_not(f0, l0, p); 

assert(f == l0 || !p(*f) &&  
all(f0, f, p)); 

l = find_backward_if(f, l0, p); 
assert(f == l ||  

p(*predecessor(l)) &&  
none(l, l0, p); 

if (f == l) return f; 
assert(f != l && f != l0 &&  

!p(f) && p(*predecessor(l)) &&  
distance(f, l) > 1); 

--l;  
swap(*f, *l); 

assert(p(f) && !p(*l)); 
++f; 

assert(all(f0, f, p) && none(l, l0, p)); 
 
It is very important that you follow along and assure yourself that all the asserts hold. 
 
Now it is easy to see our program: 
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I partition_bidirectional_1(I f, I l, P p) 
{ 
 while (true) { 
  f = find_if_not(f, l, p); 
  l = find_backward_if(f, l, p); 
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  if (f == l) return f; 
  --l; 
  swap(*f, *l); 
  ++f; 
 } 
} 
 
The above code looks so elegant, so perfect that it makes us sad that we have to muck it 
up. But muck it we shall. The present code does several extra operations. As far as the 
number of swaps goes, it does the promised K of them. However it should be clear that it 
often does more than the necessary predicate applications. 
 
Quiz: How many extra predicate applications does the algorithm do? 
 
Remark: While one or two extra application of the predicate usually do not matter – and 
as we shall see soon a few extra application could in reality speed up the algorithm by 
allowing us to trade a linear number of iterator comparisons for an extra predicate call – 
sometimes it is important to assure that the algorithm does not do any extra predicate 
applications. It usually happens when the predicate is not strictly functional and applying 
the predicate to the same element twice might not yield the same results. The useful 
example of using partition with such a predicate comes up in an attempt to design an 
algorithm for randomly shuffling a range with only forward iterator traversal. As we 
remarked in the section on random shuffle (pages ???) we believe that it is impossible to 
have a linear time algorithm for random shuffle unless the range provides us with random 
access iterators. There is, however, an NlogN algorithm that randomly shuffles a range 
with forward iterators only which is based on using partition with a coin-tossing predicate 
– a predicate which returns a uniformly random sequence of true and false when applied 
to any element. 
 
Problem: Implement a function that uses partition on a range to randomly shuffle it 
[Raymond Lo and Wilson Ho]. 
 
Problem: Prove that your implementation of random shuffle does, indeed, produce a 
uniformly random shuffle [Raymond Lo and Wilson Ho]. 
 
In addition to extra predicate applications our  partition_bidirectional_1 
function does more than the necessary iterator comparisons. We could patch all these 
minor problems by inlining our finds and doing the different exit transformation that we 
first introduced in the previous section: 
 
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I partition_bidirectional_2(I f, I l, P p) 
{ 
 while (true) { 
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  while (true) { 
   if (f == l) return f;  

if (!p(*f)) break; 
++f; 

}  
while (true) { 
 --l; 

   if (f == l) return f;  
   if (p(*l)) break; 
  }   
  swap(*f, *l); 
  f++; 
 } 
} 
 
Problem: Prove the program correct by carefully writing asserts. 
 
As a matter of fact, we did not muck it up too badly. It still looks very symmetric, very 
elegant, but as we shall see soon the mucking is not over. 
 
As far as the number of operations goes, the present code does N predicate applications 
(prove it!) and N+1 iterator comparisons and N+1 iterator increments and decrements. It 
also – as promised – does K swaps. 
 

Minimizing moves 
 

Sometimes we need to study a subject even if at the end we find out that it has few 
practical applications. Implementing partition with the minimal number of moves is one 
such subject. As we have seen earlier in the section, the minimal number of moves 
necessary for partitioning a range is equal to 2K + 1 where K is the number of bad 
elements that precede the (eventual) partition point. While we have an algorithm that 
does K swaps, it does not appear to be optimal since we usually consider a swap to be 
equivalent to 3 moves and 3K is greater than 2K + 1 for most positive integers. (It is 
optimal, indeed, when K is 1 and we are going to do a single swap.) 

Now let us see how we can produce a version with the minimal number of moves. The 
idea is quite simple we save the first misplaced element and then move other misplaced 
elements into the holes formed by the first save and the subsequent moves. When we 
reach the end, we move the saved element into the last hole. In other words, we re-
organize our partition permutation from one with K cycles to one with one cycle.  

 
It should be noted that the result of the algorithm is going to be different from the result 
of our partition_bidirectional which generates a somewhat different 
permutation. 
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Now it is fairly straightforward to obtain its implementation: 
 
// as usual we use the following macro 
#define VALUE_TYPE(I) std::iterator_traits<I >::value_type 
 
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I partition_bidirectional_minimal_moves (I f, I l, P p) 
{ 

while (true) { 
      if (f == l) return f; 
      if (!p (*f)) break; 
      ++f; 
 } // f points to a bad element 
     while (true) { 
      if (f == --l) return f; 
       if (p(*l)) break; 

} // l points to a good element 
 

     VALUE_TYPE(I) tmp; 
move(*f, tmp); // hole at f needs a good element 
 
while (true) { 
 move(*l, *f);  

// fill the hole at f with good element at l 
// the hole is at l and needs a bad element 

  do { 
       if (++f == l) goto exit; 
          } while (p (*f)); 
  // f points to a bad element 

move(*f, *l); 
// fill the hole at l with bad element at f 
// the hole is at f and needs a good element 
do { 

       if (f == --l) goto exit; 
          } while (!p (*l)); 
     // l points to a good element 

} 
exit:  
 // both f and l are equal and point to a hole 

move(tmp, *f); 
     return f;    
} 
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This piece of code is “optimal” in terms of many operations: it does the minimal number 
of comparisons, the (almost) minimal number of moves, the minimal number of iterator 
increments and iterator comparisons.  
 
Problem: Find a case when the “optimal” algorithm would do one extra move [Joseph 
Tighe]. 
 
Problem: Find a way of avoiding an extra move [keep explicit track of the hole]. 
 
Problem: Use the same techniques to reduce the number of moves in 
partition_forward. 
 
It should be noted, however, that in practice – or at least in practice as it is in 2005 – 
optimizing the number of moves does not significantly speed up the code for most types 
of elements. While we consider swap to be equivalent to three moves, for most modern 
computers it appears to be more accurate to consider swap to be equivalent to two loads 
followed by two stores, while move to be equivalent to one load and one store. If we 
switch to this system of accounting, we observe that partition_bidirectional 
does (almost) the same number of memory operations as 
partition_bidirectional_minimal_moves. It is a worthwhile thing to 
learn many of the optimization techniques, because of the twofold reason:  

- optimization techniques are based on fundamental properties of algorithms that 
we study and allow us to understand the algorithms better; 
- optimizations that are not applicable now in some domain will often become 
applicable again in a different domain. 

 

Using sentinels 
 
If we look at the code of the partition_bidirectional_2 we observe that we do 
one iterator comparison for every predicate application – or almost one since the last 
iterator comparison during the running of the algorithm is not followed by a predicate 
application. If we know that our range contains both good and bad elements we can 
implement a function that will be trading an extra predicate call for a linear number of 
extra comparisons. If there is a bad element in the range we can always look for the first 
bad element from the left by writing: 
 
while (p(*f)) ++f; 
 
and be certain that after we stop all the elements in the range [f0, f) are going to 
satisfy the predicate and f will point to a bad element. We can now look for the good 
element from the right: 
 
while (!p(*--l)); 
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and be equally certain that we will stop at a good element. It is very easy to see that the 
only way they can cross is by one position only. That is, if they crossed then f is going to 
be the successor of l. (That, of course, presupposes that the predicate is truly functional 
and returns the same value when applied to the same element twice.) 
  
That allows us to eliminate an iterator comparison from the inner loops:  
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I partition_bidirectional_unguarded(I f, I l, P p) 
{ 
 assert(!all(f, l, p) && !none(f, l, p));  

while(true) { 
 while (p(*f)) ++f;   
     while (!p(*--l));    
     if (++l == f) return f; 
     swap(*f++, *--l); 
} 

} 
 
And that allows us to construct a new version of partition that first finds guards or 
sentinels on both sides and then calls the unguarded partition: 
 
template <typename I,  // I models Bidirectional Iterator 
  typename P>  // P models Unary Predicate 
I partition_bidirectional_optimized(I f, I l, P p) 
{ 

f = find_if_not(f, l, p); 
l = find_backward_if(f, l, p); 
if (f == l) return f; 
swap(*f, *--l); 
return partition_bidirectional_unguarded(++f, l, p); 

} 
 
It is possible to eliminate extra iterator comparisons by also inlining finds and using the 
sentinel technique to trade a couple of applications of predicate for (potentially) linear 
number of iterator comparisons. It is, however, not an urgent optimization since if we 
assume that both good and bad elements are equally probable and that our input 
sequences are uniformly distributed then the number of extra iterator comparisons is 
going to be small. 
 
Problem: What is the worst case number of the extra iterator comparisons in 
partition_bidirectional_optimized? 
 
Problem: What is the average number of the extra iterator comparisons in 
partition_bidirectional_optimized? 
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Problem: Re-implement  partition_bidirectional_optimized to minimize 
the number of iterator comparisons. 
 
Problem: Combine the sentinel technique and the minimal moves optimization in a 
single algorithm. 
 
Project: Measure the performance of all the partition algorithms that we have studied so 
far. Vary the element sizes from 32 bit integers and doubles all the way to structures with 
64 byte size. Also use two different predicates: one which is inlined and very simple and 
the other one which is passed as a pointer to function. Come up with a recommendation 
on which of the algorithms are worth keeping in a library.  
 
Project: Write a simple guide that will tell a user how to select a correct partition 
algorithm for the job. 

 

Project: Write a library function that will correctly choose which of the partition 
algorithms to use depending on iterator requirements and, potentially, element size and 
properties of the predicate.  

 

Partition copy 
 
While it is often important to be able to partition a range in place, it is sometimes equally 
important to partition elements while copying them into a new place. It is, of course, 
often possible to accomplish it by first doing copy and then partition. There are two 
problems with this approach: the performance and the generality. 

 

As far as the performance goes, we will need more than N moves. It would be terribly 
nice if we can accomplish our task with N moves only. The second problem is that in 
order to do copy first and partition afterwards we need to be able to traverse the resulting 
range again. And that means that we cannot use output iterators as a requirement for the 
destination.  As a matter of fact the algorithm that is both minimal in terms of number of 
operations and absolutely minimal in terms of the requirements on the iterators for the 
result is so simple that it does not need any explanations. Go through the input range 
element by element sending good elements to one destination stream and the bad ones to 
a different one. 

 

It is obvious how to start writing the algorithm: 

 
if (p(*f))  
 *r_g++ = *f++; // good result 
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else 
 *r_b++ = *f++; // bad result 
 
Footnote: This is, of course, “boy scout” code. Old C++ programmers will write 
without a blink something like: 
(p(*f) ? *r_g++ : *r_b++) = *f++;  

or , even more cryptic, 
*(p(*f) ? r_g : r_b)++ = *f++;  

 
 The only remaining problem is to figure out what to return. And since the destinations of 
good and bad elements are different we have to return the final state of both: 

 
template <typename I,  // I models Input Iterator 
  typename O1, // O1 models Output Iterator 
          typename O2, // O2 models Output Iterator 
  typename P>  // P models Unary Predicate 
pair<O1, O2> partition_copy(I f, I l, O1 r_g, O2 r_b, P p) 
{ 
 while (f != l) { 
  if (p(*f))  
   *r_g++ = *f++;  
  else  
   *r_b++ = *f++; 
 } 
 return make_pair(r_g, r_b); 
} 
 

When we treat the stable partition algorithm we will rely on the fact that partition_copy is 
stable, that is, the relative order of among good elements is preserve and so is the relative 
order among the bad elements.  

