
Alex Stepanov Page 1 7/26/2005

1. Partition and Related Functions

Reverse, rotate and random shuffle are the most important examples of index-based
permutations, that is, permutations that rearrange a sequence according to the original
position of the elements without any consideration for their values. Now we are going to
study a different class of permutation algorithms, predicate-based permutations. The
positions into which these algorithms move elements in a sequence depend primarily on
whether they satisfy a given condition, not only on their original position.

Most of the algorithms in this section are based on the notion of partition: dividing
elements in a range into good and bad according to a predicate. One of the tasks of the
present chapter is to show the richness of the algorithmic space surrounding partition. We
will find use for many of the functions that we studied before, such as find, reduce and
rotate. We will discover many techniques and interfaces that will serve us well in the
following chapters.

Definitions

1. A range is partitioned according to a given predicate if every element in the range that
satisfies the predicate precedes every element that does not satisfy the predicate.

2. An iterator m into a partitioned range [f, l) is called a partition point if every
element in the range [f, m) satisfies the predicate and no element in the range [m,
l) satisfies it.

For example, if G stands for good (satisfying), B for bad(unsatisfying) elements then the
following range [f, l) is partitioned and m is its partition point:

GGGGGBBB
^ ^ ^
f m l

Notice, that as we have seen in cases of other algorithms, partition requires N + 1
different values of iterators to describe all possible partition points of a sequence of N
elements. Indeed, if we have N elements in a sequence the number of good elements in it
varies between 0 and N, having, therefore, N + 1 distinct values.

We can check if a range is partitioned using the following function:

template <typename I, // I models Input Iterator
 typename P> // P models Unary Predicate
bool is_partitioned(I f, I l, P p)

Alex Stepanov Page 2 7/26/2005

{
 return l == find_if(find_if_not(f, l, p), l, p);
}

The function checks that there are no good elements that follow a bad element.

If we know the partition point m we can verify the partitioning with:

template <typename I, // I models Input Iterator
 typename P> // P models Unary Predicate
bool is_partitioned(I f, I m, I l, P p)
{
 return all(f, m, p) && none(m, l, p);
}

If a range is partitioned according to some predicate we can easily find its partition point
by calling:

find_if_not(f, l, p)

Later in this section we shall see that it is often possible to find the partition point much
faster.

Quiz: How is it possible to find the partition point faster?

There could be many different permutations of a range that give us a partitioned range. If
we have a range with U good elements and V bad elements the number of different
partitioned permutations is equal to U!V!.

Problem: How large must a range be to have different partitioned permutations
irrespective of the number of good and bad elements in it?

Forward Partition Algorithm (Lomuto)

In order to partition a range [f, l) in place we start with an inductive assumption:

Let us assume that we managed to partition a range up to some point n and the present
partition point is m. We can illustrate the current state with the picture:

 GGGGGGGGBBBBBBB??????
 ^ ^ ^ ^
 f m n l

Alex Stepanov Page 3 7/26/2005

where G stands for “good” (satisfying), B for “bad”(unsatisfying) and ? stands for
“untested”. Then we know that:

 assert(all(f, m, p) && none(m, n, p)); // invariant

We do not know anything about the value at n. Before we check if it satisfies the
predicate we need to assure that we have not reached the end of the range. But if
somehow we did, we are done. Indeed if n is equal to l then our loop invariant becomes
equivalent to the second version of is_partitioned which happens to be the
postcondition of the function that we are trying to implement. It is evident that we should
return the partition point. Indeed, we have it available and it might be - and in reality
almost invariably is - useful to the caller.

Now we have the innermost part of our program:

 assert(all(f, m, p) && none(m, n, p)); // invariant
 if (n == l) return m;

Since we have not reached the end of the range we can test the next element.

If the element to which n points does not satisfy the predicate, we can simply advance n
and our invariant still holds. Otherwise, we swap a good element pointed to by n with a
(usually) bad element pointed to by m and we can advance both m and n with our
invariant holding.

Quiz: Can there ever be the case that m points to a good element? Would the invariant
still hold if it does?

Since we know that eventually n will reach l our program is almost done:

while (true) {
 assert(all(f, m, p) && none(m, n, p)); // invariant
 if (n == l)

return m;
 if (p(*n)) {

swap(*n, *m);
++m;

 }
 ++n;
}

We observe that for any range [f, l) we can find our inductive base by starting with
both m and n being equal to f. Or, stating it differently, it is really easy to partition an
empty range and find its partition point. And since now we have both the starting point
for our induction and the inductive step, we obtain:

Alex Stepanov Page 4 7/26/2005

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward_unoptimized(I f, I l, P p)
{
 I m = f;
 I n = f;
 while (n != l) {
 if (p(*n)) {

swap(*n, *m);
++m;

 }
 ++n;
 }
 assert(is_partitioned(f, m, l, p));
 return m;
}

Remark: It is interesting that this excellent algorithm is not in the C++ standard which
requires bidirectional iterators for partition. I had known, implemented, and taught this
algorithm for quite some time – since I first read about it in Bentley’s column in CACM
in the mid-eighties. But my original STL proposal does, somehow, specify bidirectional
iterators for both partition and stable_partition. Both of them were corrected
in SGI STL, but most vendors are still behind. This little thing has been bothering me for
over 10 years now; the most bothersome part being the fact of omission. How did it
happen? I suspect that the explanation is quite simple: while in the early 90ties I already
understood the idea of reducing every algorithms to its minimal requirements, and I also
knew that the same operation could be implemented using better algorithms when we
know more about the data to which they are applied, I was not yet fully aware of the need
to provide an algorithm for the weakest case, if such an algorithm is available. It took
several more years to understand the importance of “filling the algorithmic space.”

How many operations does the algorithm perform? The number of the applications of the
predicate is exactly equal to the length of the range. And that is, indeed, the minimal
number possible.

Assuming that N is the length of a range solve the following problems:

Problem: Prove that it is not possible to find the partition point with fewer than N
predicate applications.

Problem: Prove that if it is not required to return a partition point then it is possible to
partition a non-empty range with fewer than N predicate applications. [Jon Brandt]

Problem: Prove that even without returning a partition point it is not possible to
partition a range with fewer than N-1 predicate applications.

Alex Stepanov Page 5 7/26/2005

While the algorithm is optimal in terms of the number of application of the predicate it
clearly does more swaps than necessary. Indeed, it does one swap for every good element
in the sequence. But it is absolutely unnecessary to do it when there is no preceding bad
element. We can, therefore, produce an optimized version of the algorithm that skips over
all the good elements in the beginning of the range. We can also optimize away one of
the iterator variables:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward_1(I f, I l, P p)
{
 f = find_if_not(f, l, p);
 if (f == l) return f;
 I n = f;
 while (++n != l)
 if (p(*n)) {

swap(*n, *f);
++f;

 }
 return f;
}

While it seems to be a worthwhile optimization, in reality it is not very useful since the
average number of good elements in front of the first bad element is going to be very
small. We are, therefore, saving just a constant number of operations in a linear
algorithm, which, in general, is not a very useful optimization. The main reason for doing
it is esthetic: the optimized version is not going to do any swaps if a range is already
partitioned, which is a “nice” (but not practically useful) property.

Problem: What is the average number of good elements in front of the first bad
element?

Now the number of swaps is going to be equal to the number of the good elements that
appear in the range after the first bad element. While it is “optimal” for this algorithm, it
is clearly excessive. For example, if we have a sequence of one bad element followed by
four good elements:

BGGGG

our program is going to perform four swaps, while a partitioned sequence can be obtained
with a single swap of the first and the fifth elements. It is easy to see that on the average
there will be approximately N/2 good elements after a bad element and, therefore, on the
average the algorithm will do N/2 swaps.

What is the minimal number of swaps that are needed for partition? Well, as a matter of
fact the question is not particularly interesting. In terms of minimal number of moving

Alex Stepanov Page 6 7/26/2005

operations we should ask about what is the minimal number of moves that are needed to
partition a given range. The answer is simple: if we have a range with U good elements
and V bad elements and there are K bad elements amongst the first U elements of the
range, then we need 2K+1 moves to partition the range (assuming, of course, that K is not
equal to 0). Indeed, K bad elements are out of place and so there are K good elements that
are originally positioned outside of their final destination. To move these 2K elements we
need at least 2K moves and we need one extra location where we need to save one of the
elements to enable us to initiate the sequence of moves.

Problem: Design a partition algorithm that does 2K+1 moves. You do not have to
assume that iterators are forward iterators. [Solution can be found later in this section]

What is the number of iterator operations performed by partition_forward? It is
clear that we need to do N iterator comparisons to watch for the end. Our present
implementation will do an extra one, since it will compare an iterator returned by find
which would not have been necessary if we decided to hand-inline find and obtained the
following code sequence:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward(I f, I l, P p)
{
 while (true) {

if (f == l) return f;
 if (!p(*f)) break;
 ++f;
 }
 I n = f;
 while (++n != l)
 if (p(*n)) {

swap(*n, *f);
++f;

 }
 return f;
}

In this context the optimization is not particularly useful since a single extra comparison
does not really effect the performance (a small constant added to a linear function), but
we encounter the same transformation in the next algorithm where the extra comparison
appears in the inner loop. The transformation starts with the loop of find_if_not:

while (f != l && p(*f)) ++f;

and provides two different exits depending on which part of the conjunction holds. The
total number of iterator increments is equal to N + W where W is the number of good
elements that follow the first bad element. As we remarked before, on the average it is

Alex Stepanov Page 7 7/26/2005

going to be approximately N + U – 2 where U is the number of good elements in the
range.

Remark: We do not know a partition algorithm that is more effective for forward
iterators than the one we just described. We believe that in some fundamental sense it is
optimal, but we do not even know how to state the problem. We typically analyze the
algorithmic performance by counting one kind of operation. In reality we are dealing with
several different operations. For partition we need predicate application and move (both
of which depend on the type of elements) and iterator increment and equality (both of
which depend on the iterator type). We have a general feeling that element operations are
potentially costlier than iterator operations, since elements could be large while iterators
are small. Such vague considerations usually allow us to produce algorithms that are
satisfactory in practice, but there is something unsatisfying about it. It is possible that one
can come up with axioms on the complexity measures of different operations that will
allow us to prove optimality of certain algorithms. So far, we failed either to design such
axioms or to interest others in solving such problems.

Bidirectional Partition Algorithm (Hoare)

While, as we shall see later, it is possible to implement a partition algorithm with a
minimal number of moves, in practice it is usually sufficient to replace 2K +1 moves with
K swaps, namely, discover all the K misplaced bad elements and swap them with K
misplaced good elements. Our goal is to assure that every swap puts both the good
element and the bad element in their final destination. If we take the rightmost good
element and the leftmost bad element we can be sure that if they are out of place we can
put both in acceptable positions by swapping them. Indeed, we know that all the elements
to the left of the leftmost bad element have to be good and are in their final destination;
and similarly for the rightmost good element. So if they are out of place – the leftmost
bad element is before the rightmost good element, then swapping them is putting both
into acceptable locations. Finding the rightmost good element efficiently requires that we
move from the right and that requires bidirectional iterators.

The idea of the algorithm can be illustrated by the following picture:

 GGGGGGGGB??????GBBBBB
 ^ ^ ^ ^
 f0 f l l0

Interchanging the elements pointed to by f and l will put them in the correct subranges:
the bad element to the right of the partition point and the good element to the left of it. It
is worthwhile to observe that the partition point is located somewhere in the range
[f, l).

We can start our implementation by first finding the new f, then finding the new l and
then swapping them or returning whichever one is appropriate:

Alex Stepanov Page 8 7/26/2005

// use find_if_not to find the first bad element
// use find_backward_if to find the last good element
// check if the iterators crossed and return
// swap bad and good elements

Before we try to figure out how it works let us have a detour and learn about
find_backward.

Misplaced section: Find Backward

<<We did not discuss finding backward in our chapter on find. The main reason for that
was that our design for its interface might be better understood next to the first example
of its use. But we might eventually decide to move it there.>>

It is often important to find elements in a range while traversing it backwards. It seems to
be an easy task; just take find and replace ++ with --:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I buggy_find_backward_if_1(I f, I l, P p)
{
 while (f != l && !p(*l)) -–l;
 return l;
}

This, of course, will not work since the first time around we will be dereferencing a past-
the-end iterator. We should remember that our ranges are semi-open intervals and the end
iterator is not symmetrical with the begin iterator. It seems that we can compensate for it
by writing:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I buggy_find_backward_if_2(I f, I l, P p)
{
 while (f != l && !p(*--l));
 return l;
}

The problem now is that we cannot distinguish between finding a good element in the
very beginning of the range – but at the end of our search – and not finding a good
element at all. We can, of course find out which one is true by re-testing the first element,
but it would require an extra test and would not be symmetric with the ordinary
find_if. It would be terribly nice if we could transform a semi-open range [f, l)
into a semi-open range [l, f). And we can do it if we just slightly modify our code by
incrementing l before returning it when we find a good element:

Alex Stepanov Page 9 7/26/2005

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I find_backward_if(I f, I l, P p)
{
 while (true) {
 if (f == l) return f;
 if (p(*--l)) return ++l;
 }
}

We return the first iterator if we do not find a good element; otherwise, we return the
successor to the iterator pointing to the first good element from the right. (We assume
that ranges grow from left to right.)

