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What is Majorization Minimization

Majorization Minimization (MM) is an optimization algorithm.

More accurately, MM itself is not an algorithm, but a framework on how
to construct an optimization algorithm.

Example of MM : Expectation Minimization (EM-Algorithm).

Another name of MM is ”Successive upper bound minimization method”.
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The idea of MM: Successive upper bound minimization

Want to solve minx∈Q f(x)

How to solve : construct an iterative algorithm that produces a sequence
{xk} such taht the objective function is non-increasing: f (xk+1) ≤ f (xk)

Problem: if f is complicated =⇒ cannot handle the problem directly

Idea: attack the problem indirectly
Generate the sequence {xk} to minimize f by another simpler function g
such that minimizing g ’helps’ minimizing f .

g is called surrogate function / auxiliary function

How minimizing g ’helps’ minimizing f : if g is the upper bound of f
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The idea of MM - Successive upper bound minimization

In other words, the idea of MM is:

1. [Original problem is too complicated]. Want to solve minx∈Q f(x), but
f is too complicated or solving minx f(x) directly is too expensive

2a. [Indirect attack of the problem via surrogate]. Finds/constructs a
simpler function g that solving minx∈Q g(x) is cheaper
2b. Finally, use the solution of minx g(x) to solve minx∈Q f(x)

Questions:

how to find g?

how to use the information on g to minimize f?
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The surrogate g

Surrogate function g(x) can be defined as a parametric function with the
form

g(x|θ)

where θ is the parameter

In MM for minimization, θ can be defined as xk.
i.e. the information about the variable x at the current iteration is used to
construct g.

The surrogate helps to minimize f by finding the variable in the next
iteration as the minimizer of the current surrogate:

xk+1 = argmin
x∈Q

gk

(
x|xk

)
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Overall framework of MM

To solve
min
x∈Q

f(x)

Use the following surrogate scheme:
————————————————————————–
(1) Initialize x0
(2) Construct a surrogate function at xk as gk (x|xk)
(3) Updating : xk+1 = argminx∈Q gk (x|xk)
(4) Repeat (2)-(3) until converge
————————————————————————–

Note that the surrogate function is changing in each iteration, as gk (x|xk)
depends on the changing variable xk

Also notice that the process of minimizing g will help minizing f as the
sequence {xk} produced satisfies f(xk+1) ≤ f(xk)
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More questions

But, more exactly:

(1) how to constrcut g?

(2) what is the condition of g ?

(3) how to optimize g ?

(4) how to know that optimizing g is cheaper than optimizing f?
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Definition of surrogate

Two key conditions for surrogate g are:
1. g majorizes the original function f at xk for all other points.
Mathematically, gk (x|xk) ≥ f(x) , ∀x, xk ∈ Q.
2. g touches the original function f at xk at the point x = xk.
Mathematically, gk (xk|xk) = f(xk), ∀xk ∈ Q

f

g

f(xk)

g(xk+1|xk+1)

xk xk+1
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The convergence theorem of MM

Theorem. If the surrogate g satisfies the two conditions :
1. g (x|xk) ≥ f(x), ∀x.
2. g (xk|xk) = f(xk),∀xk.

Then the iterative method xk+1 = argminx∈Q gk (x|xk) will produce a
sequence f (xk) that converge to a local optimum. i.e.

f (xk+1) ≤ f (xk)

Proof.
f(xk+1) ≤ g(xk+1|xk) by condition 1

≤ g(xk|xk) xk+1 minimizes g
= f(xk) by condition 2
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Construct surrogate by quadratic upper bound of smooth
convex function

Suppose f is convex (both f and domf) and β-smooth (∇f is Lipschitz
continuous with parameter β).

Then f is bounded above by the following at x0 ∈ domf for all x ∈ dom f

f(x) ≤ f(x0) +∇f(x0)T (x− x0) +
β

2
‖x− x0‖22

Surrogate can be defined as such upper bound.

gk(x|xk) ≤ f(xk) +∇f(x0)T (x− xk) +
β

2
‖x− xk‖22

Pros: simple construction of f
Cons: need the knowledge of β
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Construct surrogate by quadratic lower bound of strongly
convex function

Suppose we want to do Minorization Maximization (the opposite).

Suppose f is α-strongly convex. Then f is bounded below by the following
at x0 ∈ domf for all x ∈ dom f

f(x) ≥ f(x0) +∇f(x0)T (x− x0) +
α

2
‖x− x0‖22

Surrogate can be defined as such upper bound.

gk(x|xk) ≥ f(xk) +∇f(x0)T (x− xk) +
α

2
‖x− xk‖22

Pros: simple construction of f
Cons: need the knowledge of α

12 / 22



Construct surrogate by first order Taylor expansion

Taylor Expansion. Taylor expansion of a differentiable f at a point x0 is

f(x) = f(x0) +∇fT (x0)(x− x0) +O

where O is higher order term.

If f is convex, the first order Taylor approximation is a global
underestimator of f . i.e. f(x) ≥ f(x0) +∇f(x0)T (x− x0).
This is useful for Minorization Maximization.

If f is concave, the first order Taylor approximation is a global
overestimator of f . i.e. f(x) ≤ f(x0) +∇f(x0)T (x− x0).
This is useful for Majorization Minimization.
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Construct surrogate by majorizing the second order Taylor
expansion

Consider the Taylor expansion at x0 again

f(x) = f(x0) +∇fT (x0)(x− x0) +O

Suppose f is twice differentiable. Now express explicitly the higher order
term O in Lagrangian form

O =
1

2
(x− x0)T∇2f(ξ)(x− x0)

where ξ is some constant (by mean value theorem).

