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Abstract

As computer architects are unable to scale clock frequency due to a
power wall, parallel architectures have begun to proliferate. With this
shift, programmers will need to write increasingly concurrent applica-
tions to maintain performance gains. Parallel programming is difficult
for programmers and so Rust, a systems programming language, has
been developed to statically guarantee memory- and thread-safety and
catch common concurrency errors. This work draws comparisons be-
tween the performance of concurrency features and idioms in Rust, and
the low level and distinctly unsafe implementation of Pthreads in C. We
find that while Rust catches common concurrency errors and does not
demonstrate additional threading overhead, it generally executes slower
than C and exhibits unintuitive locking behavior.

1 Introduction

As the "power wall” has stalled advances in clock frequency, the
industry has begun to favor parallel architectures to improve per-
formance [17]. This shift has significant ramifications for pro-
grammers. A programs performance scales trivially with clock
frequency, whereas parallel programs often require significant
design effort on the part of the programmer to scale well. But if
software performance is to improve in step with hardware, con-
current software must become the norm. It is difficult for most
programmers to decompose an algorithm into parallel workloads
and to anticipate all of the interactions that can occur. This pro-
liferates new kinds of errors that are much harder to anticipate,
find, and prevent including deadlock, livelock, and data races.
Much work has been done analyzing the nature of, locating, and
reproducing these common programmer errors [15, 8, 16, 6, 14].
Many common concurrency challenges, however, have not con-
clusively been solved for programmers.

It is important that programmers start writing parallel pro-
grams in order to scale software performance with hardware. To
this end, programmers should feel confident in their ability to
write safe, parallel code. The question becomes: Which tools
currently available are best suited for the task? One technique
that has had moderate success is the development of thread-
safe programming languages to help programmers better express
their intentions and avoid common mistakes [14].

The goal of this paper is to analyze one such language, Rust,
a new systems programming language that aims to help pro-
grammers write concurrent code with zero-cost abstractions [3].
Designed to be a modern, open-source systems programming
language, Rust leverages a powerful type system to make static
guarantees about program safety. Rust allows for manual mem-
ory management similar to C, but it employs several special rules
at compile time regarding variable bindings and memory alloca-
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tion. One rule that Rust enforces is the concept of ownership
to ensure memory safety. When a variable binding is assigned,
such as let x = vy, the ownership of the data referenced by
y is transferred to x. Any subsequent usages of y are invalid.
In this way, Rust enforces a one-to-one binding between sym-
bols and data. Ownership is also transferred when passing data
to functions. Data can be borrowed, meaning it is not deallo-
cated when its binding goes out of scope, but the programmer
must make this explicit. Data can be borrowed as mutable or im-
mutable, also specified explicitly, and the compiler makes sure
that permissions to borrowed data are not violated by the bor-
rower. Furthermore, the Rust compiler enforces the notion of
lifetimes, which ensures when a binding falls out of scope, the
reference is deleted from the stack and its data is de-allocated
from the heap. This means that dangling pointers are no longer
a danger to programmers. With ownership, borrowing, and life-
times, Rust forces the programmer to make promises about how
they will share and mutate data which are checked at compile
time. These constraints have serious implications for concurrent
programming, as we discuss in Section 3. We are interested in
assessing whether or not they impact the performance of concur-
rency in Rust.

For comparison, we have selected the C programming lan-
guage and the Pthreads API. We chose C as it is a natural com-
petitor to Rust, and its (lack of) safety features and threading
paradigms are well known. Further, many parallel programming
errors specifically caught by the Rust type system are made of-
ten in C. The remainder of this paper explores the tradeoffs made
by the Rust programming language in terms of usability and
performance with respect to C implementations using Pthreads.
Section 4 summarizes related projects which address concurrent
programming challenge, Section 5 discusses our experimental
methodology, Section 6 describes our findings, and Section 8
concludes.

2 Concurrency in C

The C parallel programming paradigm follows directly from its
design philosophy: low level and unsafe, in the sense that the
programmer is trusted to write safe code. Because C does not
check pointer operations, C programs can cause notorious prob-
lems such as use-after-free bugs. Common pitfalls such as data
races and deadlock can easily go unnoticed and must be avoided
by adhering to good practice conventions. The hazards posed by
concurrent programming in C are easy to run into and potentially
limit the scalability of concurrent software written in C. This
manifests strikingly in most modern browsers which are strug-
gling to benefit from multiprocessor devices as their core render-



ing engines are written as single-threaded C++ monoliths [7].