And, as we shall see later,  it is often useful to have a move version of 
partition_copy: 

template <typename I,  // I models Input Iterator 
  typename O1, // O1 models Output Iterator 
          typename O2, // O2 models Output Iterator 
  typename P>  // P models Unary Predicate 
pair<O1, O2> partition_move(I f, I l, O1 r_g, O2 r_b, P p) 
{ 
 while (f != l) { 
  if (p(*f))  
   move(*f++,*r_g++);  
  else  
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   move(*f++,*r_g++); 
 } 
 return make_pair(r_g, r_b); 
} 
 

 

Partitioning node-based structures 
 
As with reverse and rotate it is sometimes desirable to have a different algorithm 
for node-based structures. If we transform the structure so that every node keeps its value, 
but all the nodes with correspondingly good or bad elements are linked together, then old 
node iterators will maintain their element, but they will be re-linked, correspondingly, 
into two different linked structures. 

There is a standard technique for dealing with accumulating nodes: accumulating them in 
reverse order. Let us assume that r_g points to the all good nodes that we have already  
accumulated and r_b to all the bad ones. And we also know that f points to a node that 
we have not yet examined. Then we can see the inner part of our algorithm: 
if(p(*f)) { 
 set_successor(f, r_g); 
 r_g = f; 
else { 
 set_successor(f, r_b); 
 r_b = f; 
} 
 

Now, we added one more element to the appropriate structure. The problem is that we 
cannot get to the “old” successor of first. Well, that problem can be easily solved by 
saving it first. And that gives us the following implementation: 
 
template <class I, // I models Forward Node Iterator 
  class P> // P models Unary Predicate 
pair<I, I> partition_node_reversed(I f, I l, P p) 
{ 
 I r_g = l; 
 I r_b = l; 
 while (f != l) { 
  I n = successor(f); 
  if(p(*f)) { 
   set_successor(f, r_g); 
   r_g = f; 
  else { 
   set_successor(f, r_b); 
   r_b = f; 
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  } 
  f = n; 
 } 
 return make_pair(r_g, r_b); 
} 
 

It does N predicate applications, N set_successor operations and N successor 
operations: clearly minimal for predicate application and successor. And N 
set_successor operations is clearly only one greater than the worst case. 

Problem: What is the worst case input for any algorithm for partitioning nodes 
structures if we count only set_successor operations? 

Problem: What is the minimal expected number of set_successor  operations that 
any algorithm for partitioning node structures will need assuming that good and bad 
elements are equally likely and distributed uniformly? 

Now let us try to address the issue of minimizing the number of set_successor 
operations. (While solving this problem we will also solve the problem of making node 
partition stable, that is, assuring that good elements and bad elements are linked in the 
same order as they were in the original range.) It is pretty clear that we only need to 
change successor of a good element if the successor is bad and the other way around.   

As a first step to construct the middle of such an algorithm, let us assume that somehow 
we obtained two iterators to the tail ends of good and bad elements called t_g and t_b. 
We can the proceed to construct both structures in the right order: 
while (++f != l) { 
 if (p(*f)) { 
  set_successor(t_g, f); 
  t_g = f; 
 } else { 
  set_successor(t_b, f); 
  t_b = f; 
 }  
} 

Now let us observe that we are doing too many set_successor operations. For all we 
know, t_g might already point to f; after all we came to f either from it or from t_b. 
and that we keep a flag was_good that indicates if the previous element we examined 
was good or bad: 
while (++f != l) { 
 if (p(*f)) { 
  if (!was_good) { 
   set_successor(t_g, f); 
   was_good = true; 
  } 
  t_g = f; 
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 } else { 
  if (was_good) { 
   set_successor(t_b, f); 
   was_good = false; 
  }  
  t_b = f; 
 }  
} 
 
Now we are re-linking only the nodes that have successors of different “polarity”; if the 
successor of a good element is good the element keeps its successor; the same is true for 
bad elements. Note that we do not need to save the successor of f, since instead of f 
pointing to the appropriate substructure, the substructure gets to point to it. 

There is an alternative to using a flag. We can duplicate the code for the loop one section 
for the case when the previous element was good and one for the case when the previous 
element was bad and then jump to the other section if the predicate value changes: 
good:  

do { t_g = f; 
if (++f == l) goto exit; 

 } while (p(*f));     
set_successor(t_b, f); 

bad:   
do { t_b = f;   

if (++f == l) goto exit; 
 } while (!p(*f));  
 set_successor(t_g, f); 
 goto good;  
   

Now there are only two questions left: what to put after this code and what to put before. 
Let us start with the somewhat easier question of what to put after this code. Now we 
know that all the nodes are properly linked. We could also surmise that the tail end 
elements t_g and t_b correspond to some head elements h_g and h_b. So as a first 
approximation we can assume that our program ends with: 
return make_pair(h_g, h_b); 

But there is a little glitch with this ending: we just threw away the tail ends of both linked 
structures. And the client of our program may want to add more things to the tails. That, 
of course, is easily fixable, by replacing return statement with: 
return make_pair( make_pair(h_g, t_g), 
    make_pair(h_b, t_b)); 
 
It should be noted that if there are no good elements in the sequence the first pair will be 
(l, l), if there are no bad elements the second pair will be (l, l), and, finally, if the 
tail of either good or bad elements is not equal to l, the successor of the tail is not 
defined. We could have opted for always setting successor of such tails to last, but 
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decided against it, since usually the head and tail nodes will have to be connected to a list 
header or spiced into a list. (We will fully understand it in the part of the notes dedicated 
to node-based containers.) 
 

Now we know what should be the beginning of our algorithm. Before we get into the 
main loop, we should find h_g and h_b: the head nodes of the good list and the bad list. It 
is obvious that either one of them (or even both of them) might not exist. That raises a 
question what to return in such a case. The answer is self-evident:  we can return a pair 
make_pair(make_pair(l, l),make_pair(l, l)). What we need to do is to 
find h_g, h_b, t_g, and t_b.  

 

Now we can write the whole algorithm: 
template <typename I, // I models Forward Node Iterator 
  typename P> // P models Unary Predicate 
pair<pair<I, I>, pair<I, I> > partition_node(I f, I l, P p) 
{  

I h_g = l;  
I h_b = l;  
I t_g = l;  
I t_b = l; 

 if (f == l) goto exit; 
if (!p(*f)) goto first_bad; 

// else    goto first_good; 
first_good:     
 h_g = f; 
 do { t_g = f;  
  if (++f == l) goto exit;  
 } while (p(*f)); 
 h_b = f; 
 goto current_bad; 
first_bad:  

h_b = f; 
 do { t_b = f; 
  if (++f == l) goto exit;  
   } while(!p(*f)); 
 h_g = f; 
// goto current_good; 
current_good:  

do { t_g = f; 
if (++f == l) goto exit; 

 } while (p(*f));     
set_successor(t_b, f); 

// goto current_bad; 
current_bad:   

do { t_b = f;   
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if (++f == l) goto exit;  
 } while (!p(*f));  
 set_successor(t_g, f); 

goto current_good; 
exit:  

return make_pair(make_pair(h_g, t_g), 
      make_pair(h_b, t_b)); 
}   

Remark: I am fully aware of Dijksra’s strictures against using goto statement. For years 
I dutifully followed his dictum. Eventually, I discovered that on rare occasions I could 
write more elegant and efficient code if I used goto.  In 1988 Dave Musser and I 
published a book containing a program with several goto statements. We received several 
angry letters explaining how ignorant we were. In spite of the criticism, I still maintain 
that goto is a very useful statement and should not be avoided if it helps to make the code 
cleaner. When I look at the previous piece of code, I find it beautiful. (Notice that I even 
added an unnecessary label first_good to make the code more symmetric, more 
understandable, and, yes, more beautiful. And I even added three unnecessary goto 
statements for the same reasons – but, not being sure that all the modern compilers 
eliminate goto from one address to the next, commented them out.) 
It is easier to understand the algorithm if you view every label as a state and the goto-s as 
state transitions. In general, state machines are often easier to represent as labeled code 
sections with goto-s being the transitions.  
 
Modern processors with their instruction level parallelism and predicated execution might 
not benefit at all from eliminating the flag. While we are certain of the pedagogical 
value of learning this transformation, it might not benefit the performance. 
 
Problem: Implement partition_node using the flag and avoiding goto. Compare its 
performance with our version. 
 
Problem: Implement a function unique_node that takes two iterators to a node 
structure and a binary predicate (defaulting to equality) and returning a structure with 
unique elements and a structure with “duplicates.” 
 
 

Finding the partition point 
 
In the beginning of the chapter we discussed a problem of finding the partition point of an 
already partitioned range. There is an obvious solution: 

find_if_not(f, l, p) 

will definitely return the partition point of a partitioned range. The problem is that we 
will need to retest all good elements again.  
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It is easy to observe the following fundamental property of a partitioned range [f, l): 
if an iterator m inside the range points at a good element then the partition point of  [f, 
l) is located in the range [successor(m), l); if m points at a bad element then the 
partition point is in the range [f, m).   

As far as an empty range goes, its beginning and its end both happen to be the partition 
points.  

Let us assume for the moment that we are dealing with random access iterators and, 
therefore, can get to any element inside the range in constant time. If we have range 
represented as a pair of an iterator and an integer (the length of the range) and if we have 
a function choose that returns some non-negative integer less than the length of the 
range for any non-empty range, then for any such function choose there is a simple 
recursive algorithm for finding partition point: 
 

template <typename I, // I models Random Access Iterator 
  typename P> // P models Unary Predicate 
I partition_point_recursive(I f, DIFFERENCE_TYPE(I) n, P p) 
{ 
     if (n == 0) return f; 
 N m = choose(n); 
     if (p(*(f + m))) 
  return partition_point_recursive(f + (m + 1),  
                n – (m + 1));  
     else  
  return partition_point_recursive(f, m); 
} 
Since 0 ≤ m < n we can be sure that both n – m – 1 and m are less than n and not 
less than 0; and, therefore, we can be sure that our program terminates. It is also obvious 
that a way of assuring that (no matter which path of the if-statement happens to be true) 
is by picking the choose function that for any positive n returns n/2. 

Problem: Prove that picking n/2 is indeed the best course. 

Remark: If you are wondering if we are describing binary search, you are correct. But, 
as we shall see in the section on binary search (???), binary search is often defined 
incorrectly. It is essential to understand the interface and the implementation of the 
partition point finding algorithm to be able to handle binary search correctly. In 
particular, while it is self-evident what partition_point should return, it is far from 
self-evident what binary search should return. And even the great computer scientists 
often stumble defining (or even implementing!) it. This is why I believe that it is essential 
to deal thoroughly with predicate-based operations such as partition before attacking 
much more treacherous comparison-based operations.  

Since our recursive calls are properly tail-recursive we can immediately obtain the 
following algorithm by resetting the variables in a loop instead of making a recursive 
call: 



Alex Stepanov Page 23 7/26/2005 

 

template <typename I, // I models Random Access Iterator 
  typename P> // P models Unary Predicate 
I partition_point_n_random_access 

(I f, DIFFERENCE_TYPE(I) n, P p) 
{ 
     while (n != 0) { 
          if (p(*(f + n/2))) { 
               f = (f + n/2) + 1; 
               n = n – (n/2 + 1); 
          } else { 
  //   f = f; 
            n = n/2; 
          } 
     } 
     return f; 
} 
 

The algorithm does ceiling(log(n))+ 1 predicate applications since we are 
reducing the length by dividing by 2 at every step.  

What can we do if iterators which are given to us are less powerful than random access? 
While the efficiency of the algorithm will degrade dramatically, it is still quite useful in 
those cases when the predicate application is more expensive than the operation ++ on 
the iterators.  If we use find_if to find partition point then on the expected cost of 
finding the partition point in a range of length n is  

c_linear = (n/2) * c_p + (n/2) * c_i. 

where c_p is the cost of the predicate application and c_i is the cost of the iterator 
increment. (In other words, while doing linear search we expect to travel half of the way 
on the average.) If we use the partition_point_n algorithm the expected cost is going to be  

 c_binary_best = (log(n) + 1) *c_p + n * c_i 

since we are going to advance by n/2, n/4, n/8, etc. In those cases when the linked 
structure changes its size frequently we need to do another n increments and the cost 
becomes 

 c_binary_worst = (log(n) + 1) *c_p + 2 * n * c_i 

 

With large n we can safely ignore logarithmic terms and the binary algorithm wins 
against linear one when c_p > c_i if linked structure does not change its size and 
when c_p > 3* c_i if its size needs to be computed anew every time. 

