Chains of Recurrences - a method
to expedite the evaluation of closed-form functions *

Olaf Bachmann
Dept. of Math. and Computer Science
Kent State University
Kent, Ohio 44242-0001 USA
obachman@mcs . kent.edu

Paul S. Wang!
Distributed Computing Department
Sandia National Laboratories
P.0.Box 969 Mail Stop 9214
Livermore, CA 94551-0969
pwang@mces.kent.edu

Eugene V. Zima
Dept. of Computational Mathematics and Cybernetics (BMK)
Moscow State University
Moscow, 119899, Russia
zima@cs.msu.su

Abstract

Chains of Recurrences (CR’s) are introduced as an effective
method to evaluate functions at regular intervals. Algebraic
properties of CR’s are examined and an algorithm that con-
structs a CR for a given function is explained. Finally, an
implementation of the method in MAXIMA /Common Lisp
is discussed.

1 Introduction

Given a closed-form function G(z), a common computa-
tional task is to evaluate the function at a number of points
in an interval. More precisely, given a starting point zo
and an increment h, the task is to compute G(zo + 1h) for
t = 0,1,...,n — 1. Such computations occur frequently in
practice: plotting curves of functions, computing finite sums
and products, calculating integrals, and solving differential
equations. Straightforward evaluations of G at all n points
can be very inefficient and may sometimes even become the
bottleneck of a given system. The SIG [5] graphing system
is such an example.

One way to speed up this type of evaluation is to compute
the next point of G by using results from earlier steps, i.e.
by utilizing recurrence properties of G. Take G(z) =3z +1
for example. Instead of computing 3zo+1, 3(zo+A)+1, and
so on, we may compute G(zo) = 3wo + 1, ¢ = 3k and then
generate the desired evaluations by adding ¢ to the previ-
ous value of G. The latter approach is obviously faster. Of
course, it is common programming practice to use simple re-
currences like this or like " = £"(*~Yg" to economize cer-

*Work reported herein has been supported in part by the National
Science Foundation under Grant CCR-9201800, in part by the Army
Research Office under Grant DAALO03-91-G-0149 and in part by the
RFFI (Russia) under Grant 94-01-01743.

TOn sabbatical leave from Kent State University

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ISAAC 94 - 7/94 Oxford England UK
© 1994 ACM 0-89791-638-7/94/0007..$3.50

tain computations. More complicated is a technique known
by numerical analysists as “forward differencing” [4]' which
reduces the process of evaluating an nth degree polynomial
to just n additions after the first few steps. In this method
a system of n + 1 recursive functions (also called a finite
difference table) is set up such that its successive evaluation
yields the desired values of the polynomial in question. It is
also known that many other useful functions satisfy specific
recurrence relations. For example, in trigonometry we have
cos(10) = 2cos(8)cos([i — 1]8) — cos([z — 2]9)
sin(i0) = 2sin(8)sin([i — 1]9) — sin([z — 2]9).

Instead of finding recurrences for a particular class of
functions, our goal is to automatically generate recurrence
representations for a wide variety of common functions in
order to obtain more efficient computational procedures for
their evaluation. More precisely, for a given function G(z),
we construct an appropriate Chain of Recurrences (CR) @
such that ®(i) = G(zo + 1h) and the evaluation of & is po-
tentially much more efficient than the straightforward eval-
uation of GG. Techniques described here can, for example,
generate a CR for the function Gy (Fig. 1) that reduces the
evaluation time (for 1000 points) from 1614 ms to 155 ms.

The Chains of Recurrences investigation here extends
Zima’s studies of Systems of Recurrence Relations [6]:

o New definitions and concepts (sections 2 and 3) for de-
scribing CR’s are developed.

o Algebraic properties of CR’s are systematically examined
(section 3).

¢ An algorithm for constructing CR’s is given and analyzed
(section 4).

¢ Improvements of the original algorithm are described
(section 4).

¢ A general implementation of the CR method is described
in detail and actual machine timings are presented (sec-
tion 5).

¢ The CR method as implemented is applied to speed up
a graphing package (section 5).

*Knuth describes this phenomenon as “tabulating polynomial val-
ues” [3, p.469]

242

(71 G;(z) | CR-expression ®; such that ®;(i) = G;(zo +ixh)]
ez3+3zz—3z+1 ezg+3zg-azo+1 eShz%+3zo(h2+2h)+h3+3h2~3h 66(h2z0+h3+h2) 6h3
1 2s2 —2z+1 23(2)—21;0-}.1 ’ 92hzg~2h+h2 ¥ 92h2 s ¥.e
2 a+aiz+...+apz” {co(zo, h), +,c1(z0, h), +,..., +,cnlwo, h)}
where the ¢;’s are certain constructible polynomials in zg, A
3 cos(20z) * & cos({20xo, +,20h}) * {ezg, *, ezhz°+h2, *, e%2}
(zh? 1
4 m z,n €N ;1—!,*,n,+,3n—4,+,2n—10,+,—6} zo=0,h=1
(z1)? 2° ! 1 2 4 1
b 223 +40+2 (1, _) g €N | {ghmm * {F % dr 5,)l #{n, +,3n—4,+,2n— 10, +,—6}} 20=0,h=1

Figure 1: Examples of Chains of Recurences

2 Chains of Recurrences

First let us introduce basic concepts for representing func-
tions using recurrences.