3 Concurrency in Rust

Rust’s guarantees memory safety, efficient C bindings, and data-
race free threading at compile time. Multithreading in Rust is
available through its standard library. Threads are spawned us-
ing a thin wrapper around Pthreads. Syntactically, threads in
Rust execute a closure. A handle is returned when a thread is
spawned, similar to a pthread_t in C.

In order to help programmers write and reason about con-
current code, Rust offers a static type system with the concept
of traits. Traits tell the Rust compiler about the functional-
ity that a type must provide, and there are two key traits that
matter for concurrent programming. The first is Send. Send-
compliant types can have their ownership safely transferred be-
tween threads; types that do not implement Send are not guar-
anteed to be thread-safe and will not be allowed to be sent from
one thread to another. The second property is Sync, which
guarantees that concurrent accesses from multiple threads to the
same data structure are safe. In other words, the threads’ access
to the Sync data is mutually exclusive. As an example, Rust
implements mutexes using the Sync property.

Often, multithreading in C involves passing pointers to the
same data to different threads, creating a potential data race de-
pending on the threads’ access pattern. Rust’s type system pre-
vents threads from directly sharing references to the same mem-
ory. Instead, Rust mandates that such sharing be managed by
the Arc<T> type, an atomic reference count type. Arcs keep
track of how many threads have access to the data they contain
so that they know when the data falls out of scope and can be
deallocated. For Arc<T> to be passed to threads, it and its con-
tents must implement Send and Sync. For immutable values,
both characteristics are guaranteed. However, the Sync prop-
erty is not inherently implemented by mutable values because a
data race is possible. Consequently, mutable values must first
be stored within a Mutex<T> , which only allows one thread to
hold the lock to access its reference.

The Mutex<T> type is similar to pthread mutex_t, but
it differs in that it wraps the data which it protects unlike the
pthread mutex_t which wraps sections of code. This echos
Rust’s design philosophy to “lock data, not code” [3]. The idea
is that linking the mutex to the data it protects limits misuse and
deadlock. From the programmer’s perspective, there are similar-
ities between the usage of st d: : threads in Rust and Pthreads
in C, but Rust’s enforcement of ownership with mutable state,
and type system ensure that threaded processes will be memory
safe and free of race conditions.

4 Work Related to Rust

Other languages take a slightly different approach than Rust to
making concurrent programming easier. Rust’s own developers
admit that Rust is “not particularly original”, borrowing many
of its design elements from a variety of languages [4]. Library
based solutions such as OpenMP [11] and CILK/CILK++ [13]
facilitate writing scalable multithreaded solutions via compiler
directives, language extensions and sophisticated runtime sys-
tems which schedule threads, balance load, and manage inter-

thread communication. Ivory is another programming language
with similar design goals to Rust [12]. Designed for high-
assurance applications, Ivory is embedded within a variant of
Haskell and compiles directly to C. To guarantee memory safety,
however, Ivory limits functionality in critical ways, such as:

e Heap allocation is forbidden
e All loop iterations must be statically bounded by a constant
e Expressions must have no side-effects

These limitations severely limit expressive power and common
programming idioms, but further underscore the importance of
memory safety in systems programming. Ivory’s design as well
as the OpenMP and CILK projects show that there is interest in
addressing the same problems that Rust tackles.

S Methodology

To achieve our goal of comparing concurrency frameworks in
Rust and in C, we selected concurrency frameworks for each
language. For C, we chose the raw Pthreads library as this
was sufficiently low level, simple to program with and reason
about, and ubiquitous among programmers. Also, it does not re-
quire an additional runtime system like other solutions such as
OpenMP or CILK. For Rust, we chose the standard library solu-
tion, std: : thread, except one benchmark for which we used
the crossbeam threading library.

As of Rust 1.0-alpha [2], the language removed support
for green threading, and instead uses native OS threads [5].
Rust wraps Pthreads, an inherently unsafe library, with its
std: :thread library, leveraging its safety features. Conse-
quently, our measurements characterize the efficacy of Rust’s
use of Pthreads compared to a hand-crafted C implementation.