In practice, the cost of predicate application should be more than 4 times as expensive as 
iterator increment to really justify using binary search like algorithms on linked lists. 
Otherwise, it is usually better to use linear search. It usually means that if your predicate 
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is a small inlined function object then using find is better; if it is a regular function call 
binary search like algorithms are better.  

It is perfectly straightforward to modify our algorithm to work with forward iterators and 
we can do a few little optimizations as well: 
template <typename I, // I models Forward Iterator 
  typename P> // P models Unary Predicate 
I partition_point_n(I f, DIFFERENCE_TYPE(I) n, P p) 
{ 
     while (n != 0) { 
  N h = n >> 1; 
          I m = successor(f, h); 
          if (p(*m)) { 
               f = successor(m); 
               n -= h + 1; 
          } else { 
            n = h; 
          } 
     } 
     return f; 
} 
 

Problem: Implement a partition_point function that takes two iterators [f, l) 
as its arguments. 

Operations on Function Objects 
 
If we want to partition elements in a range of integers into those that are less than 5 and 
those that are not, we have several potential ways of doing it. We can implement a 
function that compares an integer with 5 and pass it to partition: 
 
bool lt_5(int n) { return n < 5; } 
int n[100];  
// put some numbers into array 
int* p = partition(n, n + 100, lt_5); 
 
It will do the job, but it is going to be much slower than a hand-written code. Indeed we 
will have to have a function call (through a function pointer) where the hand-written code 
will have a single instruction comparing. Note, that declaring lt_5 to be an inline function 
will not change the situation since the code that compiler will generate for partition will 
be taking an arbitrary function pointer. The compiler generates separate instances of 
template functions only when the arguments types are different and the argument type of 
the pointer to our little function is the same as the type of any other pointer of the type 
bool (*)(int). And that is the first reason for using function objects: different types 
for different function objects with same signatures allow the compiler to generate 
different instances of a template function and inline small function objects while doing it. 
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We can accomplish this by defining a single function object of an anonymous type: 
 
struct  
{ 
 bool operator()(int n) const {return n < 5;} 
} less_than_5; 
 
Now, it is easy to partition an array: 
  
int n[100];  
// put some numbers into array 
int* p = partition(n, n + 100, less_than_5); 
 
While it would be slightly nicer if we could just say something like: 
 
partition(n, n + 100, function (int n) { return n < 5 }) 
 
and the language will create an anonymous function object and pass it to partition, 
we  have to get used to the fact that no language – natural or artificial – can satisfy all of 
our  requirements. (Think of all the controversies that were caused by the fact that 
English has no word to render Greek anthropos, Latin homo, or Russian chelovek.) We 
have to adapt to languages we have instead of always pining for the ideal language.   
 
In any case, such a solution will not work if instead of 5 we need a predicate that is based 
on a value known only at run time. We will have to keep this value inside our function 
object. And, after all, that is one of the two main reasons for using function objects: the 
first is parameterizing generic algorithms by different pieces of code (that can often be 
inlined) and the second is providing a function (often inlined one) with its own persistent 
data. 
 
We can solve the problem with the help of the following: 
 
struct less_than_const_int 
{ 
 int c; 
 less_than_const_int(const int& n) : c(n) {} 
 bool operator()(const int& x) const { return x < c; } 
}; 
 
And it is an obvious candidate for templatization: 
 
template <class T> // T models Strict Totally Ordered 
struct less_than_const 
{ 
 typedef T argument_type; 
 typedef bool result_type; 
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 T c; 
 less_than_const(const T& n) : c(n) {} 
 bool operator()(const T& x) const { return x < c; } 
}; 
 
Now, we can observe that even operator< can be abstracted away. And the same can 
be done for the last vestige of specificity: bool. As a matter of fact we can create a class 
that takes an arbitrary binary function object and binds its second argument to a value: 
 
template <class F> // F models a Binary Function 
struct binder2nd { 
 typedef typename F::first_argument_type  
      argument_type; 
 typedef typename F::second_argument_type value_type; 
 typedef typename F::result_type result_type; 
     const F op; 
     const value_type value; 
     binder2nd(const F& x, const value_type& y)  
  : op(x), value(y) {} 
     result_type operator()(const argument_type& x)  
 const  
 { 
  return op(x, value);  
     } 
}; 
 
Now we can accomplish our partition by calling: 
 
int n[100];  
// put some data into n 
int a = 5; 
partition(n, n + 100, binder2nd<less<int> >( 

less<int>(), a)); 
 
It is possible to create a simple function that will allow us to save typing the name of the 
type of the binary function object twice: 
 
template <class F, // F models binary function 
          class T> 
inline 
binder2nd<F> bind2nd(const F& op, const T& x) { 
     return binder2nd<F>(op,  
   typename F::second_argument_type(x)); 
} 
 
And now we can call partition with: 
partition(n, n + 100, bind2nd(less<int>(), a); 
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Problem: Implement binder1st and bind1st, which bind the first argument of a 
binary function object. 

 

Binding is only one of several useful function object adaptors. Another useful function 
object operation is composition. It takes two function objects f(x) and g(y) and return 
a function object that does f(g(y)). It should be easy to see how to make such an 
adaptor: 
template <class F, // F models unary function 
          class G> // G models unary function 
struct unary_compose { 
 typedef typename G::argument_type argument_type; 
 typedef typename F::result_type result_type; 
     const F f; 
     const G g; 
     unary_compose(const F& x, const G& y) : f(x), g(y) {} 
 result_type operator()(const argument_type& x) const  
 { 
  return f(g(x)); 
 } 
}; 
 
template <class F, // F models unary function 
          class G> // G models unary function 
inline  
unary_compose<F, G> compose1(const F& f, const G& g) { 
    return unary_compose<F, G>(f, g); 
} 
 
Problem: Define a class binary_compose and a helper function compose2 to be 
able to take a binary function object f and two unary function objects g and h and 
construct a binary function object that performs f(g(x), h(y)). 
 
Footnote: Both compose1 and compose2 were included in HP STL. They were not, 
however, parts of the proposal and were not included in the C++ standard. I have no idea 
why they were not in the proposal. It is possible that somebody on the committee 
objected, or, it is possible that it was a result of my oversight. 
 
Another adapter which we will eventually need is a f_transpose that takes a binary 
function object f(x, y) and returns a binary function object f(y, x): 
 
template <class F> // F models a Binary Function 
struct transposer { 
 typedef typename F::first_argument_type  



Alex Stepanov Page 28 7/26/2005 

      second_argument_type; 
 typedef typename F::second_argument_type 
      first_argument_type; 
 typedef typename F::result_type result_type; 
     const F f; 
     transposer(const F& x) : f(x) {} 
     result_type operator()(const first_argument_type& x, 
                             const second_argument_type& y)  
 const  
 { 
  return f(y, x);  
     } 
}; 
 
template <typename F> // F models Binary Function 

inline 

transposer<F> f_transpose(const F& f) 

{ 

 return transposer<F>(f); 

} 

Problem: Implement classes unary_negate and binary_negate and the helper 
functions not1 and not2 that convert unary and binary predicates to their negations. 

Remark: There are much more elaborate facilities in Boost for constructing function 
objects, but the their description does not belong to this book. As I stated before, I try to 
use as little of C++ as possible. While I needed to explain how to use and implement 
function objects, it is important to do it in a way that is totally transparent and does not 
use template metaprogramming techniques. 

Stable partition 
 
When people use both forward and bidirectional versions of partition algorithm they are 
sometimes surprised with the results. Let us consider a simple example of partitioning a 
sequence of integers: 
0 1 2 3 4 5 6 7 8 9 

with is_even as the predicate.   

If we run partition_forward on this input we obtain: 

0 2 4 6 8 5 3 7 1 9 

While even numbers are in the same order as they were in the original sequence, the odd 
numbers are in total disarray.  
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In case of partition_bidirectional we see that both even and odd elements do 
not preserve their original order: 

0 8 2 6 4 5 3 7 1 9 

It is often important to preserve the original order of the good and bad elements. For 
example, imagine that a company is keeping a list of employees sorted by their last name. 
If they decide to partition them into two groups: US employees and non-US employees it 
would be important to keep both parts sorted; otherwise an expensive operation of sorting 
would be required.  

Definition: The partitioning that preserves the relative ordering of both good and bad 
elements is called stable partitioning.  

One of the important properties of stable partitioning is that it allows for multipass 
processing. Indeed if we need to partition a range [f, l) with a predicate p1 and then 
partition the resulting sub-ranges with a predicate p2 if we do it with a non-stable 
partition we need to write: 
I m = partition(f, l, p1); 
partition(f, m, p2); 
partition(m, l, p2); 
 
If, however, stable_partition is available the same goal can be accomplished 
with: 
 
stable_partition(f, l, p2); // p2 before p1! 
stable_partition(f, l, p1); 
 
This property is very important when many passes are needed and the overhead of 
keeping track of small sub-ranges becomes difficult and expensive to manage. We shall 
see later how this property is used with remarkable effect in radix sorting. (pages ….)    

Problem: Prove that stable partitioning of a given sequence with a given predicate is 
unique; that is, prove that there is only one permutation of a range that gives stable 
partitioning. 

It is clear that we cannot implement is_stably_partitioned for an arbitrary type 
of elements the way we implemented is_partitioned. Indeed if somebody shows us 
a sequence: 

0 4 2 1 3 5 

we do not know if it is stable or not because we do not know what was the original order 
of the elements. It is, however, much easier to determine that one range is the stable 
partition of the second range than it is to determine if one range is a partition of the 
second range: uniqueness helps. 

Indeed, in order for us to assure that an algorithm for partition works, we need to 
compare two sequences – the original one and the partitioned one. In order for the 
partition algorithm to be correct we need to assure two things: first, that the resulting 
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sequence is partitioned and that is easy to test by applying is_partitioned function, 
and, second, that the resulting sequence is the permutation of the original one. And 
finding out if a sequence is a permutation of another sequence is difficult unless elements 
are totally ordered and we can reduce both sequences to a canonical form by sorting 
them. (We will have a further discussion of that when we deal with sorting.) If the only 
operation on the elements is equality, we do not know of an efficient way of determining 
if two sequences are permutations of each other. 

Problem: Prove that determining if a sequence is a permutation of another requires 
O(n^2) operations if only equality of elements is available. 

For small sequences we can determine if own is a permutation of the other with the help 
of a useful algorithm that goes through one range and attempts to find the equal element 
in the other. If elements are found they are moved up front. The algorithm returns if the 
first range is exhausted or when there is not equal element in the second: 
template <typename I1,   // I1 models Input Iterator 
          typename I2,   // I2 models Forward Iterator 
  typename Eqv>  // Eqv models Binary Predicate 
pair<I1, I2> mismatch_permuted(I1 f1, I1 l1,  

 I2 f2, I2 l2, 
Eqv eqv = equal<VALUE_TYPE(I1)>()) 

{ 
 while (f1 != l1) { 
  I2 n = find_if(f2, l2, bind1st(eqv, *f1)); 
  if (n == l2) break; 
  swap(*f2++, *n); 
  ++f1; 
 } 
 return make_pair(f1, f2); 
} 
 
(It should be noted that the second range is re-ordered to match the first. We should also 
remember not to use the algorithm for long ranges – it is quadratic.) 
 
To determine if one range is a permutation of another we call permuted_mismatch 
and check if both ranges are exhausted: 
 
template <typename I1, // I1 models Input Iterator 
          typename I2> // I2 models Forward Iterator 
inline 
bool is_permutation(I1 f1, I1 l1, I2 f2, I2 l2) 
{ 
 return mismatch_permuted (f1, l1, f2, l2) == 
   make_pair(l1, l2); 
} 
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Problem: Assume that the elements in the range have a total ordering defined with 
operator< and implement a faster version of is_permutation. 