Given a constant o, a function f; defined over the nat-
ural numbers N, and an operator ©® equal to either + or *,
a Basic Recurrence (BR) f, represented by the tuple

f = {‘P07 O, fl}a
is defined as a function f(i) over N by

o + ifl(j)

Jj=0

i-1
vo [] £16).

j=0

For example, consider the BR f = {3zo+1, +,3h}. Then
(@) = {3z0+1, +,3h}(i) = G(zo+1ih) where G(z) = 3z +1.

Notice that for any BR f = {0, ®, i} andi > 0, f(i) =
f(@—1)® fi(i — 1). Hence, BR’s are special cases of first-
order linear recurrences. Obviously, only simple functions
can be expressed with BR’s. In order to represent more
complicated functions using recurrences, we introduce the
concept of a Chain of Recurrences (CR).

Given constants o, ..., k-1, a function f; defined over
N, and operators ®i,...,Or equal to either + or *, a Chain
of Recurrences (CR) ®, represented by the tuple

{wo, +, f1}(3)

[

{‘Por *, fl}(l)

® = {@0,@1,?17627‘;027 v 1®kaf’°}’
is defined recursively as a function over N by

8(i) = {po,®1,{p1,02,02,...,0k, fe}}() 1)

For a given G(z), we are interested in constructing a
CR @ such that ®(i) = G(zo + i * h). For example, for
G(z) = e’z, we obtain the CR

b = {ezg, *’e2zoh+h2, *,eth}
such that ®(¢) = G(zo + ih).

For increased readability we will consistently denote BR'’s
by lowercase letters (like f and g), CR’s by uppercase Greek
letters (like ® and ¥), and constants appearing in BR’s or
CR’s by indexed lowercase Greek letters (like o and 1).
The shorthand notations ® = ®(i) and ¢; = @i(zo, h) will
also be used.

243

Given a CR @ = {v0,01,01,02,92,...,0k, fe} 1t is

easy to verify that there exists BR’s fo, f1,..., fk—1 such
that for0<j <k
R 2T ifi=0
fi(i) = { fiG—1)®41 fi+1(z—1), ifi>0 ©)

and fo(i) = ®(¢). A similar scheme was originally used by
Zima to define a System of Recurrence Relations (SRR). The
new definition (1), basically equivalent but less cumbersome,
involves a “chain” of recurrences, hence the name CR.
Given a CR @ = {po, ®1,¥1, D2, ... Ok, fr} we call

k = L(®) the length of ®
®apure-sum CRIf O1=Q2=...=
® a pure-product CRif ©1 =Q2 = ...
® a simple CR if fi is a constant.

Before proceeding further, let us look at figure 1 which
shows some more sample CR’s.

Observe that the pure-product CR @; is simple and of
length 3. @, indicates that we can obtain a simple, pure-
sum CR of length n for any given nth degree polynomial.
The CR-expression in row 3 involves two simple CR’s: a
pure-sum CR of length 1 and a pure-product CR of length
2. Restricting z to be a natural number and setting zo =
0, h = 1 we obtain ®4 and ®5. Notice that the CR ®j5 is of
length 1 and that its function f; is the product of two other
CR’s.

2.1 Evaluation of CR’s

Once a CR @ is constructed for a function, it can provide a
very efficient way to evaluate the function at regular inter-
vals. To generate the function values, ® is first initialized by
evaluating all constant expressions in the tuple notation of
the CR with given values for zo, h, and other parameters.
The initialization produces values for ¢, ..., pr—1, fi, and
G(zo) = ®(0). Values of G at successive points (®(1), $(2),
...) are then generated in a loop. Each iterative step up-
dates the values in the tuple notation of ® appropriately
and thereby computes the next ®(z).

It is easy to see that the number of arithmetic operations
needed to compute the next value of a simple CR is equal to
the length of the CR. Therefore, the length of a CR gives an
indication of its evaluation cost. Thus, using ®; (Fig. 1),
only three multiplications are needed to obtain the value of
G at each successive evaluation point.

3 Algebraic Properties of BR's and CR’s

We have seen examples of CR’s and their effectiveness for
evaluating functions at regular intervals. The question is
how to construct an appropriate CR, for any given G(z).

As a first approach we will examine the reverse question:
Given a CR of a certain kind, what is its value as a closed-
form formula?

Recall that for n € N, factorials of the form (™ (which
are also known as falling factorials) are defined by

e =zz-1)(z—-2)...(x—n+1) withz® =1

and that polynomials in z represented by
ap + a1z + azz® + ... anzc™

are called factorial polynomials. Factorials such as ™) can
be reduced to polynomials in # and vice versa using

2 n
2™ = 5712 + sn2a® + ... + Snnz

2" =tz + tnaz® + .+ tanz™

where the numbers s;; (¢;;) are the Stirling numbers of the
first (second) kind {1].