End of misplaced section: Find Backward

And now back to our partition. We will carefully write down the asserts:

f = find_if_not(f0, l0, p);

assert(f == l0 || !p(*f) &&
all(f0, f, p));

l = find_backward_if(f, l0, p);
assert(f == l ||

p(*predecessor(l)) &&
none(l, l0, p);

if (f == l) return f;
assert(f != l && f != l0 &&

!p(f) && p(*predecessor(l)) &&
distance(f, l) > 1);

--l;
swap(*f, *l);

assert(p(f) && !p(*l));
++f;

assert(all(f0, f, p) && none(l, l0, p));

It is very important that you follow along and assure yourself that all the asserts hold.

Now it is easy to see our program:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_1(I f, I l, P p)
{
 while (true) {
 f = find_if_not(f, l, p);
 l = find_backward_if(f, l, p);

Alex Stepanov Page 10 7/26/2005

 if (f == l) return f;
 --l;
 swap(*f, *l);
 ++f;
 }
}

The above code looks so elegant, so perfect that it makes us sad that we have to muck it
up. But muck it we shall. The present code does several extra operations. As far as the
number of swaps goes, it does the promised K of them. However it should be clear that it
often does more than the necessary predicate applications.

Quiz: How many extra predicate applications does the algorithm do?

Remark: While one or two extra application of the predicate usually do not matter – and
as we shall see soon a few extra application could in reality speed up the algorithm by
allowing us to trade a linear number of iterator comparisons for an extra predicate call –
sometimes it is important to assure that the algorithm does not do any extra predicate
applications. It usually happens when the predicate is not strictly functional and applying
the predicate to the same element twice might not yield the same results. The useful
example of using partition with such a predicate comes up in an attempt to design an
algorithm for randomly shuffling a range with only forward iterator traversal. As we
remarked in the section on random shuffle (pages ???) we believe that it is impossible to
have a linear time algorithm for random shuffle unless the range provides us with random
access iterators. There is, however, an NlogN algorithm that randomly shuffles a range
with forward iterators only which is based on using partition with a coin-tossing predicate
– a predicate which returns a uniformly random sequence of true and false when applied
to any element.

Problem: Implement a function that uses partition on a range to randomly shuffle it
[Raymond Lo and Wilson Ho].

Problem: Prove that your implementation of random shuffle does, indeed, produce a
uniformly random shuffle [Raymond Lo and Wilson Ho].

In addition to extra predicate applications our partition_bidirectional_1
function does more than the necessary iterator comparisons. We could patch all these
minor problems by inlining our finds and doing the different exit transformation that we
first introduced in the previous section:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_2(I f, I l, P p)
{
 while (true) {

Alex Stepanov Page 11 7/26/2005

 while (true) {
 if (f == l) return f;

if (!p(*f)) break;
++f;

}
while (true) {
 --l;

 if (f == l) return f;
 if (p(*l)) break;
 }
 swap(*f, *l);
 f++;
 }
}

Problem: Prove the program correct by carefully writing asserts.

As a matter of fact, we did not muck it up too badly. It still looks very symmetric, very
elegant, but as we shall see soon the mucking is not over.

As far as the number of operations goes, the present code does N predicate applications
(prove it!) and N+1 iterator comparisons and N+1 iterator increments and decrements. It
also – as promised – does K swaps.

Minimizing moves

Sometimes we need to study a subject even if at the end we find out that it has few
practical applications. Implementing partition with the minimal number of moves is one
such subject. As we have seen earlier in the section, the minimal number of moves
necessary for partitioning a range is equal to 2K + 1 where K is the number of bad
elements that precede the (eventual) partition point. While we have an algorithm that
does K swaps, it does not appear to be optimal since we usually consider a swap to be
equivalent to 3 moves and 3K is greater than 2K + 1 for most positive integers. (It is
optimal, indeed, when K is 1 and we are going to do a single swap.)

Now let us see how we can produce a version with the minimal number of moves. The
idea is quite simple we save the first misplaced element and then move other misplaced
elements into the holes formed by the first save and the subsequent moves. When we
reach the end, we move the saved element into the last hole. In other words, we re-
organize our partition permutation from one with K cycles to one with one cycle.

It should be noted that the result of the algorithm is going to be different from the result
of our partition_bidirectional which generates a somewhat different
permutation.

Alex Stepanov Page 12 7/26/2005

Now it is fairly straightforward to obtain its implementation:

// as usual we use the following macro
#define VALUE_TYPE(I) std::iterator_traits<I >::value_type

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_minimal_moves (I f, I l, P p)
{

while (true) {
 if (f == l) return f;
 if (!p (*f)) break;
 ++f;
 } // f points to a bad element
 while (true) {
 if (f == --l) return f;
 if (p(*l)) break;

} // l points to a good element

 VALUE_TYPE(I) tmp;
move(*f, tmp); // hole at f needs a good element

while (true) {
 move(*l, *f);

// fill the hole at f with good element at l
// the hole is at l and needs a bad element

 do {
 if (++f == l) goto exit;
 } while (p (*f));
 // f points to a bad element

move(*f, *l);
// fill the hole at l with bad element at f
// the hole is at f and needs a good element
do {

 if (f == --l) goto exit;
 } while (!p (*l));
 // l points to a good element

}
exit:
 // both f and l are equal and point to a hole

move(tmp, *f);
 return f;
}

Alex Stepanov Page 13 7/26/2005

This piece of code is “optimal” in terms of many operations: it does the minimal number
of comparisons, the (almost) minimal number of moves, the minimal number of iterator
increments and iterator comparisons.

Problem: Find a case when the “optimal” algorithm would do one extra move [Joseph
Tighe].

Problem: Find a way of avoiding an extra move [keep explicit track of the hole].

Problem: Use the same techniques to reduce the number of moves in
partition_forward.

It should be noted, however, that in practice – or at least in practice as it is in 2005 –
optimizing the number of moves does not significantly speed up the code for most types
of elements. While we consider swap to be equivalent to three moves, for most modern
computers it appears to be more accurate to consider swap to be equivalent to two loads
followed by two stores, while move to be equivalent to one load and one store. If we
switch to this system of accounting, we observe that partition_bidirectional
does (almost) the same number of memory operations as
partition_bidirectional_minimal_moves. It is a worthwhile thing to
learn many of the optimization techniques, because of the twofold reason:

- optimization techniques are based on fundamental properties of algorithms that
we study and allow us to understand the algorithms better;
- optimizations that are not applicable now in some domain will often become
applicable again in a different domain.

Using sentinels

If we look at the code of the partition_bidirectional_2 we observe that we do
one iterator comparison for every predicate application – or almost one since the last
iterator comparison during the running of the algorithm is not followed by a predicate
application. If we know that our range contains both good and bad elements we can
implement a function that will be trading an extra predicate call for a linear number of
extra comparisons. If there is a bad element in the range we can always look for the first
bad element from the left by writing:

while (p(*f)) ++f;

and be certain that after we stop all the elements in the range [f0, f) are going to
satisfy the predicate and f will point to a bad element. We can now look for the good
element from the right:

while (!p(*--l));

Alex Stepanov Page 14 7/26/2005

and be equally certain that we will stop at a good element. It is very easy to see that the
only way they can cross is by one position only. That is, if they crossed then f is going to
be the successor of l. (That, of course, presupposes that the predicate is truly functional
and returns the same value when applied to the same element twice.)

That allows us to eliminate an iterator comparison from the inner loops:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_unguarded(I f, I l, P p)
{
 assert(!all(f, l, p) && !none(f, l, p));

while(true) {
 while (p(*f)) ++f;
 while (!p(*--l));
 if (++l == f) return f;
 swap(*f++, *--l);
}

}

And that allows us to construct a new version of partition that first finds guards or
sentinels on both sides and then calls the unguarded partition:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_optimized(I f, I l, P p)
{

f = find_if_not(f, l, p);
l = find_backward_if(f, l, p);
if (f == l) return f;
swap(*f, *--l);
return partition_bidirectional_unguarded(++f, l, p);

}

It is possible to eliminate extra iterator comparisons by also inlining finds and using the
sentinel technique to trade a couple of applications of predicate for (potentially) linear
number of iterator comparisons. It is, however, not an urgent optimization since if we
assume that both good and bad elements are equally probable and that our input
sequences are uniformly distributed then the number of extra iterator comparisons is
going to be small.

Problem: What is the worst case number of the extra iterator comparisons in
partition_bidirectional_optimized?

Problem: What is the average number of the extra iterator comparisons in
partition_bidirectional_optimized?

Alex Stepanov Page 15 7/26/2005

Problem: Re-implement partition_bidirectional_optimized to minimize
the number of iterator comparisons.

Problem: Combine the sentinel technique and the minimal moves optimization in a
single algorithm.

Project: Measure the performance of all the partition algorithms that we have studied so
far. Vary the element sizes from 32 bit integers and doubles all the way to structures with
64 byte size. Also use two different predicates: one which is inlined and very simple and
the other one which is passed as a pointer to function. Come up with a recommendation
on which of the algorithms are worth keeping in a library.

Project: Write a simple guide that will tell a user how to select a correct partition
algorithm for the job.

Project: Write a library function that will correctly choose which of the partition
algorithms to use depending on iterator requirements and, potentially, element size and
properties of the predicate.

Partition copy

While it is often important to be able to partition a range in place, it is sometimes equally
important to partition elements while copying them into a new place. It is, of course,
often possible to accomplish it by first doing copy and then partition. There are two
problems with this approach: the performance and the generality.

As far as the performance goes, we will need more than N moves. It would be terribly
nice if we can accomplish our task with N moves only. The second problem is that in
order to do copy first and partition afterwards we need to be able to traverse the resulting
range again. And that means that we cannot use output iterators as a requirement for the
destination. As a matter of fact the algorithm that is both minimal in terms of number of
operations and absolutely minimal in terms of the requirements on the iterators for the
result is so simple that it does not need any explanations. Go through the input range
element by element sending good elements to one destination stream and the bad ones to
a different one.

It is obvious how to start writing the algorithm:

if (p(*f))
 *r_g++ = *f++; // good result

Alex Stepanov Page 16 7/26/2005

else
 *r_b++ = *f++; // bad result

Footnote: This is, of course, “boy scout” code. Old C++ programmers will write
without a blink something like:
(p(*f) ? *r_g++ : *r_b++) = *f++;

or , even more cryptic,
*(p(*f) ? r_g : r_b)++ = *f++;

 The only remaining problem is to figure out what to return. And since the destinations of
good and bad elements are different we have to return the final state of both:

template <typename I, // I models Input Iterator
 typename O1, // O1 models Output Iterator
 typename O2, // O2 models Output Iterator
 typename P> // P models Unary Predicate
pair<O1, O2> partition_copy(I f, I l, O1 r_g, O2 r_b, P p)
{
 while (f != l) {
 if (p(*f))
 *r_g++ = *f++;
 else
 *r_b++ = *f++;
 }
 return make_pair(r_g, r_b);
}

When we treat the stable partition algorithm we will rely on the fact that partition_copy is
stable, that is, the relative order of among good elements is preserve and so is the relative
order among the bad elements.

And, as we shall see later, it is often useful to have a move version of
partition_copy:

template <typename I, // I models Input Iterator
 typename O1, // O1 models Output Iterator
 typename O2, // O2 models Output Iterator
 typename P> // P models Unary Predicate
pair<O1, O2> partition_move(I f, I l, O1 r_g, O2 r_b, P p)
{
 while (f != l) {
 if (p(*f))
 move(*f++,*r_g++);
 else

Alex Stepanov Page 17 7/26/2005

 move(*f++,*r_g++);
 }
 return make_pair(r_g, r_b);
}

Partitioning node-based structures

As with reverse and rotate it is sometimes desirable to have a different algorithm
for node-based structures. If we transform the structure so that every node keeps its value,
but all the nodes with correspondingly good or bad elements are linked together, then old
node iterators will maintain their element, but they will be re-linked, correspondingly,
into two different linked structures.

There is a standard technique for dealing with accumulating nodes: accumulating them in
reverse order. Let us assume that r_g points to the all good nodes that we have already
accumulated and r_b to all the bad ones. And we also know that f points to a node that
we have not yet examined. Then we can see the inner part of our algorithm:
if(p(*f)) {
 set_successor(f, r_g);
 r_g = f;
else {
 set_successor(f, r_b);
 r_b = f;
}

Now, we added one more element to the appropriate structure. The problem is that we
cannot get to the “old” successor of first. Well, that problem can be easily solved by
saving it first. And that gives us the following implementation:

template <class I, // I models Forward Node Iterator
 class P> // P models Unary Predicate
pair<I, I> partition_node_reversed(I f, I l, P p)
{
 I r_g = l;
 I r_b = l;
 while (f != l) {
 I n = successor(f);
 if(p(*f)) {
 set_successor(f, r_g);
 r_g = f;
 else {
 set_successor(f, r_b);
 r_b = f;

Alex Stepanov Page 18 7/26/2005

 }
 f = n;
 }
 return make_pair(r_g, r_b);
}

It does N predicate applications, N set_successor operations and N successor
operations: clearly minimal for predicate application and successor. And N
set_successor operations is clearly only one greater than the worst case.