Now we can produce a function that tests if the first range is the partitioning of the 
second: 
template <typename I1, // I1 models Forward Iterator 
          typename I2, // I2 models Forward Iterator 
  typename P>  // P  models a Unary Predicate 
bool is_partitioning(I1 f1, I1 l1, I2 f2, I2 l2, P p) 
{ 
 return is_partitioned(f1, l1, p) && 
    is_permutation(f1, l1, f2, l2); 
} 
 

Now, in case of stable partition the testing is much easier to do. We need to go through 
the original range and check every element for equality with the corresponding element 
in the sub-range of the good elements if the original element is good and with the 
corresponding element from the sub-range of the bad elements otherwise. We can use a 
close analogue of the mismatch algorithm: 
template <typename I1,   // I1 models Input Iterator 
          typename I2,   // I2 models Input Iterator 
  typename I3,   // I3 models Input Iterator 
  typename P,    // P  models a Unary Predicate 
  typename Eqv>  // Eqv models Binary Predicate 
triple<I1, I2, I3> mismatch_partitioned(I1 f, I1 l, 
          I2 f_g, I2 l_g,  
                              I3 f_b, I3 l_b, 
                              P p,  

Eqv eqv = equal<VALUE_TYPE(I1)>()) 
{ 
 while (f != l) { 
  if (p(*f)) { 
   if (f_g == l_g || !eqv(*f, *f_g)) break; 
   ++f_g; 
  } else { 

if (f_b == l_b || !eqv(*f, *f_b)) break; 
   ++f_b; 
  } 
  ++f; 
 } 
  
 return make_triple(f, f_g, f_b); 
} 
 
Now we can determine if a range is a stable partitioning of another range with the help 
of: 
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template <typename I1, // I1 models Forward Iterator 
          typename I2, // I2 models Forward Iterator 
  typename P>  // P  models a Unary Predicate 
bool is_stable_partitioning(I1 f1, I1 l1,  

   I2 f2, I2 l2, P p) 
{ 
 I1 m1 = find_if_not(f1, l1, p); 
 return find_if(m1, l1, p) == l1 && 

mismatch_partitioned(f2, l2, f1,  
m1, m1, l1, p) == 

   make_triple(l2, m1, l1) 
} 
 

After we build all the machinery for testing stable partition, let us see what algorithms are 
available. 

We observed before that the partition_copy algorithm is stable. That allows us to 
construct a simple stable partition algorithm that uses an additional buffer with n 
elements to partition a range: 
template <typename I1, // I1 models Forward Iterator 
  typename I2, // I2 models Forward Iterator 
  typename P>  // P models Unary Predicate 
I1 stable_partition_with_buffer_0(I1 f, I1 l, P p, I2 buf) 
{ 
 pair<I1, I2> tmp = partition_copy(f, l, f, buf, p); 
 copy(buf, tmp.second, tmp.first); 
 return tmp.first; 
}  
 

This algorithm suffers from a potential inefficiency: it might need to copy large elements 
in the buffer and then to leave copies of the original data in the buffer. This is a clear case 
for using move semantics inside an algorithm: 
template <typename I1, // I1 models Forward Iterator 
  typename I2, // I2 models Forward Iterator 
  typename P>  // P models Unary Predicate 
I1 stable_partition_with_buffer(I1 f, I1 l, P p, I2 buf) 
{ 
 pair<I1, I2> tmp = partition_move(f, l, f, buf, p); 
 move(buf, tmp.second, tmp.first); 
 return tmp.first; 
} 

 As we shall see later, we also need to have a version that takes an iterator and a length as 
an argument: 
template <typename I1, // I1 models Forward Iterator 
  typename N,  // N models Integer 
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  typename I2, // I2 models Forward Iterator 
  typename P>  // P models Unary Predicate 
pair<I1, I1> stable_partition_n_with_buffer( 
      I1 f, N n, P p, I2 buf) 
{ 
 triple<I1, I1, I2> tmp =  
  partition_move_n(f, n, f, buf, p); 
 move(buf, tmp.third, tmp.second); 
 return make_pair(tmp.second, tmp.first); 
} 

Where partition_move_n is defined as: 
template <typename I1, // I1 models Input Iterator 
  typename N,  // N models Integer 
  typename I2, // I2 models Output Iterator 
  typename I3, // I3 models Output Iterator 
  typename P>  // P models Unary Predicate 
triple<I1, I2, I3> partition_move_n( 
     I1 f, N n, I2 r1, I3 r2, P p) 
{ 
 while (n-- > 0) {  
  if (p(*f)) 
   move(*f, *r1++); 
  else 
   move(*f, *r2++); 
  ++f; 
 } 
 return make_triple(f, r1, r2); 
} 
 

While stable_partition_with_buffer is often sufficient in practice, in some  
cases there is not enough memory to accommodate the extra buffer of the same size as 
the range. To be able to handle cases like that we need to have an in-place algorithm that 
could partition the data while preserving stablity.  

The easiest way for deriving such an algorithm for stable partition is to look again at the 
loop of the forward partition algorithm: 
while (n != l) { 
 if (p(*n)) { 

swap(*n, *m); 
++m; 

 } 
++n; 

} 
 
The algorithm preserves the ordering of good elements. Every time we encounter a good 
element we put it right after the good elements encountered before. The algorithm could 
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be called semi-stable. It is not so, however for bad elements. When we swap, the first bad 
element in the section of the bad elements encountered so far becomes the last bad 
element. Stability is lost. For example: 
 
0 2 4 1 3 5 6 
      ^     ^ ^ 
      f     n l 
 
and we swap 1 and 6. We need to preserve the run 1 3 5 in that order. Now, we spent 
quite some time studying a function that does just that. Instead of swapping we can 
rotate. rotate(f, n, l) will give us the desirable result: 
0 2 4 6 1 3 5 
 
That gives us a first draft of our stable partition: 
 
template <typename I,  // I models Forward Iterator 
  typename P>  // P models Unary Predicate 
I stable_partition_slow(I f, I l, P p) 
{ 
 I n = f; 
 while (n != l) { 
  if (p(*n)) { 

rotate(f, n, successor(n)); 
++f; 

  } 
  ++n; 
 } 
 return m; 
} 
 
While it works, it is quite slow. Since rotate is a linear time operation and it can be 
performed as many times as we encounter a good element, the complexity of the 
algorithm is quadratic. It is possible to modify the algorithm to find consecutive runs of 
good elements before doing rotate and reduce the number of operations by a constant, but 
it is not going to reduce complexity from quadratic to either linear or at least NlogN. 

There is, however, a standard way to reduce the complexity by applying divide and 
conquer technique. If we split a range [f, l) into two equal (or almost equal) parts 
[f, m) and [m, l) and somehow manage to partition them in a stable manner: 
G...GB...BG...GB...B 
^    ^    ^    ^    ^ 
f    m1   m    m2   l 
we can partition the whole range by rotating the range [m1, m2) formed by the 
partition points of the sub-ranges around the splitting point m. 

And it is quite easy to stably partition an empty sequence or a sequence with one element. 

That gives us a following algorithm: 



Alex Stepanov Page 35 7/26/2005 

template <typename I, // I models Forward Iterator 
  typename N, // N models Integer 
  typename P> // P models Unary Predicate 
pair<I, I> stable_partition_inplace_n(I f, N n, P p) 
{ 
 if (n == 0) return make_pair(f, f); 
      if (n == 1) { 
  I l = successor(f); 
  if (p(*f)) l = f; 
  return make_pair(f, l); 
 }       
 pair<I, I> i = stable_partition_inplace_n( 
    f, n/2, p); 
 pair<I, I> j = stable_partition_inplace_n( 
    i.second, n – n/2, p); 
 return make_pair(rotate(i.first, i.second, j.first),  
       j.second); 
} 
 
Footnote: As far as I know, this algorithm first appeared in the block algorithms section 
of USL C++ components Block Algorithms [Stepanov 1987]. 
 
Note how we use the divide and conquer not just to compute the partition point, but also 
to compute the mid-point – a potentially expensive operation for forward iterators. The 
first recursive call returns a partition point of a sub-problem and the beginning iterator of 
the second sub-problem. The second recursive call returns a partition point of a second 
sub-problem and the end of the range iterator for the problem itself.  
 
And we can obtain a regular range interface by first computing the length of the range: 
template <typename I, // I models Forward Iterator 
  typename P> // P models Unary Predicate 
inline 
I stable_partition_inplace(I f, I l, P p) 
{ 
 return stable_partition_inplace_n(f,  
           distance(f, l),  
           p).first; 
} 
 

It is clear that the algorithm has ceiling(log(N)) levels and that only the bottom 
level does N predicate applications. Every other level does rotate N/2 elements on the 
average, and, therefore, does somewhere between N/2 and 3N/2 moves on the average 
depending on the iterator category. The total number of moves is going to be 
Nlog(n)/2 for random access iterators and 3Nlog(n)/2 forward and bidirectional 
iterators. 
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Problem: How many moves will the algorithm perform in the worst case? 

Now we have two versions of stable partitioning: one with buffer and one in-place. But in 
reality we need something in between: we need an algorithm that can use as much extra 
room as is available. The dichotomy between algorithms that use only polylogarithmic 
extra storage (in-place) and algorithms that can use as much as needed is useful to the 
inner world of the algorithmists, but it is of little practical utility. If we need to stably 
partition a million records it is more than likely that an extra buffer containing 10000 
records is always available. Even a buffer containing 100000 records is usually not going 
to change the application performance. In other words, 1% is always available and 10% is 
frequently available even in the situations when memory is limited. It is, therefore, useful 
to introduce a different class of algorithms, memory-adaptive algorithms, that is, 
algorithms that improve their performance if more memory is available.  

Our stable partition algorithm is an ideal candidate for making it into a memory-adaptive 
algorithm. If the data fits into a buffer, call stable_partition_with_buffer , 
otherwise use divide and conquer till it fits: 
template <typename I, // I models Forward Iterator 
  typename N, // N models Integer 
  typename P, // P models Unary Predicate 
  typename B> // B models Forward Iterator 
pair<I, I> stable_partition_n_adaptive(I f, N n, P p,  
       B b, N b_n) 
{ 
 if (n == 0) return make_pair(f, f); 
      if (n == 1) { 
  I l = successor(f); 
  if (p(*f)) f = l; 
  return make_pair(f, l); 
 } 
 if (n <= b_n) return stable_partition_n_with_buffer( 
       f, n, p, b);   
 pair<I, I> i = stable_partition_n_adaptive( 
    f, n/2, p, b, b_n); 
 pair<I, I> j = stable_partition_n_adaptive( 
    i.second, n – n/2, p, b, b_n); 
 return make_pair(rotate(i.first, i.second, j.first),  
       j.second); 
} 
 

We can obtain a regular range interface with: 
template <typename I, // I models Forward Iterator 
  typename N, // N models Integer 
  typename P, // P models Unary Predicate 
  typename B> // B models Forward Iterator 
inline 
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I stable_partition_adaptive(I f, I l, P p, B b, N b_n) 
{ 
 return stable_partition_n_adaptive(f,  
               distance(f, l),  
                    p).first; 
} 
 

Problem: Measure the performance of stable_partition_adaptive when it is 
given a buffer of 1% , 10%, or 25% of the range size and compare it with performance of 
stable_partition_inplace. 

In time critical applications it is important for the programmer to be able to do a careful 
allocation of memory resources and it is, therefore, important to provide an interface that 
allows for manual selection of the buffer. It is, however, often possible for a memory 
management system to figure out what is a proper buffer size for a given job. To enable 
programmers to obtain such temporary buffers STL defined a pair of template functions: 
template <typename T> 
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t); 
 
template <typename T> 
void return_temporary_buffer(T*); 
 
The first function returns an optimal amount of memory now available which is not 
greater than the parameter to the function. The second function de-allocates the memory. 
 
Footnote: It was my intention that system vendors will provide a carefully tuned 
function that will take into account the size of the physical memory, the memory 
available on the stack, etc, etc. I provided a temporary version that does call malloc 
with a given argument and if malloc returns 0, calls it with half the size, etc. I assumed 
that nobody will keep such a stupid code. It is interesting to note, that that is what the 
major vendors ship now (2005). In general, I have been trying to convince vendors and 
standard committees for quite some time now that it is essential to provide standard 
hooks to memory: cache structure, cache sizes, cache line sizes, physical memory size 
available to the process, stack size, size of available stack, etc, etc. So far I had no 
success.  From all of that it follows that it was a mistake to include algorithms using 
temporary buffer into the standard. I should have insisted that the adaptive versions 
taking an explicit buffer were included. The present day wrappers such as we are going to 
see next are useless. 
 