Using these concepts, we can easily prove the following
lemma by induction on k.
Lemma 1 Let {0, ®,01,0,...,0,0r} be a simple CR.
Then,

{(PO, 01, 02, +,..., +)(pk}(i)

(1) | P2.2) i
= o+ p11 +—2—,—z +---+<Pk_lzr (3)
k . k .
= <po+izf_;—3j1+i2 %3j2+...+ik%skk
i=1 i=2
{‘POv *,01, *,02, %,..., *,(Pk}('l:)
(2) (k)
(1) i .
WoxPL *PaT k...kpF (4)

i

exp (log (po)+Hlog(p1)itV +1280£2) (@) 4 4 lomCei) (k)

In other words, a simple, pure-sum CR of length & is a
polynomial in i of degree k. And, a simple, pure-product
CR is e raised to a polynomial exponent. For example,

1 = {1}
z = {xzo,*,h}
2 = {zf, +,2hzo + A%, +,2h%}
2 = {z}, +,3had+3h%xo+h>, +,6h%2o+6R°, +, 6R%}
2" = {Con,*,Cln, *,C2ny *,..., +,Can} (5)
€ = {e0n, % e * 5 % .)
where? cin(zo,) = ! Z (?) K a3ty

J=

Given a polynomial P(z) (or e”®), it is therefore con-
ceivable to devise an algorithm which, based on lemma 1,
constructs an equivalent CR. However, this “head-on” con-
struction approach is not practical because it is expensive
and of limited applicability. A recursive CR construction
technique, superior in many ways, will be presented below.

Our general strategy to construct a CR for a given for-
mula G(z) is the following:

2a.ssuming that tgg = 1

244

1. On the parse tree of G, first replace the trivial subex-
pression z by the basic recurrence {zo, +, h}.

. Recursively apply algebraic properties of recurrences
to combine CR’s. This process proceeds from the bot-
tom to the top of the parse tree of G and simplifies
expressions involving CR’s.

The following sections examine important algebraic proper-
ties of BR’s and CR’s. These properties allow us to devise
a general CR construction algorithm (section 4).

3.1 Algebraic Properties of BR’s

BR’s lay at the heart of our construction method since a
CR is a chain of BR’s. Therefore, we first examine alge-
braic properties of BR’s before applying them to CR’s in
the following subsection.

To begin, arithmetic operations involving a single BR are
considered:

Lemma 2 Let f = {©0,0, f1} be a BR and c be a constant.
Then,

c+ {po, +, f1} {c+ o, +, f1} (6)
cx{po, +, i} = {cxpo, +,cx fi}]
PRCITASE ;Y - {c*0, *,ch} (8)
cx{po, *, i} = {cxpo, *, fi} 9)
{po, %, f1}* = {5, *, f{} (10)
log({o, *, f1}) = {log(po), +,log(f1)}. (11)

The following lemma examines algebraic properties of
arithmetic operations of two BR's:

Lemma 3 Let f = {p0,0, f1} and g = {0, ®, g1} be BR’s.
Then,
(12)

{wo, +, f1} + {0, +, 91} = {wo+tbo, +, fi+a1}
{wo, +, fi} x {¢o, +, 01} = {potbo, *, for+9fr+frg:} (13)
{wo, *, f1} * {0, *, 01} = {wotbo, *, fig1} (14)
{¢o, *,f1}{¢0’+‘gl} = {(p:)ﬁo, * 914 ff * fl}' (15)
Proof: The equalities (6) - (15) are proved using the

definition of BR’s and basic arithmetic identities. As an ex-
ample, the proof of (13) is shown here:

{po, +, fi} * {0, +, 91} = [po + Y ()] % [Yo +D_ 01.(5)]
=0 =0

1—1 j—-1 i—1
= oo +Z [gl(j)[wo +Z fD]+ f1() o +Z a1(1)]
=0

j=0 =0
+h)e ()]
i-1
= oo+ [gl(j) {po, +, f1} (4) + LGN, +,91}(5)
=0 +h()aG) |

= {potpo, +,91f + fig + frg1} #
Let us illustrate how these properties can be used to

construct CR’s. Consider G(z) = 6”2, for example. First,
we replace z? by {@o, +,h} * {20, +,h} and perform the
following transformations:

{zo, +,h} * {zo, +,h}

{a3, +, hx{wo, +,h} + hx{zo, +,h} + A} by (13)
{mg, +,{2hzo + R?, +,2h2} } by (7) and (12)

{3, +,2hzo + h%, +,2h%} by (1)

It

By substituting the latter CR. for zZ in e®" we continue:
o120 ¥ 2hzo+h?, +,217}

e{zg, + {2hzo+h2,+,20%} } by (1)
{e78, %, {0+ 4 c?}) by (8)

{e8, », =0t w2} by (1)

It should be noted that similar transformation rules can
not be found for BR-expressions like ¢ + {0, *, f1} or
{wo, +, f1} * {0, #,91}. An analysis of the closed formulas
of such BR-expressions shows that they can not be trans-
formed into useful recursive representations independent of
. In other words, it is due to arithmetic properties of such
expressions that they can not be represented by a single BR
and therefore, no useful transformation rules can be given
for such BR expressions.