Problem: What is the worst case input for any algorithm for partitioning nodes
structures if we count only set_successor operations?

Problem: What is the minimal expected number of set_successor operations that
any algorithm for partitioning node structures will need assuming that good and bad
elements are equally likely and distributed uniformly?

Now let us try to address the issue of minimizing the number of set_successor
operations. (While solving this problem we will also solve the problem of making node
partition stable, that is, assuring that good elements and bad elements are linked in the
same order as they were in the original range.) It is pretty clear that we only need to
change successor of a good element if the successor is bad and the other way around.

As a first step to construct the middle of such an algorithm, let us assume that somehow
we obtained two iterators to the tail ends of good and bad elements called t_g and t_b.
We can the proceed to construct both structures in the right order:
while (++f != l) {
 if (p(*f)) {
 set_successor(t_g, f);
 t_g = f;
 } else {
 set_successor(t_b, f);
 t_b = f;
 }
}

Now let us observe that we are doing too many set_successor operations. For all we
know, t_g might already point to f; after all we came to f either from it or from t_b.
and that we keep a flag was_good that indicates if the previous element we examined
was good or bad:
while (++f != l) {
 if (p(*f)) {
 if (!was_good) {
 set_successor(t_g, f);
 was_good = true;
 }
 t_g = f;

Alex Stepanov Page 19 7/26/2005

 } else {
 if (was_good) {
 set_successor(t_b, f);
 was_good = false;
 }
 t_b = f;
 }
}

Now we are re-linking only the nodes that have successors of different “polarity”; if the
successor of a good element is good the element keeps its successor; the same is true for
bad elements. Note that we do not need to save the successor of f, since instead of f
pointing to the appropriate substructure, the substructure gets to point to it.

There is an alternative to using a flag. We can duplicate the code for the loop one section
for the case when the previous element was good and one for the case when the previous
element was bad and then jump to the other section if the predicate value changes:
good:

do { t_g = f;
if (++f == l) goto exit;

 } while (p(*f));
set_successor(t_b, f);

bad:
do { t_b = f;

if (++f == l) goto exit;
 } while (!p(*f));
 set_successor(t_g, f);
 goto good;

Now there are only two questions left: what to put after this code and what to put before.
Let us start with the somewhat easier question of what to put after this code. Now we
know that all the nodes are properly linked. We could also surmise that the tail end
elements t_g and t_b correspond to some head elements h_g and h_b. So as a first
approximation we can assume that our program ends with:
return make_pair(h_g, h_b);

But there is a little glitch with this ending: we just threw away the tail ends of both linked
structures. And the client of our program may want to add more things to the tails. That,
of course, is easily fixable, by replacing return statement with:
return make_pair(make_pair(h_g, t_g),
 make_pair(h_b, t_b));

It should be noted that if there are no good elements in the sequence the first pair will be
(l, l), if there are no bad elements the second pair will be (l, l), and, finally, if the
tail of either good or bad elements is not equal to l, the successor of the tail is not
defined. We could have opted for always setting successor of such tails to last, but

Alex Stepanov Page 20 7/26/2005

decided against it, since usually the head and tail nodes will have to be connected to a list
header or spiced into a list. (We will fully understand it in the part of the notes dedicated
to node-based containers.)

Now we know what should be the beginning of our algorithm. Before we get into the
main loop, we should find h_g and h_b: the head nodes of the good list and the bad list. It
is obvious that either one of them (or even both of them) might not exist. That raises a
question what to return in such a case. The answer is self-evident: we can return a pair
make_pair(make_pair(l, l),make_pair(l, l)). What we need to do is to
find h_g, h_b, t_g, and t_b.

Now we can write the whole algorithm:
template <typename I, // I models Forward Node Iterator
 typename P> // P models Unary Predicate
pair<pair<I, I>, pair<I, I> > partition_node(I f, I l, P p)
{

I h_g = l;
I h_b = l;
I t_g = l;
I t_b = l;

 if (f == l) goto exit;
if (!p(*f)) goto first_bad;

// else goto first_good;
first_good:
 h_g = f;
 do { t_g = f;
 if (++f == l) goto exit;
 } while (p(*f));
 h_b = f;
 goto current_bad;
first_bad:

h_b = f;
 do { t_b = f;
 if (++f == l) goto exit;
 } while(!p(*f));
 h_g = f;
// goto current_good;
current_good:

do { t_g = f;
if (++f == l) goto exit;

 } while (p(*f));
set_successor(t_b, f);

// goto current_bad;
current_bad:

do { t_b = f;

Alex Stepanov Page 21 7/26/2005

if (++f == l) goto exit;
 } while (!p(*f));
 set_successor(t_g, f);

goto current_good;
exit:

return make_pair(make_pair(h_g, t_g),
 make_pair(h_b, t_b));
}

Remark: I am fully aware of Dijksra’s strictures against using goto statement. For years
I dutifully followed his dictum. Eventually, I discovered that on rare occasions I could
write more elegant and efficient code if I used goto. In 1988 Dave Musser and I
published a book containing a program with several goto statements. We received several
angry letters explaining how ignorant we were. In spite of the criticism, I still maintain
that goto is a very useful statement and should not be avoided if it helps to make the code
cleaner. When I look at the previous piece of code, I find it beautiful. (Notice that I even
added an unnecessary label first_good to make the code more symmetric, more
understandable, and, yes, more beautiful. And I even added three unnecessary goto
statements for the same reasons – but, not being sure that all the modern compilers
eliminate goto from one address to the next, commented them out.)
It is easier to understand the algorithm if you view every label as a state and the goto-s as
state transitions. In general, state machines are often easier to represent as labeled code
sections with goto-s being the transitions.

Modern processors with their instruction level parallelism and predicated execution might
not benefit at all from eliminating the flag. While we are certain of the pedagogical
value of learning this transformation, it might not benefit the performance.

Problem: Implement partition_node using the flag and avoiding goto. Compare its
performance with our version.

Problem: Implement a function unique_node that takes two iterators to a node
structure and a binary predicate (defaulting to equality) and returning a structure with
unique elements and a structure with “duplicates.”

Finding the partition point

In the beginning of the chapter we discussed a problem of finding the partition point of an
already partitioned range. There is an obvious solution:

find_if_not(f, l, p)

will definitely return the partition point of a partitioned range. The problem is that we
will need to retest all good elements again.

Alex Stepanov Page 22 7/26/2005

It is easy to observe the following fundamental property of a partitioned range [f, l):
if an iterator m inside the range points at a good element then the partition point of [f,
l) is located in the range [successor(m), l); if m points at a bad element then the
partition point is in the range [f, m).

As far as an empty range goes, its beginning and its end both happen to be the partition
points.

Let us assume for the moment that we are dealing with random access iterators and,
therefore, can get to any element inside the range in constant time. If we have range
represented as a pair of an iterator and an integer (the length of the range) and if we have
a function choose that returns some non-negative integer less than the length of the
range for any non-empty range, then for any such function choose there is a simple
recursive algorithm for finding partition point:

template <typename I, // I models Random Access Iterator
 typename P> // P models Unary Predicate
I partition_point_recursive(I f, DIFFERENCE_TYPE(I) n, P p)
{
 if (n == 0) return f;
 N m = choose(n);
 if (p(*(f + m)))
 return partition_point_recursive(f + (m + 1),
 n – (m + 1));
 else
 return partition_point_recursive(f, m);
}
Since 0 ≤ m < n we can be sure that both n – m – 1 and m are less than n and not
less than 0; and, therefore, we can be sure that our program terminates. It is also obvious
that a way of assuring that (no matter which path of the if-statement happens to be true)
is by picking the choose function that for any positive n returns n/2.

Problem: Prove that picking n/2 is indeed the best course.

Remark: If you are wondering if we are describing binary search, you are correct. But,
as we shall see in the section on binary search (???), binary search is often defined
incorrectly. It is essential to understand the interface and the implementation of the
partition point finding algorithm to be able to handle binary search correctly. In
particular, while it is self-evident what partition_point should return, it is far from
self-evident what binary search should return. And even the great computer scientists
often stumble defining (or even implementing!) it. This is why I believe that it is essential
to deal thoroughly with predicate-based operations such as partition before attacking
much more treacherous comparison-based operations.

Since our recursive calls are properly tail-recursive we can immediately obtain the
following algorithm by resetting the variables in a loop instead of making a recursive
call:

Alex Stepanov Page 23 7/26/2005

template <typename I, // I models Random Access Iterator
 typename P> // P models Unary Predicate
I partition_point_n_random_access

(I f, DIFFERENCE_TYPE(I) n, P p)
{
 while (n != 0) {
 if (p(*(f + n/2))) {
 f = (f + n/2) + 1;
 n = n – (n/2 + 1);
 } else {
 // f = f;
 n = n/2;
 }
 }
 return f;
}

The algorithm does ceiling(log(n))+ 1 predicate applications since we are
reducing the length by dividing by 2 at every step.

What can we do if iterators which are given to us are less powerful than random access?
While the efficiency of the algorithm will degrade dramatically, it is still quite useful in
those cases when the predicate application is more expensive than the operation ++ on
the iterators. If we use find_if to find partition point then on the expected cost of
finding the partition point in a range of length n is

c_linear = (n/2) * c_p + (n/2) * c_i.

where c_p is the cost of the predicate application and c_i is the cost of the iterator
increment. (In other words, while doing linear search we expect to travel half of the way
on the average.) If we use the partition_point_n algorithm the expected cost is going to be

 c_binary_best = (log(n) + 1) *c_p + n * c_i

since we are going to advance by n/2, n/4, n/8, etc. In those cases when the linked
structure changes its size frequently we need to do another n increments and the cost
becomes

 c_binary_worst = (log(n) + 1) *c_p + 2 * n * c_i

With large n we can safely ignore logarithmic terms and the binary algorithm wins
against linear one when c_p > c_i if linked structure does not change its size and
when c_p > 3* c_i if its size needs to be computed anew every time.

In practice, the cost of predicate application should be more than 4 times as expensive as
iterator increment to really justify using binary search like algorithms on linked lists.
Otherwise, it is usually better to use linear search. It usually means that if your predicate

Alex Stepanov Page 24 7/26/2005

is a small inlined function object then using find is better; if it is a regular function call
binary search like algorithms are better.

It is perfectly straightforward to modify our algorithm to work with forward iterators and
we can do a few little optimizations as well:
template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_point_n(I f, DIFFERENCE_TYPE(I) n, P p)
{
 while (n != 0) {
 N h = n >> 1;
 I m = successor(f, h);
 if (p(*m)) {
 f = successor(m);
 n -= h + 1;
 } else {
 n = h;
 }
 }
 return f;
}

Problem: Implement a partition_point function that takes two iterators [f, l)
as its arguments.

Operations on Function Objects

If we want to partition elements in a range of integers into those that are less than 5 and
those that are not, we have several potential ways of doing it. We can implement a
function that compares an integer with 5 and pass it to partition:

bool lt_5(int n) { return n < 5; }
int n[100];
// put some numbers into array
int* p = partition(n, n + 100, lt_5);

It will do the job, but it is going to be much slower than a hand-written code. Indeed we
will have to have a function call (through a function pointer) where the hand-written code
will have a single instruction comparing. Note, that declaring lt_5 to be an inline function
will not change the situation since the code that compiler will generate for partition will
be taking an arbitrary function pointer. The compiler generates separate instances of
template functions only when the arguments types are different and the argument type of
the pointer to our little function is the same as the type of any other pointer of the type
bool (*)(int). And that is the first reason for using function objects: different types
for different function objects with same signatures allow the compiler to generate
different instances of a template function and inline small function objects while doing it.

Alex Stepanov Page 25 7/26/2005

We can accomplish this by defining a single function object of an anonymous type:

struct
{
 bool operator()(int n) const {return n < 5;}
} less_than_5;

Now, it is easy to partition an array:

int n[100];
// put some numbers into array
int* p = partition(n, n + 100, less_than_5);

While it would be slightly nicer if we could just say something like:

partition(n, n + 100, function (int n) { return n < 5 })

and the language will create an anonymous function object and pass it to partition,
we have to get used to the fact that no language – natural or artificial – can satisfy all of
our requirements. (Think of all the controversies that were caused by the fact that
English has no word to render Greek anthropos, Latin homo, or Russian chelovek.) We
have to adapt to languages we have instead of always pining for the ideal language.

In any case, such a solution will not work if instead of 5 we need a predicate that is based
on a value known only at run time. We will have to keep this value inside our function
object. And, after all, that is one of the two main reasons for using function objects: the
first is parameterizing generic algorithms by different pieces of code (that can often be
inlined) and the second is providing a function (often inlined one) with its own persistent
data.