Taylor expansion of f at point x0 becomes

f(x) = f(x0) +∇fT (x0)(x− x0) +
1

2
(x− x0)T∇2f(ξ)(x− x0)
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Construct surrogate by majorizing the second order Taylor
expansion

One can construct a surrogate in the following form

g(x|x0) = f(x0) +∇fT (x0)(x− x0) +
1

2
(x− x0)TM(x− x0)

if M � ∇2f(x),∀x

The key is M � ∇2f(x), so if M −∇2f(x) is positive semi-definite ∀x
(including the case x = ξ), then

g(x|x0)− f(x) =
1

2
(x− x0)T

(
M −∇2f(ξ)

)
(x− x0) ≥ 0

Hence g majorizes f .

How to form M : M = ∇2f + δI
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Construct surrogate by majorizing the second order Taylor
expansion - Least Sqaure Example

Consider f(x) = ‖Ax− b‖2 (F-norm or 2-norm)

‖Ax− b‖2 = (Ax− b)T (Ax− b)
= xTATAx− xTAT b− bTAx+ bT b

= xTATAx− 2xTAT b+ bT b

∇x‖Ax− b‖2 = 2ATAx− 2AT b

= 2AT (Ax− b)
∇2
x‖Ax− b‖2 = 2ATA

2nd order Taylor expansion of f(x) = ‖Ax− b‖2 is

f(x) = f(x0) + 2AT (Ax0 − b) (x− x0) + 2(x− x0)TATA(x− x0)
Thus the following g majorizes f

g(x|x0) = f(x0) + 2AT (Ax0 − b) (x− x0) + 2(x− x0)TM(x− x0)
where M � ATA is a diagonal matrix. A simple way to construct M is
M = ATA+ δI with δ > 0 16 / 22



Construct surrogate by majorizing the second order Taylor
expansion - NMF Example

In Non-negative Matrix Factorization, we have

f(W,h) = ‖Wh− x‖22

where x is given and W , h are variable.
2nd order Taylor expansion of f(W,h) is

f(W,h) = f(h0) + 2W T (Wh0 − x) (h− h0) + 2(h− h0)TW TW (h− h0)

We can construct M as M = Diag
( [W TWh]i

[h]i

)
, then M �W TW and

g(W,h) = f(h0) + 2W T (Wh0 − x) (h− h0) + 2(h− h0)TM(h− h0)

For detail: see the slides ”Convergence analysis of NMF algorithm”, and the original paper by
Lee and Seung 2001
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Construct surrogate by inequalities

Jensen’s inequality. If f is convex, then

f
(∑

i

λiti

)
≤
∑
i

λif(ti)

where λi ≥ 0 and
∑

i λi = 1.

Example. Let ti =
ci
λi
(xi − yi) + cT y, then

λT t =
∑
i

λiti

=
∑
i

(
cixi − ciyi + λic

T y
)

=
∑
i

cixi −
∑
i

ciyi +
(∑

i

λi
)
cT y

= cTx− cT y + cT y

= cTx
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Construct surrogate by inequalities

By Jensen’s inequality f
(∑

i λiti

)
≤
∑

i λif(ti)

f
(
λT t
)
≤

∑
i

λif(ti)

=
∑
i

λif
( ci
λi

(xi − yi) + cT y
)

As λT t = cTx thus

f
(
cTx

)
≤
∑
i

λif
( ci
λi

(xi − yi) + cT y
)

So for a convex function f , the surrogate function of f(cTx) is

g(x|y) =
∑

i λif
(
ci
λi
(xi − yi) + cT y

)
, with

∑
i λi = 1
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Construct surrogate by inequalities

Example. If c, x and y are all positive, let ti =
xi
yi
cT y and λi =

ciyi
cT y

(hence again λT t = cTx) then by Jensen’s inequality

f
(
λT t
)
≤

∑
i

λif(ti)

=
∑
i

ciyi
cT y

f
(xi
yi
cT y
)

Hence
f
(
cTx

)
≤
∑
i

ciyi
cT y

f
(xi
yi
cT y
)

So for a convex function f , the surrogate function of f(cTx), with positive

c and x is g(x|y) =
∑

i λif
(
ci
λi
(xi − yi) + cT y

)
, where

∑
i λi = 1 and y

has to be positive.
Advantage of the surrogate in the two examples : g are separable and thus
parallelizable.
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Construct surrogate by inequalities

Other inequalities :

Cauchy-Schwartz Inequality

|uT v| ≤ ‖u‖‖v‖

Arithmetic-Geometric Mean( n∏
i

xi

) 1
n ≤ 1

n

n∑
i

xi

Chebyshev, Hölder, and so on...
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Last page - summary

Introduction of Majorization Minimization
(1) Initialize x0
(2) Construct a surrogate function at xk as gk (x|xk)
(3) Updating : xk+1 = argminx∈Q gk (x|xk)
(4) Repeat (2)-(3) until converge

The surrogate funcion
1. g majorizes the original function f at xk for all other points.
Mathematically, gk (x|xk) ≥ f(x) , ∀x, xk ∈ Q.
2. g touches the original function f at xk at the point x = xk.

Construction of surrogate function via various methods

End of document
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