3.2 Algebraic Properties of CR’s

Before applying BR properties to CR’s, it is useful to define
the concept of a CR-expression more precisely by generaliz-
ing the definition of a CR in the natural way.

We call an expression @ to be a CR-expression if it rep-
resents one of the following functions over IN:

1. a constant

2. a CR {0,01,¥1,02,...,0k, f} where fi is a CR-
expression

3. F(®1,®2,...,Pn), where F is a function of m argu-
ments and ®1, P2, ..., P, are CR-expressions.

Generalizing from the length of a CR, we define the Cost
Indez (CI) of a CR-expression ® to be

0, if @ is a constant
k+CI(fi), if®={po,®1,¢1,. ..,k fr}

1+ZCI(q>j), if & = F(®,9s,...,8m)

=1

CI(®) =

Similar to the length of a CR, the cost index of a
CR-expression gives an indication of its evaluation cost (it
counts the number of operations needed to evaluate a. CR-
expression at one point)a.

Using these concepts, we return to CR’s by considering
simplification properties of CR-expressions. First, proper-
ties involving a single CR are considered.

Proposition 1 Let ® = {p0,®1,¢01,02,...,0k, f} be a
CR and c be a constant. Then the following relations hold:

O1E+ 2> c+®={ctypo, +,01,02,...,0k, fr} (16)
O1=* = cx®={cxpo, *,01,02,...,0k, fr} ({17)
® is pure-sum

= c*x® = {ckpo, +,cxp1, +, ..., +,cxfr} (18)

and c":{c"",*,c“’l,*,...,*,cf"} (19)
® is pure-product

S 8 ={gh, %65 %y, %,) (20)

and log(®)={loglpo), +,loglp1), +,..., +,log(fr) }. (21)

These relations are proved by induction on the length
of ® using properties of BR’s. If ® is a CR-expression,
we have CI(LHS) > CI(RHS) for (16) and (17). Also
CI(LHS) > CI(RHS) for (18)~(21) (In fact, if & is simple

3For simplicity, let us count F' as one operation and assume that
fF=+or F=x%thenm=2

245

than CI(LHS) > CI(RHS) for (18)—(21), as well). Hence,
the right-hand sides of Eq. (16)~(21) are usually less costly
to evaluate.

Next, we apply the BR properties (12) and (14) to CR’s.
Proposition 2 Let & = {¢0,0,¢1,0,...,0,¢r} and ¥ =
{0,®,91,0,...,0,¢1} be two simple CR’s where k > I.
For pure-sum ® and ¥ we have

o+T {(P0+¢0’ 0 ‘Pl+'¢l; * Pl ¥, ‘Pk}(22)
And for pure-product ® and ¥, we have

&xT = {‘PO*'(/)O; *;---"Pl*’lpl; *, Plyly..., ¥, (pk} (23)

These equalities are shown by induction on CI{(®C¥) us-
ing lemma 2 and 3. Note also that CI(LHS) = CI(RHS)+
[+ 1. Hence, applying (22) or (23) to a CR-expression re-
duces its cost index by [+ 1.

It takes some more detailed analysis to apply the BR
properties (13) and (15) to CR’s. Note that, if consid-
ered as CR-expressions, CI(LHS) < CI(RHS) for (13) and
(15). In other words, the right-hand sides of these equalities
are more complex arithmetic expressions than the left-hand
sides. The following proposition examines under which con-
ditions and how an application of (13) and (15) leads to
useful simplifications.

Proposition 3 Let ®, U be simple CR’s of length k and [.

(i) If ® and ¥ are pure-sum, then there ezists a simple
pure-sum CR T of length k + 1 such that ® ¥ = 3., ¥ can
be constructed using the algorithm CRProd given below, i.e.
¥ = CRProd(®, ¥).

(i) If ® is pure-product and W is pure-sum, then there
ezists a simple, pure-product CR II of length k + ! such that
®Y = II. II can be constructed using the algorithm CRExpt
discussed below, i.e. II = CRExpt(®, ¥).

By lemma 1, we know immediately that ¥ and II ex-
ist. The important question is how to construct L and II
efficiently and whether they speed up the computations.