With a temporary buffer we can produce the following version of stable partitioning: 
template <typename I, // I models Forward Iterator 
  typename P> // P models Unary Predicate 
I stable_partition(I f, I l, P p) 
{ 
 ptrdiff_t n = distance(f, l); 
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 pair<VALUE_TYPE(I)*, ptrdiff_t> tmp = 
  get_temporary_buffer<ptr_t, ptrdiff_t>(n); 
 construct_any(tmp.first, tmp.first + tmp.second); 
 I r = stable_ stable_partition_n_adaptive( 

f, n, p, tmp.first, tmp.second).first; 
 destroy(tmp.first, tmp.first + tmp.second); 
 return_temporary_buffer(tmp.first); 
 return r; 
} 
 
Note that we need to initialize the buffer. Not that we need some particular values in it. 
We just need to have values into which we can move elements from the range. Any value 
of the element type will do. The annoying problem is that in many real cases we need to 
do nothing since any bit pattern will do just fine. This is why C and C++ do not initialize 
arrays of built-in types: to avoid often unneeded operations. We attempt to accomplish 
this by introducing a function: 
 
template <typename T> 
void construct_any(T* f, T* l) 
{ 
 T tmp; 
 while (f != l) construct(&*f++, tmp); 
} 
 
where a single argument construct is a shorthand for a C++ way of constructing a 
object in a previously allocated memory: 
 
template <typename T> 
inline 
void construct(T* p, const T& x) 
{ 
 new(p) T(x); 
} 
 
In order to avoid unnecessary initialization when we do not need it we define: 
 
void construct_any(int* f, int* l) 
{ 
} 
 
for all the types such as int when we can safely accept any bit pattern. 
 
Footnote: It is possible to extend a notion of construct_any to arbitrary types and 
by doing so regularize the special treatment of built-in types. It will require a rather 
simple addition to the language: the introducing a way of specifying a construct-any; 
calling it to initialize the arrays (and using it in the operator new); and, finally, to assure 
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compatibility with existing code, defaulting construct_any to a default constructor. That 
would allow a user defined types to behave in the same way as built-in types and solve 
some existing performance issues which are caused by using user-defined types. 
  
And we need to deal with destruction in a similar way: 
 
template <typename I> // I models Forward Iterator 
void destroy(I f, I l) 
{ 
 while (f != l) destroy(&*f++); 
} 
 
And a single argument destroy is a convenient encapsulation of a peculiar C++ way of 
explicitly calling destructors : 
 
template <typename T> 
inline  
void destroy(T* p)  
{ 
 p -> ~T(); 
}  
 
Footnote: I made a mistake defining construct and destroy for the standard – 
they should have taken their arguments as references, not as pointers. 
 
As with construct_any, if performance is needed, it is important to specialize 
destroy for those types for which destruction is not needed: 
 
void destroy(int* f, int* l) 
{ 
} 
 
Footnote: I often hear “compiler will optimize it” statements. In 1995 I gave a talk at 
SGI – I was still working at HP Labs – and one of the members of the compiler 
organization assured me that their compiler will optimize away loops with unneeded 
destructions. Later that year when I joined SGI, I quickly discovered that the compiler did 
not optimize such loops. I spent 5 years as a member of SGI compiler team, and while 
some dramatic improvements were made in C++ compilation during this time, but this 
particular problem was not fixed. And in 2005 it is still necessary to provide manual 
versions of functions like construct_any and destroy if one wants performance. 
Sadly enough, there are no serious efforts to develop a true high performance C++ 
compilation system.  
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Reduction  
 
When we implemented stable_partition we had to use the divide-and-conquer 
recursion. While it is often fine to use such recursion, we will now spend some time 
learning a general technique for eliminating it. While in practice it is needed only when 
the function call overhead caused by recursion starts effecting performance, the 
machinery for solving the problem is one of the most beautiful things in programming 
and needs to be learned irrespective of its utility.  
 
One of the most important, most common loops in programming is a loop that adds a 
range of things together. The abstraction of such loop – it was introduced by Ken Iverson 
in 1961 – is called reduction. In general, reduction can be performed with any binary 
operation, but it is usually used with associative operations. Indeed, while 

((...((a1 – a2) – a3)...) – an) 
is a well defined expression, we seldom find a use for things like that. In any case, if an 
operation is not associative, we need to specify the order of evaluation. It is assumed that 
the default order of evaluation is the left-most reduction. (It is a natural assumption, since 
it allows us to reduce ranges with the weakest kind of iterators. Input iterators are 
sufficient.) It is an obvious loop to write. We set the result to the first element of the 
range and then accumulate elements into it: 
 VALUE_TYPE(I) r = *f; 
 while (++f != l) 
  r = op(r, *f); 
 return r; 
 

The only problem is to figure out what to do for the empty range. One, and often useful 
solution, is to provide a version of reduction that assumes that the range is not empty: 
template <typename I,   // I models Input Iterator 
  typename Op>  // Op model Binary Operation 
VALUE_TYPE(I) reduce_non_empty(I f, I l, Op op) 
{ 
 assert (f != l); 
 VALUE_TYPE(I) r = *f; 
 while (++f != l) 
  r = op(r, *f); 
 return r; 
} 

But a general question remains. What is the appropriate value to return for an empty 
range? In case of an associative operation such as + it is commonly assumed that the right 
value to return is the identity element of the operation (0 in case of +). Indeed, such a 
convention allows us to have the following nice property to hold. For any range [f, l), 
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for any iterator m inside the range and for any associative operation op on the elements of 
the range the following is true: 
reduce(f, m, op) + reduce(m, l, op) == reduce(f, l, op) 

In order for this to hold when m is equal to either f or l, we need reduce to return the 
identity element of the operation.  

We can accomplish it quite easily with: 
 
template <typename I,   // I models Input Iterator 
  typename Op>  // Op model Binary Operation 
inline 
VALUE_TYPE(I) reduce(I f, I l, Op op, 

VALUE_TYPE(I) z = identity_element(op)) 
{ 
 if (f == l) return z; 
 return reduce_non_empty(f, l, op); 
} 
 
Clients of the code need to provide either an explicit element to be returned for the empty 
range or the operation has to provide a way of obtaining its identity element. For some 
common cases we can provide standard solutions: 
 
template <typename T> 
inline 
T identity_element(plus<T>) { 
 return T(0); 
} 
 
A natural default for an additive identity element is a result of casting 0 into the element 
type. When the default does not work and it is easy to define a particular version of 
identity_element. 
 
Problem: Define appropriate default identity_element for multiplies<T>. 
 
Problem: Define appropriate default identity_element for: 
struct min_int : binary_function<int, int, int> 
{ 
 int operator()(int a, int b) { return min(a, b); } 
}; 
 
If the reduction knows what the identity element is, it can do a standard optimization by 
skipping the identity elements in the range since combining the result with an identity 
element is not going to change it. This gives us a useful variation of reduce: 
 
template <typename I,   // I models Input Iterator 
  typename Op>  // Op model Binary Operation 
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VALUE_TYPE(I) reduce_nonzeros(I f, I l, Op op,  
VALUE_TYPE(I) z = identity_element(op)) 

{ 
 f = find_not(f, l, z); 
 if (f == l) return z; 
 VALUE_TYPE(I) r = *f; 
 while (++f != l)  
  if (*f != z) 
   r = op(r, *f); 
 return r; 
} 
 
This version should be used when we want to avoid tests for identity elements inside the 
operation. In the cases when we have the code for the operation that handles only non-
identity element cases, we do not then need to surround the code inside with two checks 
for identity (for the left and the right argument). 
 
Now we can tackle the stable partition. First let us observe that if we have two sub-ranges 
[f1, l1) and [f2, l2)of a range [f, l) such that for some predicate p: 

- distance(f, l1) <= distance(f, f2) – first sub-range is before 
the second 

- none(f1, l1, p) && none(f2, l2, p) – both sub-ranges contain 
“bad” elements 

- all(l1, f2, p) – and there are no “bad” elements in between them 
then we can stably partition the combined range [f1, l2) by doing  
 rotate(f1, l1, f2) 
and the result returned by the rotate is the partition point of the combined range. The 
following function object class performs the operation on such ranges:  
 
template <typename I> // I models Forward Iterator 
struct combine_ranges  
 : binary_function<pair<I, I>, pair<I, I>, pair<I, I> > 
{   

pair<I, I> operator()(const pair<I, I>& x, 
      const pair<I, I>& y) const 
{ 
 return make_pair( 

rotate(x.first, x.second, y.first), 
y.second); 

 } 
};  
 
It is interesting to observe that we need to worry only about the sub-ranges containing 
“bad” elements. While we are combining the ranges of “bad” elements, the “good” 
elements bubble down to the front of the main range. 
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Problem: Prove that combine_ranges is associative. 
 
We have an object to combine the ranges. It is a very simple to generate a sequence of 
trivial ranges containing “bad” elements. For every dereferenceable iterator in the main 
range we can produce a trivial sub-range with the help of the following: 
  
template <typename I, // I models Forward Iterator 
  typename P> // P models Unary Predicate 
struct partition_trivial  
 : unary_function<I, pair<I, I> > 
{ 
 P p; 
 partition_trivial(const P & x) : p(x) {}   
 pair<I, I> operator()(I i) { 
  I n = successor(i); 
  return make_pair(p(*i) ? n : i, n); 
 } 
}; 
 
The only remaining problem is transforming a range of iterators to elements into a range 
of trivial ranges to be combined by reduce using combine_ranges. And that we can 
accomplish with the help of the following iterator-adaptor. It is constructed out of an 
incrementable object (an object with ++ defined on it) and a function object. When 
incremented, it increments the incrementable object. When dereferenced, it returns the 
result of an application of the function object to the incrementable object. It is a generally 
useful adapter: 
  
template <typename I,     // I models Incrementable    
  typename F = identity<I> >      
      // F models Unary Function 
class value_iterator 
{ 
public: 
 typedef typename F::result_type value_type; 
 typedef ptrdiff_t difference_type; 
 typedef forward_iterator_tag iterator_category; 
private: 
 I i; 
 F f; 
public: 
 value_iterator() {} 
  value_iterator(const I& x, const F& y)  
  : i(x), f(y) {} 
 value_iterator& operator++() { 
  ++i; 
  return *this; 
 } 
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 value_iterator operator++(int) { 
  value_iterator tmp = *this; 
  ++*this; 
  return tmp; 
 } 
 value_type operator*() const { 
  return f(i); 
 } 
 friend bool operator==(const self& a, const self& b) { 
 // assert(a.f == b.f); 
 //   we comment the assert because unfortunately 
 //  many function objects do not have == defined  
  return a.i == b.i;  
 } 
 friend bool operator!=(const self& a, const self& b) { 
  return a != b; 
 } 
}; 
 
Problem: Generalize value_iterator further by allowing a user to specify the 
meaning of ++ and providing a natural default for ++; 
 
We can now obtain a slow version of stable partitioning by calling reduce_nonzeros 
with identity element equal the pair that is made of the last element of the range. (After 
all, the only place so far where it is going to be used is to be returned when the original 
range is empty. It is the right result in such a case. It is important to observe that for no 
dereferenceable iterator partition trivial will return such a range. Indeed, the empty ranges 
of “bad” elements returned by it are not identity elements!) 
 
template <typename I, // I models Forward Iterator 
          typename P> // P models Unary Predicate 
I stable_partition_slow_iterative(I f, I l, P p) 
{ 
 typedef partition_trivial<I, P> fun_t; 
 typedef value_iterator<I, fun_t> val_iter; 
 fun_t fun(p);  
 pair<I, I> z(l, l); 
 combine_ranges<I> op; 
 val_iter f1(f, fun); 
 val_iter l1(l, fun); 

return reduce_nonzeros(f1, l1, op, z).first; 
}  
 
 
Now, since we know that combine_ranges is associative, it is possible to replace left-
most reduction with a balanced reduction that will apply the operation constructing a 
balanced tree.  
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That is, a tree that adds 4 elements like this: 
 
  /\ 
 /\ 
/\ 
will be transformed into a tree that combines the same elements like that: 
 /\ 
/\/\ 
The number of operations will remain the same, but the number of levels in the tree is 
going to be reduced. While reducing n elements with the left-most reduction requires   
n-1 levels, doing it with the balanced reduction requires only ceiling(log(n)) 
levels. And our combine_ranges belongs to a class of operation that work much 
better with the balanced reduction, namely, linear-additive operations. We will call an 
operation linear-additive if its cost is a linear function of the sizes of its arguments and 
the size of the result is the sum of the sizes of the arguments. It is easy to see that 
performing the left-most reduction with a linear-additive operation to a sequence of 
elements of the same size will require a O(n^2) cost while the balanced reduction will 
require O(log n). It is important to develop a generic version of the balanced reduction 
since we are going to encounter many algorithms where it can be useful. 
 