This research attempts to answer: Does Rust’s concurrency
framework, with its emphasis on safety, come with drawbacks
that outweigh its usefulness? To explore this question we
sought benchmarks which captured common parallel program-
ming techniques. We chose three: blackscholes (from the PAR-
SEC benchmark suite [9]), matrix multiplication, and vector dot
product. As programmers most familiar with C/C++, we experi-
enced the semantic differences between Rust and C and gained
insight into how Rust’s strict compiler may hinder a programmer
who takes a typical C approach to implementing a concurrent
algorithm. Therefore, a second question we seek to answer is:
Does Rust’s insistence on safety unnecessarily hinder a skilled
concurrent programmer?

To measure our benchmarks, we used the Sniper Multi-Core
Simulator [10]. We simulated an 8 core machine based on the
Nehalem architecture. We ran the benchmarks in serial, avoiding
calls to the concurrency frameworks, and then with two, four
and eight threads. Our benchmarks invoke the relevant number
of threads from the main thread of execution, which then waits
for the spawned threads to complete. We took steps to make
sure the data access patterns of each benchmark in C and Rust
were kept the same. To hone in on the performance of the kernel
itself, we took advantage of Sniper’s “region of interest” feature,
which enables us to hone in on the parallelized portions of the
benchmarks.



5.1 Our Benchmarks
5.1.1 Matrix Multiplication

We measure the performance of matrix multiplication to exam-
ine how each language’s concurrency framework handles shared
data structures between threads. The benchmark multiplies a
matrix M by itself, where M is a matrix of 128 x 128 unsigned
integers with values 0,1, ...,127. This benchmark’s Rust im-
plementation differs from our other Rust benchmarks in that
we use the crossbeam threading library to parallelize the ker-
nel, rather than std: :threads. This is because we encoun-
tered difficulties sharing the output matrix between threads using
std: :threads. This shed light on the ways Rust’s constraints
can restrict the programmer in unexpected ways. We will dis-
cuss the development of this benchmark and the switch from
std::threads to crossbeamn in Section 6. Matrix multi-
ply is a good benchmark to use as it tests both memory access
behavior as well as a series of arithmetic operations.
voidx multiply (voidx slice)
{
int s = (int)slice; // retrive the slice info
int from = (s * SIZE)/num_thrd; // note that this ’‘slicing
/ works fine
int to = ((s+1) % SIZE)/num_thrd; // even if SIZE is not
divisible by num_thrd
int i,79,k;
for (i = from; i < to; i++)
{
for (j = 0; Jj < SIZE; j++)
{
Crilrjl = 0;
for ( k = 0; k < SIZE; k++)
{
Cli1[3] += A[i][k]*BI[k][]];
}
}
}

return 0;
Listing 1: Matrix Multiply C kernel

for i in from..to {
for j in 0..TOTAL_SIZE ({
for k in 0..TOTAL_SIZE {
chunk [count] += a[i][k] * b[k][j];
}

count += 1;

Listing 2: Matrix Multiply Rust kernel

5.1.2 Blackscholes

Blackscholes is a popular benchmark that is part of the PARSEC
parallel programming benchmark suite [9]. It is a financial ap-
plication that simulates options pricing using the Black-Scholes
partial differential equation. We chose this benchmark because it
is widely studied and presents a practical application of concur-
rent programming. To port blackscholes to Rust, we took advan-
tage of Rust’s ability to link with C libraries [1]. We compiled
the blackscholes kernel from PARSEC as a shared library, and
linked to it from our Rust code with the #link attribute. At that
point, we were able to parallelize calls to the blackscholes ker-
nel using Rust std: : threads. For our C tests, we compiled

serial and parallel versions of the blackscholes benchmark using
the parsecmgmt tool that ships with PARSEC. The code for
the blackscholes kernel can be found in the PARSEC benchmark
suite source code.