Let us first consider the algorithm CRProd:

Algorithm CRProd: Let & = {wo, +,p01, *+,..., *,¢&}
and ¥ = {¢o, +,¥1, +,..., +,¢1} with k > [, this algorithm
returns a a simple, pure-sum CR ¥ of length k + [such that
e+ =%

P1 [Base case]
If | =0 return {@otbo, *,w1%0, *,..., +,@rY0}

P2 [Prepare recursive calls] Let
fl ={‘Ply"’,<P2, +,..., +;Sok}
gl ={¢17+)¢27 +""’ +’7’l/)l}
V' =T +g1={tho+91, +, 91+, +,..., +, %}

P3 [Recursive Calls based on (13)] Set
{glly + 7€I2, o +7€;= l} ‘_CB’PrOd(@V gl)
{6’1,7 +, '2’» +,..,t 7€;e+l} «-CRProd(fl, \I”)

P4 [Simplify and return result using (22)]
return {¢0'¢’07 + 75'1 + 5117 LERRRR I ,E;:-H + £Z+l}

The algorithm CRExpt can be easily obtained from CRProd
by appropriately replacing multiplications (additions) with
exponentiations (multiplications).

Finally, to prove proposition 3 we must verify the cor-
rectness of the algorithms CRProd and CRExpt. This is eas-
ily done by induction on CI(® * ¥), using (13), (18), (22)
and noticing that in step P3, CI(® % g1) = CI(f * ¥') =
CI(®* ¥) — 1. Also, T and II are less costly to evaluate
because CI(® * ¥) > CI(Z) and CI(2¥) > CI(II).

We conclude this section with the following interesting
property about the factorial function:

Proposition 4 Let o1 € Z. Then
p1>0

= {‘P07 +,<P1}! ={‘p0!7 *,80, +, &1, 4,y +’£<P1} (24)
p1 <0

1
= {‘PO, +a901}! ={<P0!; *, {50 ¥, 61, *
) b) b)

oo +5€len
for some constructible constants o,81,...,84,)-

7 }(25)

This claim is proved using proposition 3 and the fact that

i—1 el
{po, +, |1} = (po + i lea]) = ol * [] [T (wo + sleeal + 1)

j=01=1
= {eot, . I 0o +1, +. 1011} }
Using (24) we obtain, for example, the following CR’s:

i={1, *,1, +,1} i ={1, *,1, +,3, +,2}

= {n! —iMl={n!, * ————
(vt i) ={nl, &1, 4,1} (n=i)={nl, », s
1 1 1 1 1

) L e) et G

4 The CR construction algorithm

Summarizing the results from the last section, we devise the
algorithm CRMake to construct a CR-expression & for a given
function G(z).

Some remarks about the algorithm:

o The correctness of CRMake follows immediately from the
results of section 3. Also, no further simplifications based
on the lemmas and propositions of section 3 can be per-
formed on the returned CR-expression ®, i.e. CI(®) is
minimized with respect to the results of Section 3.

o The only requirement on the input formula G is that it is
a closed-form function. No special preknowledge about
the characteristics or representation of G is needed. The
algorithm automatically recognizes structures which can
be represented by a CR, independently of their syntac-
tical representation.

¢ The domain of the input function G may remain unspeci-
fied. In fact, the algorithm returns correct results as long
as G is defined over a commutative ring. Therefore, the
algorithm can be used, for example, to construct CR’s
for natural, real or complex functions G.

o The algorithm returns symbolic CR’s which can be ini-
tialized and reused for different values of ¢ and k. How-
ever, if we use actual values for ¢ and h during the CR
construction, then the algorithm returns an already ini-
tialized CR’s.

Let us estimate briefly the time complexity of the algo-
rithm. It is evident from step S2 that CRMake “travels” along
the entire parse-tree of a given input formula G. We then
can estimate the cost of the algorithm for each inner node
of G as follows:

e If CRMake returns as a result of the steps S3, S4.1 or
S4.2, then the additional cost is of at most linear order
in the length of the involved CR’s. For example, if the
property (18) is applied in step S3, then L(®) additional
multiplications are performed at this step.

Algorithm CRMake: This algorithm constructs and
returns a CR-expression ® for a given formula G(z), such
that ®(i) = G(zo + 1h) for ¢ > 0. (Here G is a closed form
function with z as variable.)

S1 [Trivial Cases]
If G is a constant or a CR then return G
I G = z then return the BR {0, +,h}

S2 [Main Recursion]
Apply the algorithm recursively to all arguments of
G, replace the original arguments of G with their con-
structed CR-expressions and set G to the resulting CR-~
expression.

83 [Check for basic properties of CR’s]
If G satisfies a LHS-assumption of one of the equalities
of proposition 1 or 2 then simplify G using that equality
and return the result of the applied transformation.

S4 [Check for recursive properties of CR’s]
If G is equivalent to:

S4.1 {po, +, fi} + {to, +, g1} for some o, o, f1, 91
return {@o + o, +,CRMake(f1 + g1)}

54.2 {<P07 *, fl} * {¢0; *, gl} for some $0, ¢07 f1>91
return {o * 1o, * ,CRMake(f1 * g1)}

S4.3 & x ¥ and &, ¥ are simple, pure-sum CR’s
return CRProd(®, T)

S4.4 Y and @ is a simple, pure-product, ¥ a simple,
pure-sum CR return CRExpt(®, ¥)

S4.5 @™ and ® is a simple,gmre—sum CR,neN
return CRMake(® % ®"7 ')

S5 [Check for factorial case]
If QE{<P0, +,<P1}!, $1€Z and
©1>0 return {io!, * ,CRMake([;2 {wo+1, +,¢1})}

©1 <0 return {wo!, *,CRMake(Hli‘ll{g:o—{—l, +,01)7}
S6 [All else failed] Return G.