Problem: Prove that combine_ranges is a linear-additive operation. 
 
In order to implement the balanced reduction we need to observe that it needs to store up 
to log n intermediate results. The results can be stored in a simple counter where the k-th 
“bit” represents the sub-result of the balanced tree that resulted from reducing 2^k 
elements. The following procedure adds a new element to such a counter: 
 
template <typename I,  // I models Forward Iterator 
  typename Op> // Op models Binary Operation  
VALUE_TYPE(I) add_to_counter(I f, I l, Op op, 
                VALUE_TYPE(I) x,  
                VALUE_TYPE(I) z = identity_element(op)) 
{ 
 if (x == z) return z; 
 while (f != l) { 
  if (*f != z) {  
   x = op(*f, x); 
   // op(*f, x) and NOT op(x, *f) 
   // because the partial result in *f   
   // is the result of adding elements  
   // earlier in the sequence 
   *f++ = z; 
  } else { 
   *f = x; 
   return z; 
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           } 
      } 
      return x; 
} 
 
The procedure returns “zero” if the was a room in the counter to accommodate a new 
element or it returns an “overflow bit” if the last “bit” of the counter was combined into a 
new bit representing the reduction of 2^n elements where n is number of “bits” in the 
counter. 
 
Now it is easy to produce an implementation of the balanced reduction. First we put all 
the elements from the input range into our counter. If the range size is a power of 2, we 
can obtain the result from the corresponding “bit” of the counter. If not, we need to 
reduce the counter. To minimize the amount of work we need to do a left-most reduction 
so that to combine “smaller” bits first, and we need to transpose the operation since when 
we combine two bits, the left one resulted from the elements that got into the counter 
after the elements which contributed to the right one and, therefore, their order needs to 
be exchanged:  
 
template <typename I,  // I models Input Iterator 
          typename Op> // Op models Binary Operation 
void reduce_balanced(I f, I l, Op op,  
    VALUE_TYPE(I) z = identity_element(op)) 
{ 
 vector<VALUE_TYPE(I)> v; 
 while (f != l) { 
  VALUE_TYPE(I) tmp = add_to_counter( 
    v.begin(), v.end(), op, *f++, z); 
  if (tmp != z) v.push_back(tmp); 
 } 
 return reduce_nonzeros( 
    v.begin(),v.end(), f_transpose(op), z); 
}   
 
Note that the reduce_balanced is not going to apply the operation to the identity 
element so that we do not need reduce_non_zero_balanced. 
 
Footnote: It seems that many people independently discovered such iterative 
implementation of reduced_balanced. Knuth attributes it to McCarthy (Knuth …), but it 
seems to be just a pointer to the person who pointed it to him since no specific reference 
is given.  
 
Problem: Why it is not important in this case that insertion into the back of a singly 
linked list takes linear time? 
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Finally we can now trivially obtain the balanced non-recursive implementation of 
stable_partition_inplace by replacing the call to the left-most reduction with 
the call to the balanced reduction: 
   
template <typename I, // I models Forward Iterator 
          typename P> // P models Unary Predicate 
I stable_partition_inplace_iterative(I f, I l, P p) 
{ 
 typedef partition_trivial<I, P> fun_t; 
 typedef value_iterator<I, fun_t> val_iter; 
 fun_t fun(p);  
 pair<I, I> z(l, l); 
 combine_ranges<I> op; 
 val_iter f1(f, fun); 
 val_iter l1(l, fun); 

return reduce_balanced(f1, l1, op, z).first; 
}  
 
Problem: Compare the performance of stable_partition_inplace with the 
performance of stable_partition_inplace_iterative. Explain the results. 
 
In the  reduce_balanced we are using vector as our counter. Both singly linked list 
and doubly linked list would have worked.  
 
Problem: Implement versions of reduce_balanced using list and slist. 
Implement 3 different versions of stable_partition_inplace_iterative and 
compare their performances. A version of slist can be found at: 
http://stlab.corp.adobe.com/www/stldoc_Slist.html
 

Problem: Implement an iterative version of stable_partition_adaptive using 
reduce_balanced. 

3-partition [Dutch National Flag – Dijkstra] 
 
Some times the sequences with which we deal are divided into more than two kinds of 
elements. Before we address a problem of partitioning a range into an arbitrary number of 
buckets, let us spend some time on a very important case of partition, partition into three 
categories. 
 
The algorithm for the three-way partitioning is commonly known a Dutch National Flag 
algorithm for the three colors: red, white and blue of the flag of the Kingdom of 
Netherlands. I do not know who introduced it first; I – as well as most other people – 
learned about it from an important book of Edsger Dijkstra Discipline of Programming 
(Dijkstra 1976). In it Dijkstra acknowledges his indebtedness for the problem to W. H. J. 
Feijen. 

http://stlab.corp.adobe.com/www/stldoc_Slist.html


Alex Stepanov Page 48 7/26/2005 

 
Remark. It is a very sad fact that the work of Edsger Dijkstra is becoming totally 
unknown to a modern programmer. While many of Dijkstra’s opinions are extreme and 
one should take most of his pronouncements with a grain of salt, his work is central to 
programming as a scientific discipline and I would urge every young (or not so young) 
programmer to study his work. We should be grateful to the Computer Science 
Department of the University of Texas, Austin for creating the Internet archive of 
Dijkstra’s works.  
  
Instead of colors we are going to use integers; in particular, we assume that instead of a 
predicate returning a Boolean value – as in partition – we are given a key function that 
returns three values: {0, 1, 2} known as keys. Now we consider the range to be 
partitioned 3-ways if it contains no elements with keys 1 and 2 before elements with key 
0, and no elements with key 2 before elements with key 1. It is very easy to implement a 
function to check if a range is partitioned:  
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
bool is_partitioned_3way(I f, I l, F key) 
{ 
 equal_to<int> eq; 

f = find_if_not(f, l, compose1(bind2nd(eq, 0), key));  
f = find_if_not(f, l, compose1(bind2nd(eq, 1), key));  
f = find_if_not(f, l, compose1(bind2nd(eq, 2), key)); 

 return f == l; 
} 
 
Problem:  Prove that is_partitioned_3way does what it claims to do. 
 
It is important to observe that a different way of stating that a range is partitioned 3-way 
is by saying that the key function will return non-decreasing sequence of values or that if 
we assume that we have a function is_sorted (which we will indeed define in the 
Section …) we can check the range for being partitioned 3-way by the following simple 
function: 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
bool is_partitioned_3way(I f, I l, F key) 
{ 
 return is_sorted( 

f, l, compose2(less<int>(), key, key)); 
} 
 
As a matter of fact, we can use the same code to verify n-way partitioning: 
 
template <typename I, // I models Forward Iterator 
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  typename F> // F models Unary Function 
bool is_partitioned_n_way(I f, I l, F key) 
{ 
 return is_sorted( 

f, l, compose2(less<int>(), key, key)); 
} 
 
(We will encounter an almost identical – but more general – function in the Section … as 
is_sorted_by_key.) 
 
That shows us that there is a profound connection between sorting and partitioning. 
Indeed we can always implement an n-way partition (for any n, but 2 – see the remark at 
the end of the section) by implementing: 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
pair<I , I> partition_n_way(I f, I l, F key) { 
 sort(f, l, compose2(less<int>(), key, key); 
} 
 
(And we will also see a very similar function later under a different name.)  
 
It is, of course, not a very interesting thing to do for small value of n since it is an NlogN 
algorithm for a linear time problem. It is much better, as we shall see when we study 
sorting, to implement sorting in terms of partitioning.   
 
Now, let us get back to 3-way partition and Dijkstra’s algorithm. Let us assume that 
somehow we managed to solve the problem up to some middle point s: 
 
0000001111?????22222222 
      ^   ^    ^       ^ 
      f   s    t       l  (first, second, third, last) 
 
If s points to an element with key 1 we just advance s. If it is 0 we swap it with an 
element pointed at by f and advance both f and s. If it is 2 we decrement t; swap 
elements pointed by t and s and increment s. This algorithm works exactly like 
Lomuto’s partitition_forward for 0 and 1, but sends 2 to the other end of the 
range. 
 
The code looks like: 
 
template <typename I, // I models Bidirectional Iterator 
  typename F> // F models Unary Function 
pair<I , I> partition_3way_bidirectional(I f, I l, F fun) 
{ 
 I n = f; 
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while (n != l) {   
int key = fun(*n); 
if (key == 0)  

   swap(*f++, *n++); 
  else if (key == 2) 
   swap(*--l, *n); 
  else 
   ++n; 
     } 
 return make_pair(n, l); 
} 
 
It is clear that the algorithm does N predicate application and N swaps in the worst case 
and 2N/3 swaps on average. 
 
Now, let us find an algorithm that allows us to do the 3way partition with forward 
iterators. Such an algorithm can be easily obtained using our standard inductive 
technique. Let us assume that somehow we managed to solve the problem up to some 
middle point: 
 
000000111122222???????? 
      ^   ^    ^       ^ 
      f   s    t       l  (first, second, third, last) 
 
Then we can partition it with: 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
pair<I , I> partition_3way_forward(I f, I l, F fun) 
{ 

I t = f; 
 I s = f; 

while (t != l) {   
int key = fun(*t); 

  if (key == 0)  
cycle_left(*t, *s++, *f++); 

  else if (key == 1)  
swap(*s++, *t); 

  ++t; 
     } 
 return make_pair(f, s); 
} 
 
where cycle_left is defined as: 
 
template <typename T> 
inline 
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void cycle_left(T& a, T& b, T& c) // rotates to the left 
{ 
 T tmp; 
 move(a, tmp); 
 move(b, a); 
 move(c, b); 
 move(tmp, c); 
} 
 
Remark. Edward Kandrot came up with an ingenious way of using a three argument 
swap to fix a major bug contained in the version of partition_3way_forward that 
I presented to my 2005 Adobe class and, at the same time to make the code more 
efficient. It is quite clear that it is useful to have versions of cycle_left up to some 
large (10?) number of arguments.  
 
The algorithm does N predicate application and  2N swaps in the worst case and N swaps 
on average. In other words it does 30% more swaps on average than Dijkstra’s 
partition_3way_bidirectional.  
 
Project: Measure the performance of partition_3way_forward and 
partition_3way_bidirectional for different integral types (char, short, 
int, long long, etc) with a 3-way predicate that return a remainder of an integer 
divided by 3. 
 
Problem: Implement partition_4way_forward. 
 
Problem: Implement partition_4way_bidirectional. 
 
Problem: What is the number of swaps that is performed by 
partition_4way_forward and partition_4way_bidirectional both in 
the worst case and on average? 
 
Problem: Implement partiotion_copy_3way. 
 
Problem: Implement stable_partiotion_3way. 
 
partition_3way returns a pair of iterators which are two partition points. It is 
obvious that if a range is already partitioned we can find the partition points with the help 
of partition_point_n: 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
pair<I , I> partition_point_3way_simple_minded 

(I f, DIFFERENCE_TYPE(I) n, F fun) 
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{ 
 less<int> comp; 
 return make_pair(partition_point_n(f, n, 
   compose1(bind2nd(comp, 1), fun)), 
      partition_point_n(f, n, 
   compose1(bind2nd(comp, 2), fun))); 
} 
 
The problem is that we are doing some extra work since both calls will repeat at least the 
first test of the middle element.  
 