We can solve the problem with the help of the following:

struct less_than_const_int
{
 int c;
 less_than_const_int(const int& n) : c(n) {}
 bool operator()(const int& x) const { return x < c; }
};

And it is an obvious candidate for templatization:

template <class T> // T models Strict Totally Ordered
struct less_than_const
{
 typedef T argument_type;
 typedef bool result_type;

Alex Stepanov Page 26 7/26/2005

 T c;
 less_than_const(const T& n) : c(n) {}
 bool operator()(const T& x) const { return x < c; }
};

Now, we can observe that even operator< can be abstracted away. And the same can
be done for the last vestige of specificity: bool. As a matter of fact we can create a class
that takes an arbitrary binary function object and binds its second argument to a value:

template <class F> // F models a Binary Function
struct binder2nd {
 typedef typename F::first_argument_type
 argument_type;
 typedef typename F::second_argument_type value_type;
 typedef typename F::result_type result_type;
 const F op;
 const value_type value;
 binder2nd(const F& x, const value_type& y)
 : op(x), value(y) {}
 result_type operator()(const argument_type& x)
 const
 {
 return op(x, value);
 }
};

Now we can accomplish our partition by calling:

int n[100];
// put some data into n
int a = 5;
partition(n, n + 100, binder2nd<less<int> >(

less<int>(), a));

It is possible to create a simple function that will allow us to save typing the name of the
type of the binary function object twice:

template <class F, // F models binary function
 class T>
inline
binder2nd<F> bind2nd(const F& op, const T& x) {
 return binder2nd<F>(op,
 typename F::second_argument_type(x));
}

And now we can call partition with:
partition(n, n + 100, bind2nd(less<int>(), a);

Alex Stepanov Page 27 7/26/2005

Problem: Implement binder1st and bind1st, which bind the first argument of a
binary function object.

Binding is only one of several useful function object adaptors. Another useful function
object operation is composition. It takes two function objects f(x) and g(y) and return
a function object that does f(g(y)). It should be easy to see how to make such an
adaptor:
template <class F, // F models unary function
 class G> // G models unary function
struct unary_compose {
 typedef typename G::argument_type argument_type;
 typedef typename F::result_type result_type;
 const F f;
 const G g;
 unary_compose(const F& x, const G& y) : f(x), g(y) {}
 result_type operator()(const argument_type& x) const
 {
 return f(g(x));
 }
};

template <class F, // F models unary function
 class G> // G models unary function
inline
unary_compose<F, G> compose1(const F& f, const G& g) {
 return unary_compose<F, G>(f, g);
}

Problem: Define a class binary_compose and a helper function compose2 to be
able to take a binary function object f and two unary function objects g and h and
construct a binary function object that performs f(g(x), h(y)).

Footnote: Both compose1 and compose2 were included in HP STL. They were not,
however, parts of the proposal and were not included in the C++ standard. I have no idea
why they were not in the proposal. It is possible that somebody on the committee
objected, or, it is possible that it was a result of my oversight.

Another adapter which we will eventually need is a f_transpose that takes a binary
function object f(x, y) and returns a binary function object f(y, x):

template <class F> // F models a Binary Function
struct transposer {
 typedef typename F::first_argument_type

Alex Stepanov Page 28 7/26/2005

 second_argument_type;
 typedef typename F::second_argument_type
 first_argument_type;
 typedef typename F::result_type result_type;
 const F f;
 transposer(const F& x) : f(x) {}
 result_type operator()(const first_argument_type& x,
 const second_argument_type& y)
 const
 {
 return f(y, x);
 }
};

template <typename F> // F models Binary Function

inline

transposer<F> f_transpose(const F& f)

{

 return transposer<F>(f);

}

Problem: Implement classes unary_negate and binary_negate and the helper
functions not1 and not2 that convert unary and binary predicates to their negations.

Remark: There are much more elaborate facilities in Boost for constructing function
objects, but the their description does not belong to this book. As I stated before, I try to
use as little of C++ as possible. While I needed to explain how to use and implement
function objects, it is important to do it in a way that is totally transparent and does not
use template metaprogramming techniques.

Stable partition

When people use both forward and bidirectional versions of partition algorithm they are
sometimes surprised with the results. Let us consider a simple example of partitioning a
sequence of integers:
0 1 2 3 4 5 6 7 8 9

with is_even as the predicate.

If we run partition_forward on this input we obtain:

0 2 4 6 8 5 3 7 1 9

While even numbers are in the same order as they were in the original sequence, the odd
numbers are in total disarray.

Alex Stepanov Page 29 7/26/2005

In case of partition_bidirectional we see that both even and odd elements do
not preserve their original order:

0 8 2 6 4 5 3 7 1 9

It is often important to preserve the original order of the good and bad elements. For
example, imagine that a company is keeping a list of employees sorted by their last name.
If they decide to partition them into two groups: US employees and non-US employees it
would be important to keep both parts sorted; otherwise an expensive operation of sorting
would be required.

Definition: The partitioning that preserves the relative ordering of both good and bad
elements is called stable partitioning.

One of the important properties of stable partitioning is that it allows for multipass
processing. Indeed if we need to partition a range [f, l) with a predicate p1 and then
partition the resulting sub-ranges with a predicate p2 if we do it with a non-stable
partition we need to write:
I m = partition(f, l, p1);
partition(f, m, p2);
partition(m, l, p2);

If, however, stable_partition is available the same goal can be accomplished
with:

stable_partition(f, l, p2); // p2 before p1!
stable_partition(f, l, p1);

This property is very important when many passes are needed and the overhead of
keeping track of small sub-ranges becomes difficult and expensive to manage. We shall
see later how this property is used with remarkable effect in radix sorting. (pages ….)

Problem: Prove that stable partitioning of a given sequence with a given predicate is
unique; that is, prove that there is only one permutation of a range that gives stable
partitioning.

It is clear that we cannot implement is_stably_partitioned for an arbitrary type
of elements the way we implemented is_partitioned. Indeed if somebody shows us
a sequence:

0 4 2 1 3 5

we do not know if it is stable or not because we do not know what was the original order
of the elements. It is, however, much easier to determine that one range is the stable
partition of the second range than it is to determine if one range is a partition of the
second range: uniqueness helps.

Indeed, in order for us to assure that an algorithm for partition works, we need to
compare two sequences – the original one and the partitioned one. In order for the
partition algorithm to be correct we need to assure two things: first, that the resulting

Alex Stepanov Page 30 7/26/2005

sequence is partitioned and that is easy to test by applying is_partitioned function,
and, second, that the resulting sequence is the permutation of the original one. And
finding out if a sequence is a permutation of another sequence is difficult unless elements
are totally ordered and we can reduce both sequences to a canonical form by sorting
them. (We will have a further discussion of that when we deal with sorting.) If the only
operation on the elements is equality, we do not know of an efficient way of determining
if two sequences are permutations of each other.

Problem: Prove that determining if a sequence is a permutation of another requires
O(n^2) operations if only equality of elements is available.

For small sequences we can determine if own is a permutation of the other with the help
of a useful algorithm that goes through one range and attempts to find the equal element
in the other. If elements are found they are moved up front. The algorithm returns if the
first range is exhausted or when there is not equal element in the second:
template <typename I1, // I1 models Input Iterator
 typename I2, // I2 models Forward Iterator
 typename Eqv> // Eqv models Binary Predicate
pair<I1, I2> mismatch_permuted(I1 f1, I1 l1,

 I2 f2, I2 l2,
Eqv eqv = equal<VALUE_TYPE(I1)>())

{
 while (f1 != l1) {
 I2 n = find_if(f2, l2, bind1st(eqv, *f1));
 if (n == l2) break;
 swap(*f2++, *n);
 ++f1;
 }
 return make_pair(f1, f2);
}

(It should be noted that the second range is re-ordered to match the first. We should also
remember not to use the algorithm for long ranges – it is quadratic.)

To determine if one range is a permutation of another we call permuted_mismatch
and check if both ranges are exhausted:

template <typename I1, // I1 models Input Iterator
 typename I2> // I2 models Forward Iterator
inline
bool is_permutation(I1 f1, I1 l1, I2 f2, I2 l2)
{
 return mismatch_permuted (f1, l1, f2, l2) ==
 make_pair(l1, l2);
}

Alex Stepanov Page 31 7/26/2005

Problem: Assume that the elements in the range have a total ordering defined with
operator< and implement a faster version of is_permutation.

Now we can produce a function that tests if the first range is the partitioning of the
second:
template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models a Unary Predicate
bool is_partitioning(I1 f1, I1 l1, I2 f2, I2 l2, P p)
{
 return is_partitioned(f1, l1, p) &&
 is_permutation(f1, l1, f2, l2);
}

Now, in case of stable partition the testing is much easier to do. We need to go through
the original range and check every element for equality with the corresponding element
in the sub-range of the good elements if the original element is good and with the
corresponding element from the sub-range of the bad elements otherwise. We can use a
close analogue of the mismatch algorithm:
template <typename I1, // I1 models Input Iterator
 typename I2, // I2 models Input Iterator
 typename I3, // I3 models Input Iterator
 typename P, // P models a Unary Predicate
 typename Eqv> // Eqv models Binary Predicate
triple<I1, I2, I3> mismatch_partitioned(I1 f, I1 l,
 I2 f_g, I2 l_g,
 I3 f_b, I3 l_b,
 P p,

Eqv eqv = equal<VALUE_TYPE(I1)>())
{
 while (f != l) {
 if (p(*f)) {
 if (f_g == l_g || !eqv(*f, *f_g)) break;
 ++f_g;
 } else {

if (f_b == l_b || !eqv(*f, *f_b)) break;
 ++f_b;
 }
 ++f;
 }

 return make_triple(f, f_g, f_b);
}

Now we can determine if a range is a stable partitioning of another range with the help
of:

Alex Stepanov Page 32 7/26/2005

template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models a Unary Predicate
bool is_stable_partitioning(I1 f1, I1 l1,

 I2 f2, I2 l2, P p)
{
 I1 m1 = find_if_not(f1, l1, p);
 return find_if(m1, l1, p) == l1 &&

mismatch_partitioned(f2, l2, f1,
m1, m1, l1, p) ==

 make_triple(l2, m1, l1)
}

After we build all the machinery for testing stable partition, let us see what algorithms are
available.

We observed before that the partition_copy algorithm is stable. That allows us to
construct a simple stable partition algorithm that uses an additional buffer with n
elements to partition a range:
template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models Unary Predicate
I1 stable_partition_with_buffer_0(I1 f, I1 l, P p, I2 buf)
{
 pair<I1, I2> tmp = partition_copy(f, l, f, buf, p);
 copy(buf, tmp.second, tmp.first);
 return tmp.first;
}

This algorithm suffers from a potential inefficiency: it might need to copy large elements
in the buffer and then to leave copies of the original data in the buffer. This is a clear case
for using move semantics inside an algorithm:
template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models Unary Predicate
I1 stable_partition_with_buffer(I1 f, I1 l, P p, I2 buf)
{
 pair<I1, I2> tmp = partition_move(f, l, f, buf, p);
 move(buf, tmp.second, tmp.first);
 return tmp.first;
}

 As we shall see later, we also need to have a version that takes an iterator and a length as
an argument:
template <typename I1, // I1 models Forward Iterator
 typename N, // N models Integer

Alex Stepanov Page 33 7/26/2005

 typename I2, // I2 models Forward Iterator
 typename P> // P models Unary Predicate
pair<I1, I1> stable_partition_n_with_buffer(
 I1 f, N n, P p, I2 buf)
{
 triple<I1, I1, I2> tmp =
 partition_move_n(f, n, f, buf, p);
 move(buf, tmp.third, tmp.second);
 return make_pair(tmp.second, tmp.first);
}

Where partition_move_n is defined as:
template <typename I1, // I1 models Input Iterator
 typename N, // N models Integer
 typename I2, // I2 models Output Iterator
 typename I3, // I3 models Output Iterator
 typename P> // P models Unary Predicate
triple<I1, I2, I3> partition_move_n(
 I1 f, N n, I2 r1, I3 r2, P p)
{
 while (n-- > 0) {
 if (p(*f))
 move(*f, *r1++);
 else
 move(*f, *r2++);
 ++f;
 }
 return make_triple(f, r1, r2);
}

While stable_partition_with_buffer is often sufficient in practice, in some
cases there is not enough memory to accommodate the extra buffer of the same size as
the range. To be able to handle cases like that we need to have an in-place algorithm that
could partition the data while preserving stablity.