Figure 2: The general CR construction algorithm

o Before CRMake returns as a result of the steps S4.3, S4.4,
S4.5 or S5, the algorithm CRProd (resp. CRExpt) is sub-
sequently called. Hence the additional cost depends on
the complexity of CRProd.

o If k = L(®), | = L(¥), k > [then CRProd(®, V) (resp
CRExpt) performs at least k22! arithmetic operations, i.e.
the additional cost of CRProd is Q(k?2}).

It can be concluded from this complexity analysis that
the algorithm needs (n*) time in order to construct a CR
for a dense polynomial of degree n or even needs exponen-
tial time for constructing a CR for products of polynomials.
Such a time behavior leads naturally to very long CR con-
struction times for more complex input formulas. Therefore,
it is desirable to reduce the complexity of the CR construc-
tion algorithm. In the following subsection we propose an
improvement of CRMake which drastically decreases the con-
struction time for some common cases.

246

4.1 An improvement of CRMake

The results of this subsection are based on the following
proposition:

Proposition 5 Given two simple, pure-sum CR’s ® =
{wo, +,01, *,..., +, 0k} and ¥ = {to, +,91}, we have
®x¥ {‘/_’0,+a¢17+)"'7+a¢k1+’¢k+1} (26)
where Go = oo, Pr+1 = (k + L)pr1, and @i = ipi-191 +
(Yo +ih1)pi fori=1,2,... k.

Proof: (By induction on k) Suppose k = 1:
{wo, *+, @1} * {¢o, +, 91}
= {potho, +, %1 + (¥ + ¥1)p1} by (13)
= {wotbo, +, o1 + (Yo + P1)e1, +, 20191} by (6), (7)
Now let k > 1:
{‘PO, +, 01, +a"':‘P’=}*{¢0a +7¢1}
= {¢0¢0a +»{‘P0¢1) o191, +7‘Pk¢1} +
P, +,..., +,‘Pk}*{¢0+'¢'1, +,¢‘1}}
by (6), (13) and (18)
= {povo, +,{po¥1, +,0191,...,Pa91} +
{(Wo+41)e1, +, 191+ (Yo+2¢1) w2, ..., kpripr}}
by induction hypothesis
= {potho, +, o1 +p1(Po+91), +, 20191+ (Yo +2¢1)p2,
4.0, (k+1D)oryn }

It is interesting to observe that proposition 5 can be both,
stated and proved entirely using the concepts of factorial
polynomials and lemma 1. In fact, in light of identity (5),
we can apply proposition 5 to obtain the following recurrence
formula for the constant expressions ¢, (2o, h):

xg, ifi=0
cin =4 nlh™, if i =m; 27)
thciant + (@otih)cin—1, H0<i<n;

In other words, CR’s for 27 for all § < n can be constructed
in o(n?) time using a simple loop which realizes (27).

Based on the results above, we propose to add the fol-
lowing two steps to CRMake

S$1.1 f G =4«7,j € N then
return the symbolic CR {coj, +,c1j, +,..., +,¢j5}

S$3.1 If G satisfies the assumption of proposition 5 then
return the result of the application of (26)

and the following step to CRProd

P1.1 If i =1 then
return the result of the application of (26).

The idea behind step S1.1 can be illustrated by an exam-
ple. Consider the polynomial p(z) = z° + z®. The original
algorithm first constructs a pure-sum CR of length 9 for z°
using the time-expensive algorithm CRProd, then a pure-sum
CR. of length 8 for 3, again using CRProd and finally adds
the two CR’s using property (22) to output a simple, pure-
sum CR of length 9. As a result of step S1.1, the modified al-
gorithm returns the CR {coo+cos, +,..., +,cse+cCss, +,C00}
after only three steps.

In general, the modified CR construction algorithm re-
turns a CR-expression which may not only contain the sym-
bols zo and h but also symbols ¢;; with 0 < i < j < n for
some n > 0. Subsequently, the CR initialization procedure
has to be modified appropriately by computing the values
of the ¢;;’s in the way described above before the CR can
be initialized as we discussed in section 2.1.

In summary, proposition 5 provides the following im-
provements of CRMake:

247

. CR’s for ", and hence for nth degree polynomials,
can be constructed and initialized in o(n*) time.

. The number of recursive calls of CRMake and CRProd in
steps S4.3, 4.5, and S5 is significantly reduced.

5 Implementing the CR method

To realize the CR method, we need to implement three dis-
tinct mechanisms: CR construction, CR initialization, and
CR evaluation. These are described here together with ac-
tual timings. We did our work on the MAXIMA system.
The same code can easily be adopted on other systems with
little change. The CR mechanisms are used to interface the
SIG graphing package components mgraph and xgraph re-
sulting in significant speed improvements.