Problem: What is the largest number of duplicated tests? 
 
We can easily fix that: 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models Unary Function 
pair<I , I> partition_point_3way 

(I f, DIFFERENCE_TYPE(I) n, F fun) 
{ 
 equal_to<int> eq; 
     while (n > 0) { 
  DIFFERENCE_TYPE(I) h = n>>1; 
          I m = successor(f, h); 
          switch (fun(*m++)) { 

case 0:   
f = m; 
n = n – h - 1; 

           break;  
case 1:    

           I i = partition_point_n(f, n – h - 1,  
compose1(bind2nd(eq, 0), fun)),                 

I j = partition_point_n(m, h,                            
compose1(bind2nd(eq, 1), fun)); 

   return make_pair(i, j); 
          case 2:   

n = h; 
          } 
 }  
     return make_pair(f, f); 
} 
 
Footnote: I have to admit an embarrassing thing: the interfaces for partition and 
partition_3way are not consistent. In 1986 I wrote my first library implementation of 
partition for a part of Ada Generic Library that could not be released since no Ada 
compiler would be able to compile deeply nested generics. (The fact that it could not be 
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released is sad because in this part I used a concept of coordinate that later on turned into 
iterator in C++ STL. As far as I know, the code did not survive, except for, interestingly 
enough, code for the bidirectional partition which appeared in a paper in which Dave 
Musser and I introduced the term generic programming [Musser and Stepanov 1988].)  
In any case, I had to decide which way the partition is going to place the results: the 
elements satisfying the predicate before the elements not satisfying it, or the other way 
around. I decided that it is better to put “good” elements first since I could not see any 
particular reason for the opposite and both possible solutions seemed to be equivalent. 
When I was defining partition for STL in 1993, I did not question my prior reasoning and 
partition, again, moved good elements in front. It took another 10 years for me to see that 
I was wrong. When I started considering algorithms for 3-way, 4-way and n-way 
partitioning, I realized that it is really important that partition assures that the result is 
sorted according to partition key – the result of the key function. And all of the STL 
sorting algorithms assumed ascending order.  Moreover, it would have allowed the 
following nice property to hold:  partition_3way would have worked just like regular 
partition if given a two-valued key function returning {0, 1}. Moreover, sort with a 
comparison based on key-compare would have done partitioning – which is not true now 
for regular 2-way partition.  (The problem will become even more visible in the next 
section on partition_n_way.)  If you ever get a chance to design a new library (STL 
for C## ?) I encourage you to consider if you should fix the interface of partition by 
putting the bad elements first.  
 

N-way partition  
 
The idea of a 3-value predicate naturally generalizes to an idea of an n-valued predicate. 
A function is called an n-valued predicate if it returns an integral value in the range [0, n). 
In general, we can have n-valued predicates of any number of arguments. In this chapter, 
however, we restrict ourselves to unary predicates.  
 
Most algorithms that deal with n-valued predicates need to know the value of n for a 
particular predicate. We call this value a range size of the predicate. That raises a design 
question of finding the range size for a given predicate. We could require that any such 
predicate p provides a member function p.range_size() or an ordinary function 
range_size(p). Unfortunately, that would make it impossible to use our algorithms 
with pointers to functions. It will also require that we build special machinery for 
combining the code of the predicate with the integer that represents its range size. All the 
algorithms that deal with n-valued predicates will be passed the range size either 
explicitly or implicitly through other parameters.  
 
We can easily generalize partition_3way_forward to deal with n-valued 
predicates. We need to replace 3 iterators that point to the end of a sub-range that 
contains all the elements with a corresponding value of the predicate with a range of n 
iterators. Following a well-established tradition we will call the sub-ranges buckets. 
(Knuth uses piles, but I find buckets to be a more generally accepted term.) So we are 
given a range – described as a pair of random access iterators [f_b, l_b) – to keep 
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the iterators in the range that we are partitioning. (In this section f_b and l_b stand 
correspondingly for first bucket and last bucket. The last bucket, of course, points past the 
last “real” bucket. ) For every integer in the range [0, l_b – f_b),    *(f_b + 
i), is an iterator into the sequence being partitioned and the sub-range [*(f_b + i), 
*(f_b + i + 1)) contains all of the elements with the predicate value i that have 
been discovered up till now. When we discover a new element with value i, all the 
buckets before the i-th bucket remain unchanged, the i-th bucket grows by one element 
and the buckets after the i-th bucket are shifted by one: 
  
template <typename I, // I models Forward Iterator 
  typename F, // F models N-Value Unary Predicate 
  typename R> // R models Random Access Iterator 
void partition_n_way(I f, I l, F fun, R f_b, R l_b) 
// I is the value type of R 
// the range of key is [0, l_b – f_b) 
{ 

fill(f_b, l_b, f); 
while (f != l) { 

VALUE_TYPE(I) tmp; 
move(*f++, tmp); 
R i_b = f_b + fun(tmp); 
R j_b = l_b; 
while (--j_b != i_b)  

   move(**(j_b – 1), *(*j_b)++); 
move(tmp, *(*j_b)++); 

     } 
} 
 
Problem: It is not strictly speaking necessary for the sequence of buckets in this 
algorithm to be randomly accessible. Change the code of partition_n_way so that 
the buckets are stored through weaker than random access iterators. (In most reasonable 
situation the buckets will be stored in an array or a vector.)  
 
Problem: Notice that partition_n_way does some unnecessary moves. It saves and 
restores the tested element even when it belongs to the last bucket and the only thing 
needed is to increment the corresponding bucket pointer. It also does unnecessary moves 
when it goes through empty buckets. Implement a version of it with fewer moves. 
 
If N is the length of the range being partitioned and k is the range size of the predicate 
then the algorithm always does N predicate application and N(k+1) moves in the worst 
case and N(k+1)/2 moves on average. The next problem will show a way of reducing the 
number of moves by a factor of 2 for a case of bidirectional iterators. But even such a 
reduction will not make this algorithm reasonable when N gets large. In practice, it is 
almost never worthwhile to use it: as we shall see there are much better alternatives.  
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Problem: Implement a version of partition_n_way for bidirectional iterators that – 
similar to paritition_3way_bidirectional – will construct half the buckets on 
the left and half the buckets on the right of the ever decreasing range [f, l). (Mark 
Ruzon.) 
 
The next set of algorithms is built on the notion of buckets which we just encountered in 
partition_n_way. The fundamental ideas go back to the MIT master thesis of 
Harold H. Seward [Seward, 1954] which is definitely one of the most important early 
computer science papers. Seward introduced the partitioning algorithms in the context of 
a new sorting algorithm that he introduced: radix sort, which we will describe later in the 
section.  
 
The fundamental idea behind “bucket” algorithms is that we can use a range of buckets 
containing positions where we put the next element with a given value of the key 
function: 
 
template <typename I, // I models Input Iterator 
  typename F, // F models N-Value Predicate 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// VALUE_TYPE(I) == VALUE_TYPE(VALUE_TYPE(R)) 
void bucket_copy(I f, I l, F fun, R f_b)  
{ 
 while (f != l) {  
  *(f_b[fun(*f)]++) = *f; 
  ++f; 
 } 
} 
 
We, of course, rely on the assumption that the range size of fun is the same as the size of 
the range of buckets. The client of the code should know both and provide us with the 
right initial values in the buckets. We do not need to return anything since the buckets are 
updated and will contain updated iterators pointing to the end of corresponding ranges. 
 
 
template <typename I, // I models Input Iterator 
  typename F, // F models N-Value Predicate  
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
void bucket_move(I f, I l, F fun, R f_b)  
{ 
 while (f != l) {  
  move(*f, *(f_b[fun(*f)]++)); 
  ++f; 
 } 
} 
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template <typename I, // I models Forward Iterator 
  typename F, // F models N-Value Predicate 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
void bucket_swap(I f, I l, F fun, R f_b)  
{ 
 while (f != l) {  
  swap(*f, *(f_b[fun(*f)]++)); 
  ++f; 
 } 
} 
 
template <typename I, // I models Forward Node Iterator 
  typename F, // F models N-Value Predicate 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// VALUE_TYPE(R) == pair<I, I> 
void partition_bucket_node(I f, I l, F fun, R f_b, R l_b) 
{ 
 fill(f_b, l_b, make_pair(l, l)); 
 while (f != l) { 
  R c_b = f_b + fun(*f); 
  if ((*c_b).first == l)  
   (*c_b).first = f; 
  else  
   set_successor((*c_b).second, f); 
  (*c_b).second = f++; 
 } 
} 
 
template <typename I, // I models Forward Node Iterator 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// VALUE_TYPE(R) == pair<I, I> 
pair<I, I> connect_bucket_nodes(I l, R f_b, R l_b) 
{ 
 while (f_b != l_b && (*f_b).first == l) ++f_b; 
 
 if (f_b == l_b) return make_pair(l, l); 
 
 I f = (*f_b).first;  
 I c = (*f_b).second; 
 
 while (++f_b != l_b) { 
  if ((*f_b).first != l) { 
   set_successor(c, (*f_b).first); 
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   c = (*f_b).second; 
  } 
 } 
  
 return make_pair(f, c); 
} 
 
template <typename I, // I models Forward Node Iterator 
  typename F, // F models N-Value Predicate 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// VALUE_TYPE(R) == pair<I, I> 
pair<I, I> partition_bucket_node_connected 

(I f, I l, F fun, R f_b, R l_b) 
{ 
 partition_bucket_node(f, l, fun, f_b, l_b); 
 return connect_bucket_nodes(l, f_b, l_b); 
} 
 
 
template <typename I, // I models Input Iterator 
  typename F, // F models N-Value Predicate 
  typename R> // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// convertible_to(RESULT_TYPE(F), DIFFERENCE_TYPE(R)) 
void accumulate_histogram(I f, I l, F fun, R f_b) 
{ 
 while (f != l) {  
  ++f_b[fun(*f)]; 
  ++f; 
 } 
} 
 
template <typename I1, // I1 models Forward Iterator 
  typename I2, // I2 models Forward Iterator 
  typename F,  // F models N-Value Predicate 
  typename R>  // R models Random Access Iterator 
// VALUE_TYPE(I1) == ARGUMENT_TYPE(F) 
// convertible_to(VALUE_TYPE(I1), VALUE_TYPE(I2)) 
// VALUE_TYPE(R) == I2 
void compute_buckets(I1 f, I1 l, I2 r, F fun,  

R f_b, R l_b) 
{ 
 vector<DIFFERENCE_TYPE(I2)> v(l_b – f_b); 
 fill(v.begin(), v.end(), 0); 
 histogram(f, l, fun, v.begin()); 
 vector<DIFFERENCE_TYPE(I2)>::iterator i = v.begin(); 
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 while (f_b != l_b) { 
  *f_b = r; 
  advance(r, *i); 
  ++f_b; 
  ++i; 
 }  
} 
 
template <typename I1, // I1 models Forward Iterator 
  typename I2, // I2 models Forward Iterator 
  typename F,  // F models N-Value Predicate 
  typename R>  // R models Random Access Iterator  
// VALUE_TYPE(I1) == ARGUMENT_TYPE(F) 
// convertible_to(VALUE_TYPE(I1), VALUE_TYPE(I2)) 
// VALUE_TYPE(R) == I2 
void bucket_partition_copy(I1 f, I1 l, I2 r, F fun,  

R f_b, R l_b) 
{ 
 compute_buckets(f, l, r, fun, f_b, l_b); 

bucket_copy(f, l, fun, f_b); 
} 
  
template <typename I,  // I models Forward Iterator 
  typename F,  // F models N-Value Predicate 

typename R>  // R models Random Access Iterator 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
// VALUE_TYPE(R) == I 
void bucket_partition(I f, I l, F fun, R f_b, R l_b) 
{ 
  compute_buckets(f, l, f, fun, f_b, l_b); 
  vector<I> b_e(l_b – f_b, l); 
  copy(f_b + 1, l_b, b_e.begin());       
  pair<R, vector<I>::iterator> p(f_b, b_e.begin()); 
  while (true) { 
   p = mismatch(p.first, l_b, p.second); 
   if (p.first == l_b) return; 
   bucket_swap(*p.first, *p.second, fun, f_b); 
  } 
} 
 