The easiest way for deriving such an algorithm for stable partition is to look again at the
loop of the forward partition algorithm:
while (n != l) {
 if (p(*n)) {

swap(*n, *m);
++m;

 }
++n;

}

The algorithm preserves the ordering of good elements. Every time we encounter a good
element we put it right after the good elements encountered before. The algorithm could

Alex Stepanov Page 34 7/26/2005

be called semi-stable. It is not so, however for bad elements. When we swap, the first bad
element in the section of the bad elements encountered so far becomes the last bad
element. Stability is lost. For example:

0 2 4 1 3 5 6
 ^ ^ ^
 f n l

and we swap 1 and 6. We need to preserve the run 1 3 5 in that order. Now, we spent
quite some time studying a function that does just that. Instead of swapping we can
rotate. rotate(f, n, l) will give us the desirable result:
0 2 4 6 1 3 5

That gives us a first draft of our stable partition:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_slow(I f, I l, P p)
{
 I n = f;
 while (n != l) {
 if (p(*n)) {

rotate(f, n, successor(n));
++f;

 }
 ++n;
 }
 return m;
}

While it works, it is quite slow. Since rotate is a linear time operation and it can be
performed as many times as we encounter a good element, the complexity of the
algorithm is quadratic. It is possible to modify the algorithm to find consecutive runs of
good elements before doing rotate and reduce the number of operations by a constant, but
it is not going to reduce complexity from quadratic to either linear or at least NlogN.

There is, however, a standard way to reduce the complexity by applying divide and
conquer technique. If we split a range [f, l) into two equal (or almost equal) parts
[f, m) and [m, l) and somehow manage to partition them in a stable manner:
G...GB...BG...GB...B
^ ^ ^ ^ ^
f m1 m m2 l
we can partition the whole range by rotating the range [m1, m2) formed by the
partition points of the sub-ranges around the splitting point m.

And it is quite easy to stably partition an empty sequence or a sequence with one element.

That gives us a following algorithm:

Alex Stepanov Page 35 7/26/2005

template <typename I, // I models Forward Iterator
 typename N, // N models Integer
 typename P> // P models Unary Predicate
pair<I, I> stable_partition_inplace_n(I f, N n, P p)
{
 if (n == 0) return make_pair(f, f);
 if (n == 1) {
 I l = successor(f);
 if (p(*f)) l = f;
 return make_pair(f, l);
 }
 pair<I, I> i = stable_partition_inplace_n(
 f, n/2, p);
 pair<I, I> j = stable_partition_inplace_n(
 i.second, n – n/2, p);
 return make_pair(rotate(i.first, i.second, j.first),
 j.second);
}

Footnote: As far as I know, this algorithm first appeared in the block algorithms section
of USL C++ components Block Algorithms [Stepanov 1987].

Note how we use the divide and conquer not just to compute the partition point, but also
to compute the mid-point – a potentially expensive operation for forward iterators. The
first recursive call returns a partition point of a sub-problem and the beginning iterator of
the second sub-problem. The second recursive call returns a partition point of a second
sub-problem and the end of the range iterator for the problem itself.

And we can obtain a regular range interface by first computing the length of the range:
template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
inline
I stable_partition_inplace(I f, I l, P p)
{
 return stable_partition_inplace_n(f,
 distance(f, l),
 p).first;
}

It is clear that the algorithm has ceiling(log(N)) levels and that only the bottom
level does N predicate applications. Every other level does rotate N/2 elements on the
average, and, therefore, does somewhere between N/2 and 3N/2 moves on the average
depending on the iterator category. The total number of moves is going to be
Nlog(n)/2 for random access iterators and 3Nlog(n)/2 forward and bidirectional
iterators.

Alex Stepanov Page 36 7/26/2005

Problem: How many moves will the algorithm perform in the worst case?

Now we have two versions of stable partitioning: one with buffer and one in-place. But in
reality we need something in between: we need an algorithm that can use as much extra
room as is available. The dichotomy between algorithms that use only polylogarithmic
extra storage (in-place) and algorithms that can use as much as needed is useful to the
inner world of the algorithmists, but it is of little practical utility. If we need to stably
partition a million records it is more than likely that an extra buffer containing 10000
records is always available. Even a buffer containing 100000 records is usually not going
to change the application performance. In other words, 1% is always available and 10% is
frequently available even in the situations when memory is limited. It is, therefore, useful
to introduce a different class of algorithms, memory-adaptive algorithms, that is,
algorithms that improve their performance if more memory is available.

Our stable partition algorithm is an ideal candidate for making it into a memory-adaptive
algorithm. If the data fits into a buffer, call stable_partition_with_buffer ,
otherwise use divide and conquer till it fits:
template <typename I, // I models Forward Iterator
 typename N, // N models Integer
 typename P, // P models Unary Predicate
 typename B> // B models Forward Iterator
pair<I, I> stable_partition_n_adaptive(I f, N n, P p,
 B b, N b_n)
{
 if (n == 0) return make_pair(f, f);
 if (n == 1) {
 I l = successor(f);
 if (p(*f)) f = l;
 return make_pair(f, l);
 }
 if (n <= b_n) return stable_partition_n_with_buffer(
 f, n, p, b);
 pair<I, I> i = stable_partition_n_adaptive(
 f, n/2, p, b, b_n);
 pair<I, I> j = stable_partition_n_adaptive(
 i.second, n – n/2, p, b, b_n);
 return make_pair(rotate(i.first, i.second, j.first),
 j.second);
}

We can obtain a regular range interface with:
template <typename I, // I models Forward Iterator
 typename N, // N models Integer
 typename P, // P models Unary Predicate
 typename B> // B models Forward Iterator
inline

Alex Stepanov Page 37 7/26/2005

I stable_partition_adaptive(I f, I l, P p, B b, N b_n)
{
 return stable_partition_n_adaptive(f,
 distance(f, l),
 p).first;
}

Problem: Measure the performance of stable_partition_adaptive when it is
given a buffer of 1% , 10%, or 25% of the range size and compare it with performance of
stable_partition_inplace.

In time critical applications it is important for the programmer to be able to do a careful
allocation of memory resources and it is, therefore, important to provide an interface that
allows for manual selection of the buffer. It is, however, often possible for a memory
management system to figure out what is a proper buffer size for a given job. To enable
programmers to obtain such temporary buffers STL defined a pair of template functions:
template <typename T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t);

template <typename T>
void return_temporary_buffer(T*);

The first function returns an optimal amount of memory now available which is not
greater than the parameter to the function. The second function de-allocates the memory.

Footnote: It was my intention that system vendors will provide a carefully tuned
function that will take into account the size of the physical memory, the memory
available on the stack, etc, etc. I provided a temporary version that does call malloc
with a given argument and if malloc returns 0, calls it with half the size, etc. I assumed
that nobody will keep such a stupid code. It is interesting to note, that that is what the
major vendors ship now (2005). In general, I have been trying to convince vendors and
standard committees for quite some time now that it is essential to provide standard
hooks to memory: cache structure, cache sizes, cache line sizes, physical memory size
available to the process, stack size, size of available stack, etc, etc. So far I had no
success. From all of that it follows that it was a mistake to include algorithms using
temporary buffer into the standard. I should have insisted that the adaptive versions
taking an explicit buffer were included. The present day wrappers such as we are going to
see next are useless.

With a temporary buffer we can produce the following version of stable partitioning:
template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition(I f, I l, P p)
{
 ptrdiff_t n = distance(f, l);

Alex Stepanov Page 38 7/26/2005

 pair<VALUE_TYPE(I)*, ptrdiff_t> tmp =
 get_temporary_buffer<ptr_t, ptrdiff_t>(n);
 construct_any(tmp.first, tmp.first + tmp.second);
 I r = stable_ stable_partition_n_adaptive(

f, n, p, tmp.first, tmp.second).first;
 destroy(tmp.first, tmp.first + tmp.second);
 return_temporary_buffer(tmp.first);
 return r;
}

Note that we need to initialize the buffer. Not that we need some particular values in it.
We just need to have values into which we can move elements from the range. Any value
of the element type will do. The annoying problem is that in many real cases we need to
do nothing since any bit pattern will do just fine. This is why C and C++ do not initialize
arrays of built-in types: to avoid often unneeded operations. We attempt to accomplish
this by introducing a function:

template <typename T>
void construct_any(T* f, T* l)
{
 T tmp;
 while (f != l) construct(&*f++, tmp);
}

where a single argument construct is a shorthand for a C++ way of constructing a
object in a previously allocated memory:

template <typename T>
inline
void construct(T* p, const T& x)
{
 new(p) T(x);
}

In order to avoid unnecessary initialization when we do not need it we define:

void construct_any(int* f, int* l)
{
}

for all the types such as int when we can safely accept any bit pattern.

Footnote: It is possible to extend a notion of construct_any to arbitrary types and
by doing so regularize the special treatment of built-in types. It will require a rather
simple addition to the language: the introducing a way of specifying a construct-any;
calling it to initialize the arrays (and using it in the operator new); and, finally, to assure

Alex Stepanov Page 39 7/26/2005

compatibility with existing code, defaulting construct_any to a default constructor. That
would allow a user defined types to behave in the same way as built-in types and solve
some existing performance issues which are caused by using user-defined types.

And we need to deal with destruction in a similar way:

template <typename I> // I models Forward Iterator
void destroy(I f, I l)
{
 while (f != l) destroy(&*f++);
}

And a single argument destroy is a convenient encapsulation of a peculiar C++ way of
explicitly calling destructors :

template <typename T>
inline
void destroy(T* p)
{
 p -> ~T();
}

Footnote: I made a mistake defining construct and destroy for the standard –
they should have taken their arguments as references, not as pointers.

As with construct_any, if performance is needed, it is important to specialize
destroy for those types for which destruction is not needed:

void destroy(int* f, int* l)
{
}

Footnote: I often hear “compiler will optimize it” statements. In 1995 I gave a talk at
SGI – I was still working at HP Labs – and one of the members of the compiler
organization assured me that their compiler will optimize away loops with unneeded
destructions. Later that year when I joined SGI, I quickly discovered that the compiler did
not optimize such loops. I spent 5 years as a member of SGI compiler team, and while
some dramatic improvements were made in C++ compilation during this time, but this
particular problem was not fixed. And in 2005 it is still necessary to provide manual
versions of functions like construct_any and destroy if one wants performance.
Sadly enough, there are no serious efforts to develop a true high performance C++
compilation system.

Alex Stepanov Page 40 7/26/2005

Reduction

When we implemented stable_partition we had to use the divide-and-conquer
recursion. While it is often fine to use such recursion, we will now spend some time
learning a general technique for eliminating it. While in practice it is needed only when
the function call overhead caused by recursion starts effecting performance, the
machinery for solving the problem is one of the most beautiful things in programming
and needs to be learned irrespective of its utility.

One of the most important, most common loops in programming is a loop that adds a
range of things together. The abstraction of such loop – it was introduced by Ken Iverson
in 1961 – is called reduction. In general, reduction can be performed with any binary
operation, but it is usually used with associative operations. Indeed, while

((...((a1 – a2) – a3)...) – an)
is a well defined expression, we seldom find a use for things like that. In any case, if an
operation is not associative, we need to specify the order of evaluation. It is assumed that
the default order of evaluation is the left-most reduction. (It is a natural assumption, since
it allows us to reduce ranges with the weakest kind of iterators. Input iterators are
sufficient.) It is an obvious loop to write. We set the result to the first element of the
range and then accumulate elements into it:
 VALUE_TYPE(I) r = *f;
 while (++f != l)
 r = op(r, *f);
 return r;

The only problem is to figure out what to do for the empty range. One, and often useful
solution, is to provide a version of reduction that assumes that the range is not empty:
template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation
VALUE_TYPE(I) reduce_non_empty(I f, I l, Op op)
{
 assert (f != l);
 VALUE_TYPE(I) r = *f;
 while (++f != l)
 r = op(r, *f);
 return r;
}

But a general question remains. What is the appropriate value to return for an empty
range? In case of an associative operation such as + it is commonly assumed that the right
value to return is the identity element of the operation (0 in case of +). Indeed, such a
convention allows us to have the following nice property to hold. For any range [f, l),

Alex Stepanov Page 41 7/26/2005

for any iterator m inside the range and for any associative operation op on the elements of
the range the following is true:
reduce(f, m, op) + reduce(m, l, op) == reduce(f, l, op)

In order for this to hold when m is equal to either f or l, we need reduce to return the
identity element of the operation.

We can accomplish it quite easily with:

template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation
inline
VALUE_TYPE(I) reduce(I f, I l, Op op,

VALUE_TYPE(I) z = identity_element(op))
{
 if (f == l) return z;
 return reduce_non_empty(f, l, op);
}

Clients of the code need to provide either an explicit element to be returned for the empty
range or the operation has to provide a way of obtaining its identity element. For some
common cases we can provide standard solutions:

template <typename T>
inline
T identity_element(plus<T>) {
 return T(0);
}

A natural default for an additive identity element is a result of casting 0 into the element
type. When the default does not work and it is easy to define a particular version of
identity_element.

Problem: Define appropriate default identity_element for multiplies<T>.