5.1 CR construction and initialization

The routines CRMake and CRInit for constructing and ini-
tializing CR’s are written in Common Lisp (CL) accessible
from either the Lisp or the top level of MAXIMA. The func-
tion CRMake takes four arguments: a symbolic function G(z),
the name of the variable of G, and the parameters zg, h. If
Zo, h are symbols, then CRMake returns a symbolic CR, oth-
erwise the values of zo, h are used to directly construct an
initialized CR. The function CRInit takes a symbolic CR
and equalities of the form variable=value as input and ini-
tializes the CR by evaluating all constant expressions us-
ing the given values (for zo,h, etc.). A symbolic CR can
be initialized with any valid MAXIMA value resulting in a
CR whose evaluation yields the respective value type. For
example, we can initialize a CR to produce floating point,
rational, complex or bigfloat values.

Construction and initialization timings? for the five ex-
amples (Fig. 1) are shown in Table 1. For G2 we choose an
11th degree polynomial with rational coefficients whose CR.
construction yields a simple, pure-sum CR of length 11.Each
table entry shows two timings: the first deals with the orig-
inal CR construction and initialization algorithm and the
second shows the same data for the improved CRMake al-
gorithm. The table examines constructing a symbolic CR
(column 1), initializing the CR with rational numbers (col-
umn 2), and constructing the same initialized CR directly
(column 3).

Symbolic | Rational | Rational
CRMake CRInit CRMake

1 52/12 10/6 45/9
2 265/33 90/25 110/33
3 372 1/ 2/1
4 4/2 1/1 2/1
5 12/5 6/3 8/6

Table 1: CR Construction Timings in ms

The above timings clearly illustrate the improvement
gained by the modified CR construction and initialization
algorithms. Furthermore, CR’s with symbolic parameters
are clearly more expensive to construct than those with nu-
meric parameters. However, once a symbolic CR is con-
structed, its initialization is still the fastest way to obtain a
“ready-to-evaluate” CR.

%All timings of this section were obtained using a lightly loaded
Sun SPARCstation2 with 32MB main memory

5.2 Evaluation of CR’s

Once a CR for G(z) is constructed and initialized, it can
be used to produce the values G(zo + th) very efficiently.
Evaluation can proceed using a direct interpretation or a
code generation approach.

In the direct interpretation approach, we treat the tuple
representation of a CR as a program. A general routine
is used to interpret any CR tuple. Each interpretation pass
produces the next evaluation value and modifies the tuple for
the next pass. To illustrate this approach, let us consider the
evaluation of a simple CR. Suppose the CR tuple is stored
as a list CR. Then the following MAXIMA function CREval
evaluates CR for n points, yielding the result values in the
array Result. This approach obviously works in general.

CREval(CR,1,n,Result):=
for i:0 thru n-1 do
(Result[i] = CR[1],
for j:2 thru 2#1 step 2 do
CR[j-1]: if equal("+",CR[j1)
then CR[j-1]+CR[j+1]
else CR[j-1]*CR[j+1]
);

Note that the function CREval is a rendition of a much more
efficient and complete implementation in CL.

To make the CR evaluation even faster, we can generate
compilable code whose execution yields the values of a spe-
cific CR. We implemented the MAXIMA function CRCodeGen
which, given an initialized CR tuple, produces efficient C
code to calculate the evaluations. For example, with z¢ =
0,h = 0.01 CRCodeGen generates the following C function
CCREval for ®;.

void CCREval(int n, double Result)

{ double CRO = 1.3591409142295225;
double CR1 = 0.98422045134067937;
double CR2 = 1.0004674797985269;
double CR3 = 1.000006000018;
for (int i=0 ; i<m ; i++)

{ Result[i] = CRO;
CRO =*= CR1;
CR1 *= CR2;
CR2 *= CR3;
}
}

Table 2 shows timings with the interpretation approach.
Again, we use the examples 1-5. The evaluation of examples
1-3 was done for 1000 points using floating point numbers,
whereas the evaluation of examples 4 and 5 was done for
100 points using rational numbers. Each table entry shows
three timings: normal MAXIMA evaluation of the original
formula (column 1), Horner’s rule applied whenever possible
(column 2), and the CR interpretation (column 3).

[| NormalEval | HornerEval | CREval | Speedups |

1 1614 1325 155 [10.5 / 8.5
2 3074 1248 357 | 86 /35
3 428 428 160 2.7
4 708 708 31 20.5
5 3103 2567 209 | 14.5/12.3

Table 2: Timings of MAXIMA evaluation routines in ms

248

Table 3 shows timings of automatically generated eval-
uation procedures in C. Only examples 1-3 are considered
here. The respective routines were generated by the above
described MAXIMA routine CRCodeGen and compiled using
the gcec compiler. All evaluations were done for 1000 points
using double values.