5.1.3 Dot Product

Our dot product benchmark computes the dot product of two
vectors of 220 double-precision values. We measured dot prod-
uct to explore how Rust’s Arc and Mut ex<T> type impacts em-
barrassingly parallel tasks compared to a pthread mutex_t
in C. We implemented dot product in two ways. In one imple-
mentation, threads compute local sums that are summed together
after the threads complete. In the other, threads concurrently add
to a global sum, in which case a mutex is required. This allows
us to investigate the performance of locks in Rust as compared
to C.
void xdotprod(void xargqg)
{ int i, start, end, len ;

long tid;

double partialsum, *x, *y;

tid = (long)arg;

len = dotstr.veclen;
start = tid * len;
end = start + len;

x = dotstr.a;
y = dotstr.b;

partialsum = 0;
for (i = start; i < end ; 1i++)
{
partialsum += (x[1] = y[i]);

}

dotstr.sum[tid] = partialsum;
#if NTHREADS != 1

pthread_exit ((voidx) 0);
#else

return NULL;
}

Listing 3: Dot Product C Kernel

fn dot_prod(x: & Vec<f64>, y: & Vec<f64>, start: usize, end:
usize) —-> f64 {
let mut dotprod: f64 = 0.0;
for i in start..end {
if i < x.len() {
dotprod = dotprod + (x[i] * y[i]);
}
}
dotprod

Listing 4: Dot Product Rust Kernel

6 Results & Analysis
6.1 Comparing Performance

We seek to evaluate the overhead of each language’s concur-
rency framework. Therefore, we present the normalized speedup
as a function of the number of threads for each benchmark im-
plementation from 1 to 8 threads in Figure 1.

The speedup ideally scales with the number of threads. One
can see that C very nearly achieves this in every benchmark.
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Rust keeps up best in both implementations of dot product, fairly
well in blackscholes, and less so in matrix multiply.

Figure 2 displays our absolute execution times recorded for
the four benchmarks. Generally speaking, C still dominates Rust
by a relatively wide margin in terms of execution time. Conse-
quently, there is definitely a performance cost associated with
using Rust instead of C. In spite of this, Rust’s execution time
halves every time the number of threads is doubled for 1 through
4 threads, which corresponds to the doubling of speedup as ob-
served in Figure 1.

A striking result from our Sniper simulations is that at 8
threads, on an 8 core machine, Rust lags behind C egregiously.
Figure 4 shows that this is due to a workload imbalance that
only afflicts our Rust benchmarks. One can see that for each
Rust benchmark, core 0 is largely idle while another core takes
on twice the work as the others and thus slows down the entire
program. Hence our slowdown at eight threads in Sniper.

We investigated this discrepancy further by running the Rust
blackscholes benchmark on an 8-core physical machine to see
if this problem was merely an artifact of the Sniper simulator.
Figure 3 shows that on a physical machine, normalized speedup
continues to improve at eight threads, contradicting our simula-
tor results from Figure 1. Admittedly, because we were unable
to isolate the parallel region of interest on our physical machine,
we see diminishing returns in speedup as the number of threads
increases, as described by Amdahl’s Law. Still, we have conclu-
sively determined that the Sniper scheduler is giving erroneous
results for Rust at eight threads due to some issue with its sched-
uler. It is interesting that this problem in Sniper occurs only with
our Rust programs, not our C programs. Nevertheless, because
of this simulator error, we feel it is best to ignore the data point
for speedup at eight threads in Figure 1.

Additionally, a compelling “gotcha” we uncovered was the
unexpected slowdown of the Rust dot product benchmark when
unwrapping and modifying locked data in one line. To ensure
memory safety, the Rust compiler emits synchronization code
(as well as other memory management code e.g. destructors)
around accesses to objects of type Mutex<T>. In our dot prod-
uct benchmark’s original implementation, the result of the paral-
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lel dot product computation was used as an rvalue for an addition
operation on a synchronized variable (see Listing 5).