Problem: Define appropriate default identity_element for:
struct min_int : binary_function<int, int, int>
{
 int operator()(int a, int b) { return min(a, b); }
};

If the reduction knows what the identity element is, it can do a standard optimization by
skipping the identity elements in the range since combining the result with an identity
element is not going to change it. This gives us a useful variation of reduce:

template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation

Alex Stepanov Page 42 7/26/2005

VALUE_TYPE(I) reduce_nonzeros(I f, I l, Op op,
VALUE_TYPE(I) z = identity_element(op))

{
 f = find_not(f, l, z);
 if (f == l) return z;
 VALUE_TYPE(I) r = *f;
 while (++f != l)
 if (*f != z)
 r = op(r, *f);
 return r;
}

This version should be used when we want to avoid tests for identity elements inside the
operation. In the cases when we have the code for the operation that handles only non-
identity element cases, we do not then need to surround the code inside with two checks
for identity (for the left and the right argument).

Now we can tackle the stable partition. First let us observe that if we have two sub-ranges
[f1, l1) and [f2, l2)of a range [f, l) such that for some predicate p:

- distance(f, l1) <= distance(f, f2) – first sub-range is before
the second

- none(f1, l1, p) && none(f2, l2, p) – both sub-ranges contain
“bad” elements

- all(l1, f2, p) – and there are no “bad” elements in between them
then we can stably partition the combined range [f1, l2) by doing
 rotate(f1, l1, f2)
and the result returned by the rotate is the partition point of the combined range. The
following function object class performs the operation on such ranges:

template <typename I> // I models Forward Iterator
struct combine_ranges
 : binary_function<pair<I, I>, pair<I, I>, pair<I, I> >
{

pair<I, I> operator()(const pair<I, I>& x,
 const pair<I, I>& y) const
{
 return make_pair(

rotate(x.first, x.second, y.first),
y.second);

 }
};

It is interesting to observe that we need to worry only about the sub-ranges containing
“bad” elements. While we are combining the ranges of “bad” elements, the “good”
elements bubble down to the front of the main range.

Alex Stepanov Page 43 7/26/2005

Problem: Prove that combine_ranges is associative.

We have an object to combine the ranges. It is a very simple to generate a sequence of
trivial ranges containing “bad” elements. For every dereferenceable iterator in the main
range we can produce a trivial sub-range with the help of the following:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
struct partition_trivial
 : unary_function<I, pair<I, I> >
{
 P p;
 partition_trivial(const P & x) : p(x) {}
 pair<I, I> operator()(I i) {
 I n = successor(i);
 return make_pair(p(*i) ? n : i, n);
 }
};

The only remaining problem is transforming a range of iterators to elements into a range
of trivial ranges to be combined by reduce using combine_ranges. And that we can
accomplish with the help of the following iterator-adaptor. It is constructed out of an
incrementable object (an object with ++ defined on it) and a function object. When
incremented, it increments the incrementable object. When dereferenced, it returns the
result of an application of the function object to the incrementable object. It is a generally
useful adapter:

template <typename I, // I models Incrementable
 typename F = identity<I> >
 // F models Unary Function
class value_iterator
{
public:
 typedef typename F::result_type value_type;
 typedef ptrdiff_t difference_type;
 typedef forward_iterator_tag iterator_category;
private:
 I i;
 F f;
public:
 value_iterator() {}
 value_iterator(const I& x, const F& y)
 : i(x), f(y) {}
 value_iterator& operator++() {
 ++i;
 return *this;
 }

Alex Stepanov Page 44 7/26/2005

 value_iterator operator++(int) {
 value_iterator tmp = *this;
 ++*this;
 return tmp;
 }
 value_type operator*() const {
 return f(i);
 }
 friend bool operator==(const self& a, const self& b) {
 // assert(a.f == b.f);
 // we comment the assert because unfortunately
 // many function objects do not have == defined
 return a.i == b.i;
 }
 friend bool operator!=(const self& a, const self& b) {
 return a != b;
 }
};

Problem: Generalize value_iterator further by allowing a user to specify the
meaning of ++ and providing a natural default for ++;

We can now obtain a slow version of stable partitioning by calling reduce_nonzeros
with identity element equal the pair that is made of the last element of the range. (After
all, the only place so far where it is going to be used is to be returned when the original
range is empty. It is the right result in such a case. It is important to observe that for no
dereferenceable iterator partition trivial will return such a range. Indeed, the empty ranges
of “bad” elements returned by it are not identity elements!)

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_slow_iterative(I f, I l, P p)
{
 typedef partition_trivial<I, P> fun_t;
 typedef value_iterator<I, fun_t> val_iter;
 fun_t fun(p);
 pair<I, I> z(l, l);
 combine_ranges<I> op;
 val_iter f1(f, fun);
 val_iter l1(l, fun);

return reduce_nonzeros(f1, l1, op, z).first;
}

Now, since we know that combine_ranges is associative, it is possible to replace left-
most reduction with a balanced reduction that will apply the operation constructing a
balanced tree.

Alex Stepanov Page 45 7/26/2005

That is, a tree that adds 4 elements like this:

 /\
 /\
/\
will be transformed into a tree that combines the same elements like that:
 /\
/\/\
The number of operations will remain the same, but the number of levels in the tree is
going to be reduced. While reducing n elements with the left-most reduction requires
n-1 levels, doing it with the balanced reduction requires only ceiling(log(n))
levels. And our combine_ranges belongs to a class of operation that work much
better with the balanced reduction, namely, linear-additive operations. We will call an
operation linear-additive if its cost is a linear function of the sizes of its arguments and
the size of the result is the sum of the sizes of the arguments. It is easy to see that
performing the left-most reduction with a linear-additive operation to a sequence of
elements of the same size will require a O(n^2) cost while the balanced reduction will
require O(log n). It is important to develop a generic version of the balanced reduction
since we are going to encounter many algorithms where it can be useful.

Problem: Prove that combine_ranges is a linear-additive operation.

In order to implement the balanced reduction we need to observe that it needs to store up
to log n intermediate results. The results can be stored in a simple counter where the k-th
“bit” represents the sub-result of the balanced tree that resulted from reducing 2^k
elements. The following procedure adds a new element to such a counter:

template <typename I, // I models Forward Iterator
 typename Op> // Op models Binary Operation
VALUE_TYPE(I) add_to_counter(I f, I l, Op op,
 VALUE_TYPE(I) x,
 VALUE_TYPE(I) z = identity_element(op))
{
 if (x == z) return z;
 while (f != l) {
 if (*f != z) {
 x = op(*f, x);
 // op(*f, x) and NOT op(x, *f)
 // because the partial result in *f
 // is the result of adding elements
 // earlier in the sequence
 *f++ = z;
 } else {
 *f = x;
 return z;

Alex Stepanov Page 46 7/26/2005

 }
 }
 return x;
}

The procedure returns “zero” if the was a room in the counter to accommodate a new
element or it returns an “overflow bit” if the last “bit” of the counter was combined into a
new bit representing the reduction of 2^n elements where n is number of “bits” in the
counter.

Now it is easy to produce an implementation of the balanced reduction. First we put all
the elements from the input range into our counter. If the range size is a power of 2, we
can obtain the result from the corresponding “bit” of the counter. If not, we need to
reduce the counter. To minimize the amount of work we need to do a left-most reduction
so that to combine “smaller” bits first, and we need to transpose the operation since when
we combine two bits, the left one resulted from the elements that got into the counter
after the elements which contributed to the right one and, therefore, their order needs to
be exchanged:

template <typename I, // I models Input Iterator
 typename Op> // Op models Binary Operation
void reduce_balanced(I f, I l, Op op,
 VALUE_TYPE(I) z = identity_element(op))
{
 vector<VALUE_TYPE(I)> v;
 while (f != l) {
 VALUE_TYPE(I) tmp = add_to_counter(
 v.begin(), v.end(), op, *f++, z);
 if (tmp != z) v.push_back(tmp);
 }
 return reduce_nonzeros(
 v.begin(),v.end(), f_transpose(op), z);
}

Note that the reduce_balanced is not going to apply the operation to the identity
element so that we do not need reduce_non_zero_balanced.

Footnote: It seems that many people independently discovered such iterative
implementation of reduced_balanced. Knuth attributes it to McCarthy (Knuth …), but it
seems to be just a pointer to the person who pointed it to him since no specific reference
is given.

Problem: Why it is not important in this case that insertion into the back of a singly
linked list takes linear time?

Alex Stepanov Page 47 7/26/2005

Finally we can now trivially obtain the balanced non-recursive implementation of
stable_partition_inplace by replacing the call to the left-most reduction with
the call to the balanced reduction:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_inplace_iterative(I f, I l, P p)
{
 typedef partition_trivial<I, P> fun_t;
 typedef value_iterator<I, fun_t> val_iter;
 fun_t fun(p);
 pair<I, I> z(l, l);
 combine_ranges<I> op;
 val_iter f1(f, fun);
 val_iter l1(l, fun);

return reduce_balanced(f1, l1, op, z).first;
}

Problem: Compare the performance of stable_partition_inplace with the
performance of stable_partition_inplace_iterative. Explain the results.

In the reduce_balanced we are using vector as our counter. Both singly linked list
and doubly linked list would have worked.

Problem: Implement versions of reduce_balanced using list and slist.
Implement 3 different versions of stable_partition_inplace_iterative and
compare their performances. A version of slist can be found at:
http://stlab.corp.adobe.com/www/stldoc_Slist.html

Problem: Implement an iterative version of stable_partition_adaptive using
reduce_balanced.

3-partition [Dutch National Flag – Dijkstra]

Some times the sequences with which we deal are divided into more than two kinds of
elements. Before we address a problem of partitioning a range into an arbitrary number of
buckets, let us spend some time on a very important case of partition, partition into three
categories.

The algorithm for the three-way partitioning is commonly known a Dutch National Flag
algorithm for the three colors: red, white and blue of the flag of the Kingdom of
Netherlands. I do not know who introduced it first; I – as well as most other people –
learned about it from an important book of Edsger Dijkstra Discipline of Programming
(Dijkstra 1976). In it Dijkstra acknowledges his indebtedness for the problem to W. H. J.
Feijen.

http://stlab.corp.adobe.com/www/stldoc_Slist.html

Alex Stepanov Page 48 7/26/2005

Remark. It is a very sad fact that the work of Edsger Dijkstra is becoming totally
unknown to a modern programmer. While many of Dijkstra’s opinions are extreme and
one should take most of his pronouncements with a grain of salt, his work is central to
programming as a scientific discipline and I would urge every young (or not so young)
programmer to study his work. We should be grateful to the Computer Science
Department of the University of Texas, Austin for creating the Internet archive of
Dijkstra’s works.

Instead of colors we are going to use integers; in particular, we assume that instead of a
predicate returning a Boolean value – as in partition – we are given a key function that
returns three values: {0, 1, 2} known as keys. Now we consider the range to be
partitioned 3-ways if it contains no elements with keys 1 and 2 before elements with key
0, and no elements with key 2 before elements with key 1. It is very easy to implement a
function to check if a range is partitioned:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
bool is_partitioned_3way(I f, I l, F key)
{
 equal_to<int> eq;

f = find_if_not(f, l, compose1(bind2nd(eq, 0), key));
f = find_if_not(f, l, compose1(bind2nd(eq, 1), key));
f = find_if_not(f, l, compose1(bind2nd(eq, 2), key));

 return f == l;
}

Problem: Prove that is_partitioned_3way does what it claims to do.

It is important to observe that a different way of stating that a range is partitioned 3-way
is by saying that the key function will return non-decreasing sequence of values or that if
we assume that we have a function is_sorted (which we will indeed define in the
Section …) we can check the range for being partitioned 3-way by the following simple
function:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
bool is_partitioned_3way(I f, I l, F key)
{
 return is_sorted(

f, l, compose2(less<int>(), key, key));
}

As a matter of fact, we can use the same code to verify n-way partitioning:

template <typename I, // I models Forward Iterator

Alex Stepanov Page 49 7/26/2005

 typename F> // F models Unary Function
bool is_partitioned_n_way(I f, I l, F key)
{
 return is_sorted(

f, l, compose2(less<int>(), key, key));
}

(We will encounter an almost identical – but more general – function in the Section … as
is_sorted_by_key.)

That shows us that there is a profound connection between sorting and partitioning.
Indeed we can always implement an n-way partition (for any n, but 2 – see the remark at
the end of the section) by implementing:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_n_way(I f, I l, F key) {
 sort(f, l, compose2(less<int>(), key, key);
}

(And we will also see a very similar function later under a different name.)

It is, of course, not a very interesting thing to do for small value of n since it is an NlogN
algorithm for a linear time problem. It is much better, as we shall see when we study
sorting, to implement sorting in terms of partitioning.

Now, let us get back to 3-way partition and Dijkstra’s algorithm. Let us assume that
somehow we managed to solve the problem up to some middle point s:

0000001111?????22222222
 ^ ^ ^ ^
 f s t l (first, second, third, last)

If s points to an element with key 1 we just advance s. If it is 0 we swap it with an
element pointed at by f and advance both f and s. If it is 2 we decrement t; swap
elements pointed by t and s and increment s. This algorithm works exactly like
Lomuto’s partitition_forward for 0 and 1, but sends 2 to the other end of the
range.