[[NormalEval | HornerEval | CREval | Speedups |

1 3240 2980 50 64 /59
2 680 240 9 | 76 /27
3 1990 1990 480 4.2

Time for program generation and compilation: = 3 seconds

Table 3: Timings of compiled C-evaluation procedures in ps

Obviously, the speedups gained by either CR evaluation
methods are substantial — even for such relatively simple for-
mulas as G's and even in comparison with some "faster” eval-
uation techniques, such as the Horner evaluation for polyno-
mials. We can furthermore notice that the speedup depends
on the evaluation method, the data type of the values, and
the nature of the closed-form formula.

One might wonder if there are cases where a CR takes
longer to evaluate then the naive approach. Our experi-
ments indicate that the additional evaluation overhead of
the CR is almost negligible in comparison to the total eval-
uation time and, in the worst case, the CR evaluation is
basically equivalent to the naive evaluation. In other words,
a CR evaluation may not be faster in certain cases but nei-
ther is it significantly slower.

A CR evaluation yields algebraically the same result as
a normal evaluation of the original formula. However, this
changes when floating point numbers are used (as is illus-
trated in table 4). Because a CR. uses a different sequence
of arithmetic operations, it is clear that its numeric error
properties are different. Potentially, a CR evaluation can
result in bigger numerical errors, because errors can accu-
mulate from point to point. Therefore, if the numeric error
exceeds a certain limit, we might have to “refresh” the CR
evaluation by reinitializing the symbolic CR.

The timings obtained also clearly illustrate the advan-
tages and disadvantages of the two different evaluation meth-
ods. There is certainly no general “recipe” that one can ap-
ply to determine which of the methods to use. This depends
very much on the characteristics of the specific application
and on the sizes of the problems involved. We discuss next
a typical application of the above methods.

5.3 Application in SIG

SIG is a graphics system [5] for the display of curves and
surfaces defined by mathematical formulas in a symbolic
system. It uses MAXIMA/CL for straightforward evalua-
tions of symbolic formulas to generate a set of points for the
desired curve or surface. Then, a stand-alone C-X11-based
graphics facility does the display. The point generation part
of SIG is modified to employ the CR method. Before a for-
mula is evaluated, it is transformed into a CR-expression
which is then interpreted (CREval) to generate the points.
Table 4 shows the improved timings for three curves (ex-
amples 1-3) in the interval [-5,5] and a stepwidth of 0.05.

[| CRMake | CREval | SIG | Speedup | Rel. Error |

1 3 31 322 9.4 10~°
2 5 71 | 614 8.0 107
3 1 32| 86 2.6 10°1¢

Table 4: Timings of modified SIG evaluation in ms

The results indicate clearly that the initial cost of con-
structing a CR is very small in comparison to the total eval-
uation time and that any possible extra numerical errors
introduced by the CR evaluation are tolerable. Therefore,
the CR technique can be applied successfully in practice.
The impact will be more significant after we extend the CR
method to functions of more than one variable.

6 Summary

The CR technique can be very effective for the evaluation of
a function at regular intervals. The CR construction algo-
rithm is simple to implement and executes efficiently. Once
constructed, a CR tuple can be interpreted as a program
to produce function values. This approach is suitable for
dynamic applications. The CR technique can also be used
to generate efficient code to be compiled and therefore be
applied to automatically optimize source code of numerical
and algebraic programs.

Our MAXIMA implementation and the SIG application
demonstrate the practical value of the CR method. Much
future work lies ahead: to extend the general concept of
CR’s to second or higher order recurrences, to treat func-
tions in more than one variable, and to handle trigonometric
functions. Furthermore, the numeric properties of the CR
evaluation should be analyzed in more detail.

Finally, CR’s are evaluated in a vector-like fashion,
whereas functions are normally evaluated in a tree-like fash-
ion. Therefore, CR’s also promise to provide new and more
efficient means to parallelize function evaluations on modern
high-performance computers.

Acknowledgments

We would like to thank all referees for their very helpful
suggestions and comments. We are especially grateful to
one of the referees who suggested to use the “chain” feature
for defining CR’s and who pointed out the close relationship
of factorial polynomials and CR’s.

References

[1] William H. Beyer. CRC Standard Mathematical Tables.
CRC Press Inc., Boca Raton, Florida, 27th edition, 1984.

{2] The MATHLAB Group. Macsyma Reference Manual,
version nine. Laboratory for Computer Science, M.I.T.,
Cambridge Mass., 1977.

[3] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Reading
Mass.:Addison Wesley, 1981.

[4] Peter A. Stark. Introduction to Numerical Methods. The
Macmillan Company, New York, 1970.

249

[5] Paul S. Wang. A system independent graphing package
for mathematical functions. In Design and and imple-
mentation of symbolic computation systems : Interna-
tional Symposium, DISCO ’90, Capri, Italy, April 1990.
LNCS 429, Springer Verlag.

[6] Eugene V. Zima. Recurrent relations and speed-up of

computations using computer algebra systems. In De-

sign and and implementation of symbolic computation
systems : International Symposium , DISCO ’92, Bath,

U.K., April 1992. LNCS 721, Springer Verlag.