«dotprod_shared.lock () .unwrap () +=
dot_prod(&x_shared, &y_shared, start, end);

Listing 5: Rvalue used in serialized add

This unexpectedly serialized the computation of the rvalue as
well such that no benefit came from parallelization, as shown
by the flat line labeled “naive locks” in Figure 1. Ideally, the
compiler would compute the rvalue before attempting to unlock
the lvalue so that the program would not be serialized. This
problem was solved by expressing the above in two lines, as
shown in Listing 6.

let thrdsum = dot_prod(&x_shared, &y_shared, start, end);
~dotprod_shared.lock () .unwrap () += thrdsum;

Listing 6: Rvalue used in serialized add

6.2 Comparing Ease of Implementation

Although Rust’s ownership system ensures memory safety and
synchronization of data, there exists a learning curve that must
be overcome. As newcomers to the Rust language, we had diffi-
culties complying with the ownership system at first. However,
over time we began to appreciate Rust as it forces the program-
mer to consider the safety of their code. In the same vein, Rust
forces the programmer to think about parallel memory safety.
However, there are still some annoyances about Rust that can, at
times, make implementing a simple algorithm difficult.

For example, we found Rust’s insistence on avoiding any pos-
sibility of a data race to be cumbersome at times. In the matrix
multiplication benchmark, each thread is given exclusive access
to a section of a shared data structure. Rust prevents the data
structure from being shared across multiple threads for fear of
a data race, even though accesses are mutually exclusive in our
algorithm. In C, this is of course not a problem, but we found
Rust’s strictness to be a hindrance.

We looked to other threading libraries as a way of circum-
venting this issue. We settled upon crossbeam’s scoped
threads as a way of statically specifying the portion of the out-
put matrix that each thread could mutate. This way, we could
implement our algorithm as we did in C, and the Rust compiler
could be guaranteed that accesses to regions of the data structure
were mutually exclusive. Initial debugging of this issue proved
to be painful because of nebulous compiler errors and our lack
of Rust expertise, but integration of the library to implement the
fix was easy thanks to Rust’s cargo package manager.

Overall, we found that in this instance, writing safe Rust code
was more of a hassle than beneficial, since we knew in advance
that our chosen algorithm was thread-safe. In this case, it may
have been appropriate to use Rust’s unsafe tags to surround
concurrent accesses to the shared output matrix, but in retrospect
we feel it was worthwhile to see the lengths one would need to go
to make this algorithm compliant with Rust’s ownership rules.
Our conclusion is that while it is possible to make it apparent to
the compiler that our algorithm is thread-safe, there is no value
in doing this if we have already verified that this is so on our
own. Rather, the real value of Rust in this case is that it forced
us to prove this to ourselves before moving forward.



7 Future Work

While this work illustrates many of the challenges associated
with using the Rust language, as well as its powerful safety fea-
tures, it also raises many future research questions. For example,
a comprehensive comparison of safe C style languages such as
Rust, Ivory, and Go would likely benefit the concurrency com-
munity. Also, our results show that Rust’s locking scheme could
benefit from optimization in the case that a lock is acquired and
a result is calculated in the same line. Further, while the bench-
marks used in this work uncovered critical aspects of Rust pro-
gramming, analyzing benchmarks with irregular parallelism on
larger data sets would be intriguing. In particular, following the
work in [14], an analysis of Rusts use in a large scale project
such as Servo to eliminate common concurrency pitfalls would
demonstrate its long-term value well.

8 Conclusion

With this work, we have demonstrated Rust’s usefulness in help-
ing the programmer write safe concurrent code. We have shown
that Rust for the most part achieves the same speedup as C
Pthreads when adding additional threads. This breaks down in
Sniper, however, when the number of parallel lines of execution
exceeds the number of system threads. It is unclear why the
Sniper scheduler elects to switch out the main thread in C and
not in Rust even though from the code it would appear both sim-
ply wait for spawned threads to join. This is definitely an issue
that would be worth bringing up to either the Rust language de-
signers and the Sniper developers as it hampers the functionality
of Sniper in profiling concurrent Rust performance.

Aside from speed up comparisons, we also observed that Rust
is still generally inferior to C when it comes to absolute exe-
cution time performance. In addition to being slower than C
overall, we uncovered certain ’gotchas” in Rust where using a
Mutex<T> can effectively render all concurrency useless due
to locking.

Overall, we believe that Rust has the potential to become a
useful parallel programming language. Its ownership system
and concurrency rules and constructs offer powerful compile-
time restrictions that help programmers write safe and efficient
concurrent programs. Although new, Rust is already being used
in major projects such as Servo, an Internet browser developed
by Mozilla. As the number of cores on chip continues to grow,
languages like Rust will help programmers take advantage of
these resources by making concurrent programming safer and
easier.
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