The code looks like:

template <typename I, // I models Bidirectional Iterator
 typename F> // F models Unary Function
pair<I , I> partition_3way_bidirectional(I f, I l, F fun)
{
 I n = f;

Alex Stepanov Page 50 7/26/2005

while (n != l) {
int key = fun(*n);
if (key == 0)

 swap(*f++, *n++);
 else if (key == 2)
 swap(*--l, *n);
 else
 ++n;
 }
 return make_pair(n, l);
}

It is clear that the algorithm does N predicate application and N swaps in the worst case
and 2N/3 swaps on average.

Now, let us find an algorithm that allows us to do the 3way partition with forward
iterators. Such an algorithm can be easily obtained using our standard inductive
technique. Let us assume that somehow we managed to solve the problem up to some
middle point:

000000111122222????????
 ^ ^ ^ ^
 f s t l (first, second, third, last)

Then we can partition it with:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_3way_forward(I f, I l, F fun)
{

I t = f;
 I s = f;

while (t != l) {
int key = fun(*t);

 if (key == 0)
cycle_left(*t, *s++, *f++);

 else if (key == 1)
swap(*s++, *t);

 ++t;
 }
 return make_pair(f, s);
}

where cycle_left is defined as:

template <typename T>
inline

Alex Stepanov Page 51 7/26/2005

void cycle_left(T& a, T& b, T& c) // rotates to the left
{
 T tmp;
 move(a, tmp);
 move(b, a);
 move(c, b);
 move(tmp, c);
}

Remark. Edward Kandrot came up with an ingenious way of using a three argument
swap to fix a major bug contained in the version of partition_3way_forward that
I presented to my 2005 Adobe class and, at the same time to make the code more
efficient. It is quite clear that it is useful to have versions of cycle_left up to some
large (10?) number of arguments.

The algorithm does N predicate application and 2N swaps in the worst case and N swaps
on average. In other words it does 30% more swaps on average than Dijkstra’s
partition_3way_bidirectional.

Project: Measure the performance of partition_3way_forward and
partition_3way_bidirectional for different integral types (char, short,
int, long long, etc) with a 3-way predicate that return a remainder of an integer
divided by 3.

Problem: Implement partition_4way_forward.

Problem: Implement partition_4way_bidirectional.

Problem: What is the number of swaps that is performed by
partition_4way_forward and partition_4way_bidirectional both in
the worst case and on average?

Problem: Implement partiotion_copy_3way.

Problem: Implement stable_partiotion_3way.

partition_3way returns a pair of iterators which are two partition points. It is
obvious that if a range is already partitioned we can find the partition points with the help
of partition_point_n:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_point_3way_simple_minded

(I f, DIFFERENCE_TYPE(I) n, F fun)

Alex Stepanov Page 52 7/26/2005

{
 less<int> comp;
 return make_pair(partition_point_n(f, n,
 compose1(bind2nd(comp, 1), fun)),
 partition_point_n(f, n,
 compose1(bind2nd(comp, 2), fun)));
}

The problem is that we are doing some extra work since both calls will repeat at least the
first test of the middle element.

Problem: What is the largest number of duplicated tests?

We can easily fix that:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_point_3way

(I f, DIFFERENCE_TYPE(I) n, F fun)
{
 equal_to<int> eq;
 while (n > 0) {
 DIFFERENCE_TYPE(I) h = n>>1;
 I m = successor(f, h);
 switch (fun(*m++)) {

case 0:
f = m;
n = n – h - 1;

 break;
case 1:

 I i = partition_point_n(f, n – h - 1,
compose1(bind2nd(eq, 0), fun)),

I j = partition_point_n(m, h,
compose1(bind2nd(eq, 1), fun));

 return make_pair(i, j);
 case 2:

n = h;
 }
 }
 return make_pair(f, f);
}

Footnote: I have to admit an embarrassing thing: the interfaces for partition and
partition_3way are not consistent. In 1986 I wrote my first library implementation of
partition for a part of Ada Generic Library that could not be released since no Ada
compiler would be able to compile deeply nested generics. (The fact that it could not be

Alex Stepanov Page 53 7/26/2005

released is sad because in this part I used a concept of coordinate that later on turned into
iterator in C++ STL. As far as I know, the code did not survive, except for, interestingly
enough, code for the bidirectional partition which appeared in a paper in which Dave
Musser and I introduced the term generic programming [Musser and Stepanov 1988].)
In any case, I had to decide which way the partition is going to place the results: the
elements satisfying the predicate before the elements not satisfying it, or the other way
around. I decided that it is better to put “good” elements first since I could not see any
particular reason for the opposite and both possible solutions seemed to be equivalent.
When I was defining partition for STL in 1993, I did not question my prior reasoning and
partition, again, moved good elements in front. It took another 10 years for me to see that
I was wrong. When I started considering algorithms for 3-way, 4-way and n-way
partitioning, I realized that it is really important that partition assures that the result is
sorted according to partition key – the result of the key function. And all of the STL
sorting algorithms assumed ascending order. Moreover, it would have allowed the
following nice property to hold: partition_3way would have worked just like regular
partition if given a two-valued key function returning {0, 1}. Moreover, sort with a
comparison based on key-compare would have done partitioning – which is not true now
for regular 2-way partition. (The problem will become even more visible in the next
section on partition_n_way.) If you ever get a chance to design a new library (STL
for C## ?) I encourage you to consider if you should fix the interface of partition by
putting the bad elements first.

N-way partition

The idea of a 3-value predicate naturally generalizes to an idea of an n-valued predicate.
A function is called an n-valued predicate if it returns an integral value in the range [0, n).
In general, we can have n-valued predicates of any number of arguments. In this chapter,
however, we restrict ourselves to unary predicates.

Most algorithms that deal with n-valued predicates need to know the value of n for a
particular predicate. We call this value a range size of the predicate. That raises a design
question of finding the range size for a given predicate. We could require that any such
predicate p provides a member function p.range_size() or an ordinary function
range_size(p). Unfortunately, that would make it impossible to use our algorithms
with pointers to functions. It will also require that we build special machinery for
combining the code of the predicate with the integer that represents its range size. All the
algorithms that deal with n-valued predicates will be passed the range size either
explicitly or implicitly through other parameters.

We can easily generalize partition_3way_forward to deal with n-valued
predicates. We need to replace 3 iterators that point to the end of a sub-range that
contains all the elements with a corresponding value of the predicate with a range of n
iterators. Following a well-established tradition we will call the sub-ranges buckets.
(Knuth uses piles, but I find buckets to be a more generally accepted term.) So we are
given a range – described as a pair of random access iterators [f_b, l_b) – to keep

Alex Stepanov Page 54 7/26/2005

the iterators in the range that we are partitioning. (In this section f_b and l_b stand
correspondingly for first bucket and last bucket. The last bucket, of course, points past the
last “real” bucket.) For every integer in the range [0, l_b – f_b), *(f_b +
i), is an iterator into the sequence being partitioned and the sub-range [*(f_b + i),
*(f_b + i + 1)) contains all of the elements with the predicate value i that have
been discovered up till now. When we discover a new element with value i, all the
buckets before the i-th bucket remain unchanged, the i-th bucket grows by one element
and the buckets after the i-th bucket are shifted by one:

template <typename I, // I models Forward Iterator
 typename F, // F models N-Value Unary Predicate
 typename R> // R models Random Access Iterator
void partition_n_way(I f, I l, F fun, R f_b, R l_b)
// I is the value type of R
// the range of key is [0, l_b – f_b)
{

fill(f_b, l_b, f);
while (f != l) {

VALUE_TYPE(I) tmp;
move(*f++, tmp);
R i_b = f_b + fun(tmp);
R j_b = l_b;
while (--j_b != i_b)

 move(**(j_b – 1), *(*j_b)++);
move(tmp, *(*j_b)++);

 }
}

Problem: It is not strictly speaking necessary for the sequence of buckets in this
algorithm to be randomly accessible. Change the code of partition_n_way so that
the buckets are stored through weaker than random access iterators. (In most reasonable
situation the buckets will be stored in an array or a vector.)

Problem: Notice that partition_n_way does some unnecessary moves. It saves and
restores the tested element even when it belongs to the last bucket and the only thing
needed is to increment the corresponding bucket pointer. It also does unnecessary moves
when it goes through empty buckets. Implement a version of it with fewer moves.

If N is the length of the range being partitioned and k is the range size of the predicate
then the algorithm always does N predicate application and N(k+1) moves in the worst
case and N(k+1)/2 moves on average. The next problem will show a way of reducing the
number of moves by a factor of 2 for a case of bidirectional iterators. But even such a
reduction will not make this algorithm reasonable when N gets large. In practice, it is
almost never worthwhile to use it: as we shall see there are much better alternatives.

Alex Stepanov Page 55 7/26/2005

Problem: Implement a version of partition_n_way for bidirectional iterators that –
similar to paritition_3way_bidirectional – will construct half the buckets on
the left and half the buckets on the right of the ever decreasing range [f, l). (Mark
Ruzon.)

The next set of algorithms is built on the notion of buckets which we just encountered in
partition_n_way. The fundamental ideas go back to the MIT master thesis of
Harold H. Seward [Seward, 1954] which is definitely one of the most important early
computer science papers. Seward introduced the partitioning algorithms in the context of
a new sorting algorithm that he introduced: radix sort, which we will describe later in the
section.

The fundamental idea behind “bucket” algorithms is that we can use a range of buckets
containing positions where we put the next element with a given value of the key
function:

template <typename I, // I models Input Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// VALUE_TYPE(I) == VALUE_TYPE(VALUE_TYPE(R))
void bucket_copy(I f, I l, F fun, R f_b)
{
 while (f != l) {
 *(f_b[fun(*f)]++) = *f;
 ++f;
 }
}

We, of course, rely on the assumption that the range size of fun is the same as the size of
the range of buckets. The client of the code should know both and provide us with the
right initial values in the buckets. We do not need to return anything since the buckets are
updated and will contain updated iterators pointing to the end of corresponding ranges.

template <typename I, // I models Input Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
void bucket_move(I f, I l, F fun, R f_b)
{
 while (f != l) {
 move(*f, *(f_b[fun(*f)]++));
 ++f;
 }
}

Alex Stepanov Page 56 7/26/2005

template <typename I, // I models Forward Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
void bucket_swap(I f, I l, F fun, R f_b)
{
 while (f != l) {
 swap(*f, *(f_b[fun(*f)]++));
 ++f;
 }
}

template <typename I, // I models Forward Node Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// VALUE_TYPE(R) == pair<I, I>
void partition_bucket_node(I f, I l, F fun, R f_b, R l_b)
{
 fill(f_b, l_b, make_pair(l, l));
 while (f != l) {
 R c_b = f_b + fun(*f);
 if ((*c_b).first == l)
 (*c_b).first = f;
 else
 set_successor((*c_b).second, f);
 (*c_b).second = f++;
 }
}

template <typename I, // I models Forward Node Iterator
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// VALUE_TYPE(R) == pair<I, I>
pair<I, I> connect_bucket_nodes(I l, R f_b, R l_b)
{
 while (f_b != l_b && (*f_b).first == l) ++f_b;

 if (f_b == l_b) return make_pair(l, l);

 I f = (*f_b).first;
 I c = (*f_b).second;

 while (++f_b != l_b) {
 if ((*f_b).first != l) {
 set_successor(c, (*f_b).first);

Alex Stepanov Page 57 7/26/2005

 c = (*f_b).second;
 }
 }

 return make_pair(f, c);
}

template <typename I, // I models Forward Node Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// VALUE_TYPE(R) == pair<I, I>
pair<I, I> partition_bucket_node_connected

(I f, I l, F fun, R f_b, R l_b)
{
 partition_bucket_node(f, l, fun, f_b, l_b);
 return connect_bucket_nodes(l, f_b, l_b);
}

template <typename I, // I models Input Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// convertible_to(RESULT_TYPE(F), DIFFERENCE_TYPE(R))
void accumulate_histogram(I f, I l, F fun, R f_b)
{
 while (f != l) {
 ++f_b[fun(*f)];
 ++f;
 }
}

template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I1) == ARGUMENT_TYPE(F)
// convertible_to(VALUE_TYPE(I1), VALUE_TYPE(I2))
// VALUE_TYPE(R) == I2
void compute_buckets(I1 f, I1 l, I2 r, F fun,

R f_b, R l_b)
{
 vector<DIFFERENCE_TYPE(I2)> v(l_b – f_b);
 fill(v.begin(), v.end(), 0);
 histogram(f, l, fun, v.begin());
 vector<DIFFERENCE_TYPE(I2)>::iterator i = v.begin();

Alex Stepanov Page 58 7/26/2005

 while (f_b != l_b) {
 *f_b = r;
 advance(r, *i);
 ++f_b;
 ++i;
 }
}

template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename F, // F models N-Value Predicate
 typename R> // R models Random Access Iterator
// VALUE_TYPE(I1) == ARGUMENT_TYPE(F)
// convertible_to(VALUE_TYPE(I1), VALUE_TYPE(I2))
// VALUE_TYPE(R) == I2
void bucket_partition_copy(I1 f, I1 l, I2 r, F fun,

R f_b, R l_b)
{
 compute_buckets(f, l, r, fun, f_b, l_b);

bucket_copy(f, l, fun, f_b);
}

template <typename I, // I models Forward Iterator
 typename F, // F models N-Value Predicate

typename R> // R models Random Access Iterator
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
// VALUE_TYPE(R) == I
void bucket_partition(I f, I l, F fun, R f_b, R l_b)
{
 compute_buckets(f, l, f, fun, f_b, l_b);
 vector<I> b_e(l_b – f_b, l);
 copy(f_b + 1, l_b, b_e.begin());
 pair<R, vector<I>::iterator> p(f_b, b_e.begin());
 while (true) {
 p = mismatch(p.first, l_b, p.second);
 if (p.first == l_b) return;
 bucket_swap(*p.first, *p.second, fun, f_b);
 }
}

Remark: The idea for this algorithm was suggested to me by Lubomir Bourdev during
2005 class at Adobe after I rashly stated that such an algorithm cannot exist. The long
years of knowing the fact that the radix sort cannot be done in-place prevented me from
seeing that if stability is not required what is not possible becomes very possible. Knuth
describes a similar algorithm in the problem 5.2-13 [Knuth 1972]. (The algorithm was
later published by Burnetas, Solow and Agarwal in 1997 [Burnetas, 1997].) I am positive
that I read the solution to Knuth 5.2-13 sometime in the ‘80s but completely forgot it.