Remark: The idea for this algorithm was suggested to me by Lubomir Bourdev during 
2005 class at Adobe after I rashly stated that such an algorithm cannot exist. The long 
years of knowing the fact that the radix sort cannot be done in-place prevented me from 
seeing that if stability is not required what is not possible becomes very possible. Knuth 
describes a similar algorithm in the problem 5.2-13 [Knuth 1972]. (The algorithm was 
later published by Burnetas, Solow and Agarwal in 1997 [Burnetas, 1997].) I am positive 
that I read the solution to Knuth 5.2-13 sometime in the ‘80s but completely forgot it.  
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template <typename I, // I models Forward Iterator 
  typename F> // F models N-Value Predicate 
void partition_n_way_recursive(I f, I l, F fun,  
       int i, int j)  
{ 
 if (j – i <= 1) return; 
 int h = i + (j – i)/2; 
 I m = partition(f, l,  

compose1(bind2nd(less<int>(), h), fun)); 
 partition_n_way_recursive(f, m, i, h); 
 partition_n_way_recursive(m, l, h, j); 
} 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models N-Value Predicate 
void partition_n_way_recursive1(I f, I l, F key,  
        int i, int j)  
{ 
 while (j – i > 1) { 
  int h = i + (j – i)/2; 
  I m = partition(f, l,  

 compose1(bind2nd(less<int>(), n), key)); 
  partition_n_way_recursive1(f, m, i, h); 
  f = m; 
  i = h;  
 } 
} 
 
template <typename T1, typename T2,  
  typename T3, typename T4> 
struct quadruple 
{ 
 T1 first; 
 T2 second; 
 T3 third; 
 T4 forth; 
 quadruple(const T1& x, 
   const T2& y, 
   const T3& z, 
   const T4& w)  
  : first(x), second(y), third(z), forth(w) {} 
}; 
 
template <typename T1, typename T2,  
  typename T3, typename T4> 
inline 
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void scatter(const quadruple<T1, T2, T3, T4>& x, 
   T1& a, T2& b, T3& c, T4& d) 

{ 
 a = x.first; 
 b = x.second; 
 c = x.third; 
 d = x.forth; 
} 
 
template <typename T1, typename T2,  
  typename T3, typename T4> 
inline 
void gather(quadruple<T1, T2, T3, T4>& x, 

const T1& a, const T2& b,  
const T3& c, const T4& d) 

{ 
 x.first  = a; 
 x.second = b; 
 x.third  = c; 
 x.forth  = d; 
} 
// need to define ==, != and the relational operators 
// for quadruple 
 
template <typename I, // I models Forward Iterator 
  typename F> // F models N-Value Predicate 
void partition_n_way(I f, I l, F fun, int n) 
{ 
 typedef quadruple<I, I, int, int> quad; 
 vector<quad> stack; 
 int i = 0; 
 int j = n; 
 while (j – i > 1 || !stack.empty()) { 
  if (j – i <= 1) { 
   scatter(stack.back(), f, l, i, j); 

stack.pop_back(); 
  } 
  int h = i + (j - i)/2; 
  I m = partition(f, l,  

 compose1(bind2nd(less<int>(), h), fun)); 
if (h – i > 1) 

   stack.push_back(quad(f, m, i, h)); 
  f = m; 
  i = h; 
 } 
} 
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Radix sorting 
 
 
 
template <typename I, // I models Forward Node Iterator 
  typename F> // F models 256-way Predicate 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
pair<I, I> partition_node_byte(I f, I l, F fun,  

bool is_unsigned) 
{ 
 pair<I, I> b[256]; 
 partition_bucket_node(f, l, fun, b, b + 256); 
 pair<I, I> x = connect_bucket_nodes(l, b, b+128); 

pair<I, I> y = connect_bucket_nodes(l, b+128, b+256); 
if (x.first == l) return y; 
if (y.first == l) return x; 
if (!is_unsigned) swap(x, y); 
set_successor(x.second, y.first); 
return make_pair(x.first, y.second);  

} 
 
template <typename N> // N models Integer 
class nth_byte  

: public unary_function<N, int> 
{ 
private: 
 int n; 
public: 
 nth_byte(int i) : n(i << 3) {} 
 int operator()(const N& k) const { 
  return int(k >> n) & 255; 
 } 
}; 
 
template <typename I, // I models Forward Node Iterator 
  typename F> // F models Unary Function 
      // F::result_type models Integer 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
pair<I, I> radix_sort_node(I f, I l, F fun,  

int f_lsb, int l_lsb, bool is_nn) 
// f_lsb is the number of the first least significant byte 
// to be considered 
// l_lsb is the number of the last least significant byte 
// to be considered 
// is_nn is true if fun returns values >= 0 
{ 
 typedef typename F::result_type N; 
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pair<I, I> p(f, l); 
 if (f == l) return p; 
 for (int i = f_lsb; i <= l_lsb; ++i) { 
  p = partition_node_byte( 

p.first, 
l, 
compose1(nth_byte<N>(i), fun),  
i < l_lsb || is_nn); 

  set_successor(p.second, l); 
 }  

return p; 
} 
 
template <typename N> // N models Integer  
inline 
bool is_unsigned()  
{ 
 return N(0) – N(1) >= N(0); 
} 
 
template <typename I, // I models Forward Node Iterator 
  typename F> // F models Unary Function 
      // F::result_type models Integer 
// VALUE_TYPE(I) == ARGUMENT_TYPE(F) 
inline 
pair<I, I> radix_sort_node(I f, I l, F fun) 
{ 
 typedef typename F::result_type Integer; 
 return radix_sort_node(f, l, fun, 

   0, sizeof(Integer) - 1, 
   is_unsigned<Integer>()); 

} 
 
template <typename T> 
struct identity_function : unary_function<T, T> 
{ 
 T operator()(const T& x) const {return x;} 
}; 
 
template <typename I> // I models Forward Node Iterator 
// VALUE_TYPE(I) models Integer 
inline 
pair<I, I> radix_sort_node(I f, I l) 
{ 
 typedef typename VALUE_TYPE(I) Integer; 
 identity_function<Integer> id; 
 return radix_sort_node(f, l, id, 
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   0, sizeof(Integer), 
   is_unsigned<Integer>()); 

} 
 
template <typename N> // N models Integer 
int actual_sizeof(N n)  
{ 
 N mask = ~N(255); 
 if (n < 0) n = -n; 
 
 int k = 1; 
 while (n & mask) { 
  ++k; 
  n >>= 8; 
 }  
 return k; 
} 

Historical note 
 
The forward partition algorithm is due to Nico Lomuto who was looking for a simpler 
way to implement the quicksort inner loop [Bentley 1984]. Its main advantages over 
Hoare’s algorithm are, firstly, that it works for forward iterators and, secondly, that it 
preserves the relative ordering of the elements that satisfy the predicate (see the 
discussion of stable partition). Its disadvantages are that it does more swaps on the 
average than the next algorithm and that it cannot be modified to split the range 
containing equal elements into two equal parts, which, as we shall see in the chapter on 
sorting [page ???], makes it really unsuitable for being used in quicksort – for which 
purpose it is, nevertheless, frequently recommended. 
 
The bidirectional partition was introduced by C. A. R. Hoare as a part of his quicksort 
algorithm [Hoare 1961]. The algorithm for partition with the minimal number of moves 
was described by Hoare in his remarkable and unjustly forgotten paper [Hoare 1962] 
which also introduced the idea of using sentinels to minimize the number of operation in 
the inner loop. This paper, in my opinion, is a serious contender for the title of the best 
ever paper in Computer Science.  
 
Using partition for implementing random shuffle for forward iterators was invented by 
Raymond Lo and Wilson Ho in 1997 during the SGI course on Generic programming. 
 
 

Solutions to selected problems: 
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template <typename I,  // I models Forward Iterator 
  typename P>  // P models Unary Predicate 
I partition_forward_minimal_moves(I f, I l, P p) 
{ 
 while (true) { 

if (f == l) return f; 
  if (!p(*f)) break; 
  ++f; 
 } 
 I n = f; 
 while (true) { 
  if (++n == l) return f; 
  if (p(*n)) break; 
 } 
 VALUE_TYPE(I) tmp; 

move(*f, tmp);  
move(*n, *f); 
++f; 
I h = n;  

 while (++n != l) 
  if (p(*n)) { 

move(*f, *h); 
move(*n, *f); 
h = n; 
++f; 

  } 
 move(tmp, h); 
 return f; 
} 
 
 
template <typename T, 
  typename R> // R models Strict Weak Ordering on T 
inline 
bool compare_3way(const T& x, const T& y, R r = less<T>())  
{ 
     if (r(x, y)) return -1; 
     if (r(y, x)) return 1; 
     return 0; 
} 
 
template <typename I, // I models Forward Iterator 
  typename F, // F models N-Value Unary Predicate 
  typename R> // R models Random Access Iterator 
void partition_n_way_fewer_moves(I f, I l, F fun,  

R f_b, R l_b) 
// VALUE_TYPE(R) == I 
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// the range of key is [0, l_b – f_b) 
{ 

fill(f_b, l_b, f); 
while (f != l) { 

R i_b = f_b + fun(*f); 
 if (i_b == l_b – 1) { 
  ++*i_b; 
  ++f; 
 } else { 

VALUE_TYPE(I) tmp; 
move(*f++, tmp); 
R j_b = l_b; 
while (--j_b != i_b) { 

  if (*predecessor(j_b)) != *j_b)   
     move(**predecessor(j_b), **j_b); 
    ++*j_b; 
   } 

move(tmp, *(*j_b)++); 
  } 
     } 
} 
 

Proposition: Given two sequences of length n with only equality comparison, 
O(n^2) operations are required to determine if one sequence is a permutation of 
the other. 

Proof: 

Form a bipartite graph where the nodes are the elements of the sequences and each pair of 
elements from the two sequences is connected by an edge.  Each edge in the graph 
represents an as yet un-compared pair of elements.  Initially, the number of edges is n^2. 

The algorithm to determine whether one sequence is a permutation of the other is 
modeled as sequence of edge tests in the graph.  That is, it sequentially selects an edge in 
the graph and tests for equality of the two nodes.  If the nodes are equal, they can be 
removed from the graph, as well as any edges incident on them.  If the nodes are not 
equal, then only the tested edge is removed.  The algorithm stops, either if all nodes are 
removed (indicating that one sequence is a permutation of the other), or if one of the 
nodes becomes disconnected (indicating that the one sequence is not a permutation of the 
other).  

The proof is to show that any such algorithm must always do O(n^2) comparisons in the 
worst case.   
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Suppose that for every test where the degree of each of the two nodes is greater than one, 
the result of the comparison is that they are not equal.  If the degree of either node is one, 
then the result of the comparison is that they are equal. 

 Suppose the algorithm proceeds from its initial state doing a sequence of comparisons 
until it reaches the first pair that is equal.  Since the initial degree of each node in the 
graph is n, this will require at least n + k tests, where k is the number of comparisons that 
did not involve either of the two equal nodes.  The two nodes are removed, as well as any 
edges incident on them.  What remains is a bipartite graph of 2(n – 1) nodes and (n – 1)^2 
– k edges.   

  

The tests to remove the extra k edges can equivalently be done immediately following the 
removal of the two equal nodes.  That is, immediately following the removal of the two 
nodes we have a complete bipartite graph of (n – 1)^2 edges, and then the k edges are 
removed.  In this case, at least n tests are required to obtain the first equal pair and reduce 
the graph.   

The reduced graph is a complete instance of the sub-problem for sequences of length n-
1.  Therefore we have the recurrence: 

c(n) >= n + c(n-1) 

where c(n) is the worst case number of  comparisons for sequences of length n.  
Consequently, c(n) = O(n^2). 

 (The proof is contributed by Jon Brandt.) 
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