Alex Stepanov Page 59 7/26/2005

template <typename I, // I models Forward Iterator
 typename F> // F models N-Value Predicate
void partition_n_way_recursive(I f, I l, F fun,
 int i, int j)
{
 if (j – i <= 1) return;
 int h = i + (j – i)/2;
 I m = partition(f, l,

compose1(bind2nd(less<int>(), h), fun));
 partition_n_way_recursive(f, m, i, h);
 partition_n_way_recursive(m, l, h, j);
}

template <typename I, // I models Forward Iterator
 typename F> // F models N-Value Predicate
void partition_n_way_recursive1(I f, I l, F key,
 int i, int j)
{
 while (j – i > 1) {
 int h = i + (j – i)/2;
 I m = partition(f, l,

 compose1(bind2nd(less<int>(), n), key));
 partition_n_way_recursive1(f, m, i, h);
 f = m;
 i = h;
 }
}

template <typename T1, typename T2,
 typename T3, typename T4>
struct quadruple
{
 T1 first;
 T2 second;
 T3 third;
 T4 forth;
 quadruple(const T1& x,
 const T2& y,
 const T3& z,
 const T4& w)
 : first(x), second(y), third(z), forth(w) {}
};

template <typename T1, typename T2,
 typename T3, typename T4>
inline

Alex Stepanov Page 60 7/26/2005

void scatter(const quadruple<T1, T2, T3, T4>& x,
 T1& a, T2& b, T3& c, T4& d)

{
 a = x.first;
 b = x.second;
 c = x.third;
 d = x.forth;
}

template <typename T1, typename T2,
 typename T3, typename T4>
inline
void gather(quadruple<T1, T2, T3, T4>& x,

const T1& a, const T2& b,
const T3& c, const T4& d)

{
 x.first = a;
 x.second = b;
 x.third = c;
 x.forth = d;
}
// need to define ==, != and the relational operators
// for quadruple

template <typename I, // I models Forward Iterator
 typename F> // F models N-Value Predicate
void partition_n_way(I f, I l, F fun, int n)
{
 typedef quadruple<I, I, int, int> quad;
 vector<quad> stack;
 int i = 0;
 int j = n;
 while (j – i > 1 || !stack.empty()) {
 if (j – i <= 1) {
 scatter(stack.back(), f, l, i, j);

stack.pop_back();
 }
 int h = i + (j - i)/2;
 I m = partition(f, l,

 compose1(bind2nd(less<int>(), h), fun));
if (h – i > 1)

 stack.push_back(quad(f, m, i, h));
 f = m;
 i = h;
 }
}

Alex Stepanov Page 61 7/26/2005

Radix sorting

template <typename I, // I models Forward Node Iterator
 typename F> // F models 256-way Predicate
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
pair<I, I> partition_node_byte(I f, I l, F fun,

bool is_unsigned)
{
 pair<I, I> b[256];
 partition_bucket_node(f, l, fun, b, b + 256);
 pair<I, I> x = connect_bucket_nodes(l, b, b+128);

pair<I, I> y = connect_bucket_nodes(l, b+128, b+256);
if (x.first == l) return y;
if (y.first == l) return x;
if (!is_unsigned) swap(x, y);
set_successor(x.second, y.first);
return make_pair(x.first, y.second);

}

template <typename N> // N models Integer
class nth_byte

: public unary_function<N, int>
{
private:
 int n;
public:
 nth_byte(int i) : n(i << 3) {}
 int operator()(const N& k) const {
 return int(k >> n) & 255;
 }
};

template <typename I, // I models Forward Node Iterator
 typename F> // F models Unary Function
 // F::result_type models Integer
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
pair<I, I> radix_sort_node(I f, I l, F fun,

int f_lsb, int l_lsb, bool is_nn)
// f_lsb is the number of the first least significant byte
// to be considered
// l_lsb is the number of the last least significant byte
// to be considered
// is_nn is true if fun returns values >= 0
{
 typedef typename F::result_type N;

Alex Stepanov Page 62 7/26/2005

pair<I, I> p(f, l);
 if (f == l) return p;
 for (int i = f_lsb; i <= l_lsb; ++i) {
 p = partition_node_byte(

p.first,
l,
compose1(nth_byte<N>(i), fun),
i < l_lsb || is_nn);

 set_successor(p.second, l);
 }

return p;
}

template <typename N> // N models Integer
inline
bool is_unsigned()
{
 return N(0) – N(1) >= N(0);
}

template <typename I, // I models Forward Node Iterator
 typename F> // F models Unary Function
 // F::result_type models Integer
// VALUE_TYPE(I) == ARGUMENT_TYPE(F)
inline
pair<I, I> radix_sort_node(I f, I l, F fun)
{
 typedef typename F::result_type Integer;
 return radix_sort_node(f, l, fun,

 0, sizeof(Integer) - 1,
 is_unsigned<Integer>());

}

template <typename T>
struct identity_function : unary_function<T, T>
{
 T operator()(const T& x) const {return x;}
};

template <typename I> // I models Forward Node Iterator
// VALUE_TYPE(I) models Integer
inline
pair<I, I> radix_sort_node(I f, I l)
{
 typedef typename VALUE_TYPE(I) Integer;
 identity_function<Integer> id;
 return radix_sort_node(f, l, id,

Alex Stepanov Page 63 7/26/2005

 0, sizeof(Integer),
 is_unsigned<Integer>());

}

template <typename N> // N models Integer
int actual_sizeof(N n)
{
 N mask = ~N(255);
 if (n < 0) n = -n;

 int k = 1;
 while (n & mask) {
 ++k;
 n >>= 8;
 }
 return k;
}

Historical note

The forward partition algorithm is due to Nico Lomuto who was looking for a simpler
way to implement the quicksort inner loop [Bentley 1984]. Its main advantages over
Hoare’s algorithm are, firstly, that it works for forward iterators and, secondly, that it
preserves the relative ordering of the elements that satisfy the predicate (see the
discussion of stable partition). Its disadvantages are that it does more swaps on the
average than the next algorithm and that it cannot be modified to split the range
containing equal elements into two equal parts, which, as we shall see in the chapter on
sorting [page ???], makes it really unsuitable for being used in quicksort – for which
purpose it is, nevertheless, frequently recommended.

The bidirectional partition was introduced by C. A. R. Hoare as a part of his quicksort
algorithm [Hoare 1961]. The algorithm for partition with the minimal number of moves
was described by Hoare in his remarkable and unjustly forgotten paper [Hoare 1962]
which also introduced the idea of using sentinels to minimize the number of operation in
the inner loop. This paper, in my opinion, is a serious contender for the title of the best
ever paper in Computer Science.

Using partition for implementing random shuffle for forward iterators was invented by
Raymond Lo and Wilson Ho in 1997 during the SGI course on Generic programming.

Solutions to selected problems:

Alex Stepanov Page 64 7/26/2005

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward_minimal_moves(I f, I l, P p)
{
 while (true) {

if (f == l) return f;
 if (!p(*f)) break;
 ++f;
 }
 I n = f;
 while (true) {
 if (++n == l) return f;
 if (p(*n)) break;
 }
 VALUE_TYPE(I) tmp;

move(*f, tmp);
move(*n, *f);
++f;
I h = n;

 while (++n != l)
 if (p(*n)) {

move(*f, *h);
move(*n, *f);
h = n;
++f;

 }
 move(tmp, h);
 return f;
}

template <typename T,
 typename R> // R models Strict Weak Ordering on T
inline
bool compare_3way(const T& x, const T& y, R r = less<T>())
{
 if (r(x, y)) return -1;
 if (r(y, x)) return 1;
 return 0;
}

template <typename I, // I models Forward Iterator
 typename F, // F models N-Value Unary Predicate
 typename R> // R models Random Access Iterator
void partition_n_way_fewer_moves(I f, I l, F fun,

R f_b, R l_b)
// VALUE_TYPE(R) == I

Alex Stepanov Page 65 7/26/2005

// the range of key is [0, l_b – f_b)
{

fill(f_b, l_b, f);
while (f != l) {

R i_b = f_b + fun(*f);
 if (i_b == l_b – 1) {
 ++*i_b;
 ++f;
 } else {

VALUE_TYPE(I) tmp;
move(*f++, tmp);
R j_b = l_b;
while (--j_b != i_b) {

 if (*predecessor(j_b)) != *j_b)
 move(**predecessor(j_b), **j_b);
 ++*j_b;
 }

move(tmp, *(*j_b)++);
 }
 }
}

Proposition: Given two sequences of length n with only equality comparison,
O(n^2) operations are required to determine if one sequence is a permutation of
the other.

Proof:

Form a bipartite graph where the nodes are the elements of the sequences and each pair of
elements from the two sequences is connected by an edge. Each edge in the graph
represents an as yet un-compared pair of elements. Initially, the number of edges is n^2.

The algorithm to determine whether one sequence is a permutation of the other is
modeled as sequence of edge tests in the graph. That is, it sequentially selects an edge in
the graph and tests for equality of the two nodes. If the nodes are equal, they can be
removed from the graph, as well as any edges incident on them. If the nodes are not
equal, then only the tested edge is removed. The algorithm stops, either if all nodes are
removed (indicating that one sequence is a permutation of the other), or if one of the
nodes becomes disconnected (indicating that the one sequence is not a permutation of the
other).

The proof is to show that any such algorithm must always do O(n^2) comparisons in the
worst case.

Alex Stepanov Page 66 7/26/2005

Suppose that for every test where the degree of each of the two nodes is greater than one,
the result of the comparison is that they are not equal. If the degree of either node is one,
then the result of the comparison is that they are equal.

 Suppose the algorithm proceeds from its initial state doing a sequence of comparisons
until it reaches the first pair that is equal. Since the initial degree of each node in the
graph is n, this will require at least n + k tests, where k is the number of comparisons that
did not involve either of the two equal nodes. The two nodes are removed, as well as any
edges incident on them. What remains is a bipartite graph of 2(n – 1) nodes and (n – 1)^2
– k edges.

The tests to remove the extra k edges can equivalently be done immediately following the
removal of the two equal nodes. That is, immediately following the removal of the two
nodes we have a complete bipartite graph of (n – 1)^2 edges, and then the k edges are
removed. In this case, at least n tests are required to obtain the first equal pair and reduce
the graph.

The reduced graph is a complete instance of the sub-problem for sequences of length n-
1. Therefore we have the recurrence:

c(n) >= n + c(n-1)

where c(n) is the worst case number of comparisons for sequences of length n.
Consequently, c(n) = O(n^2).

 (The proof is contributed by Jon Brandt.)

	1. Partition and Related Functions
	Definitions
	Forward Partition Algorithm (Lomuto)
	Bidirectional Partition Algorithm (Hoare)
	Misplaced section: Find Backward
	End of misplaced section: Find Backward
	Minimizing moves
	Using sentinels

	Partition copy
	Partitioning node-based structures
	Remark: I am fully aware of Dijksra’s strictures against using goto statement. For years I dutifully followed his dictum. Eventually, I discovered that on rare occasions I could write more elegant and efficient code if I used goto. In 1988 Dave Musser and I published a book containing a program with several goto statements. We received several angry letters explaining how ignorant we were. In spite of the criticism, I still maintain that goto is a very useful statement and should not be avoided if it helps to make the code cleaner. When I look at the previous piece of code, I find it beautiful. (Notice that I even added an unnecessary label first_good to make the code more symmetric, more understandable, and, yes, more beautiful. And I even added three unnecessary goto statements for the same reasons – but, not being sure that all the modern compilers eliminate goto from one address to the next, commented them out.)
	Finding the partition point
	Operations on Function Objects
	Stable partition
	
	Reduction
	3-partition [Dutch National Flag – Dijkstra]
	N-way partition
	Radix sorting
	Historical note
	Solutions to selected problems:

