Алексей Левин
«Популярная механика» №1, 2010

«Антиматерия физически и химически ничем не отличается от материи. Собственно, это та же материя, только вывернутая наизнанку. Для проционидов наши физические и химические справочники пригодны так же, как и для нас. Они описывают те же самые закономерности, те же самые реакции с теми же самыми элементами. Только для них наша материя является антиматерией. Вопрос, с какой стороны смотреть».

(Кшиштоф Борунь, «Антимир», 1963)

Мысль о возможности существования антивещества была высказана еще в эпоху классической физики, в конце XIX века. Изображение: «Популярная механика»
Мысль о возможности существования антивещества была высказана еще в эпоху классической физики, в конце XIX века. Изображение: «Популярная механика»

Открытие античастиц по праву считается крупнейшим достижением физики ХХ столетия. Оно впервые доказало нестабильность материи на самом глубинном, самом фундаментальном уровне. До этого все были уверены, что вещество нашего мира сложено из элементарных частиц, которые никогда не исчезают и не рождаются заново. Эта простая картина ушла в прошлое, когда без малого 80 лет назад было доказано, что электрон и его положительно заряженный двойник при встрече исчезают, рождая кванты электромагнитного излучения. Позднее выяснилось, что частицам микромира вообще свойственно превращаться друг в друга, причем многими способами. Открытие античастиц положило начало коренной трансформации фундаментальных представлений о природе материи.

Мысль о возможности существования антивещества впервые была высказана в 1898 году — англичанин Артур Шустер опубликовал в журнале Nature весьма туманную заметку, вероятно, вдохновленную недавним открытием электрона. «Если существует отрицательное электричество,– вопрошал Шустер, — то почему бы не существовать отрицательно заряженному золоту, такому же желтому, с той же точкой плавления и с таким же спектром?» А дальше у него — впервые в мировой научной литературе — появляются и слова «антиатом» и «антивещество». Шустер предполагал, что антиатомы притягиваются друг к другу гравитационными силами, но отталкиваются от обычной материи.

Антиэлектроны впервые были замечены в эксперименте опять-таки до момента своего официального открытия. Это сделал ленинградский физик Дмитрий Скобельцин, который в 1920-х годах исследовал рассеяние гамма-лучей на электронах в камере Вильсона, помещенной в магнитное поле. Он заметил, что некоторые треки вроде бы электронного происхождения искривляются не туда, куда положено. Дело, разумеется, в том, что гамма-квант при взаимодействии с веществом может давать начало электрону и позитрону, которые в магнитном поле закручиваются в противоположных направлениях. Скобельцин этого, естественно, не знал и объяснить странный эффект не смог, но в 1928 году доложил о нем на международной конференции в Кембридже. По занятному совпадению, годом ранее в совет кембриджского колледжа Св. Иоанна избрали молодого физика-теоретика Поля Дирака, чьи исследования со временем позволили объяснить эти аномалии.

Уравнение Дирака

В 1926 году австриец Эрвин Шредингер сформулировал уравнение, описывающее поведение нерелятивистских частиц, подчиняющихся квантовой механике, – дифференциальное уравнение, решения которого определяют состояния частицы. Уравнение Шредингера описывало частицу, которая не имеет собственного углового импульса — спина (иначе говоря, не ведет себя как волчок). Однако в 1926 году уже было известно, что электроны обладают спином, который может иметь два различных значения: грубо говоря, ось электронного волчка ориентируется в пространстве лишь в двух противоположных направлениях (спустя год аналогичное доказательство было получено и для протонов). Тогда же швейцарский теоретик Вольфганг Паули обобщил уравнение Шредингера для электрона, так чтобы оно позволяло учитывать спин. Таким образом, спин сперва открыли экспериментально, а потом искусственно навязали шредингеровскому уравнению.

В релятивистской механике Эйнштейна формула для энергии свободной частицы выглядит сложнее, нежели в ньютоновской. Перевести эйнштейновскую формулу в квантовое уравнение несложно, это проделали и Шредингер, и трое его современников. Но решения такого уравнения показывают, что вероятность нахождения частицы в определенной точке может оказаться отрицательной, что не имеет физического смысла. Возникают и другие неприятности, обусловленные тем, что математическая структура нового уравнения (его называют уравнением Клейна–Гордона) расходится с теорией относительности (на формальном языке, оно не является релятивистски инвариантным).

Вот над этой задачей в 1927 году и задумался Дирак. Для сохранения инвариантности он включил в уравнение не квадраты операторов энергии и импульса, а их первую степень. Чтобы записать уравнение в таком виде, пришлось изначально ввести в него более сложные, чем у Паули, матрицы размером 4 × 4. У этого уравнения обнаружились четыре равноправных решения, причем в двух случаях энергия электрона положительна, а в двух — отрицательна.

Тут-то и возникла загвоздка. Первая пара решений интерпретировалась просто — это обычный электрон в каждом из возможных спиновых состояний. Если добавить в уравнение Дирака электромагнитное поле, то легко получится, что электрон обладает правильным магнитным моментом. Это был гигантский успех теории Дирака, которая без всяких дополнительных предположений наделила электрон и спином, и магнитным моментом. Однако в первое время никто не мог решить, что делать с остальными решениями. И в ньютоновской, и в эйнштейновской механике энергия свободной частицы никогда не бывает отрицательной, и частицы с энергией меньше нуля вызывали недоумение. К тому же было непонятно, почему обычные электроны не переходят в предсказанные теорией Дирака состояния с заведомо меньшей энергией, в то время как электроны в оболочках атомов такой возможности не упускают.

Поиски смысла

Через два года Дирак нашел очень красивую интерпретацию парадоксальных решений. В соответствии с принципом Паули два электрона (как и любые частицы с полуцелым спином) не могут одновременно находиться в одинаковом квантовом состоянии. По мысли Дирака, все состояния с отрицательной энергией в норме уже заполнены, а переход в эти состояния из зоны положительных энергий запрещен принципом Паули. Поэтому дираковское море электронов с отрицательной энергией в принципе не наблюдаемо, но лишь до тех пор, пока в нем нет свободных вакансий. Такую вакансию можно создать, если вышибить электрон с отрицательного энергетического уровня на положительный (например, достаточно мощным квантом электромагнитного излучения). Поскольку электронное море потеряет единицу отрицательного заряда, появившаяся вакансия (Дирак назвал ее дыркой) будет вести себя в электрическом поле как частица с плюсовым зарядом. По этой же логике падение электрона из нормального состояния в такую дырку ведет к исчезновению и электрона, и дырки, сопровождающемуся испусканием одного фотона.

А как проявляют себя дираковские дырки в реальном мире? Сначала Дирак отождествлял их с протонами, о чем в 1930 году и написал в Nature. Это было как минимум странно — протон в 2 000 раз тяжелее электрона. Будущий академик и нобелевский лауреат Игорь Тамм и будущий отец атомной бомбы Роберт Оппенгеймер выдвинули и более серьезное возражение, заметив, что тогда каждый атом водорода стоит перед угрозой исчезновения, а этого в природе не происходит. Дирак вскоре отказался от этой гипотезы и в сентябре 1931 года выступил со статьей, где предсказал, что дырки, если их удастся обнаружить, окажутся совершенно новыми частицами, неизвестными экспериментальной физике. Он предложил назвать их антиэлектронами.

Дираковская модель ушла в историю после создания квантовой электродинамики и квантовой теории поля, которые приписывают частицам и античастицам одинаковую реальность. Из квантовой электродинамики следует также, что встреча свободного электрона с антиэлектроном влечет за собой рождение не менее пары квантов, так что в этой части модель попросту неверна. Как нередко бывает, уравнение Дирака оказалось много умнее интерпретации, предложенной его создателем.

Открытие антиэлектрона

Как уже было сказано, позитроны фактически наблюдал еще Дмитрий Скобельцин. В 1930 году с ними столкнулся аспирант Калифорнийского технологического института Чунг-Яо Чао, исследовавший прохождение гамма-квантов сквозь свинцовую фольгу. В этом эксперименте возникали электронно-позитронные пары, после чего новорожденные позитроны аннигилировали с электронами атомных оболочек и порождали вторичное гамма-излучение, которое и зарегистрировал Чао. Однако многие физики усомнились в результатах, и эта работа признания не получила.

Аннигиляция электрона и позитрона в случае низких энергий порождает как минимум два (это обусловлено сохранением импульса) фотона. Этот процесс схематически можно изобразить с помощью, так называемой диаграммы Фейнмана. При превышении определенного энергетического порога аннигиляция может происходить с рождением «виртуальных» фотонов, которые вновь быстро распадаются на пары электронов и позитронов. Изображение: «Популярная механика»
Аннигиляция электрона и позитрона в случае низких энергий порождает как минимум два (это обусловлено сохранением импульса) фотона. Этот процесс схематически можно изобразить с помощью, так называемой диаграммы Фейнмана. При превышении определенного энергетического порога аннигиляция может происходить с рождением «виртуальных» фотонов, которые вновь быстро распадаются на пары электронов и позитронов. Изображение: «Популярная механика»

Руководителем Чао был президент Калтеха, нобелевский лауреат Роберт Милликен, который в те времена занимался космическими лучами (он и предложил этот термин). Милликен считал их потоком гамма-квантов и потому ожидал, что они будут расколачивать атомы на электроны и протоны (нейтрон открыли позже, в 1932 году). Милликен предложил проверить эту гипотезу Карлу Андерсону, другому своему аспиранту и к тому же приятелю Чао. Тот, подобно Скобельцину, решил воспользоваться камерой Вильсона, соединенной с очень мощным электромагнитом. Андерсон тоже получил треки заряженных частиц, которые внешне не отличались от треков электронов, но были изогнуты в обратном направлении. Сначала он приписал их электронам, которые движутся не сверху вниз, а снизу вверх. Для контроля он установил в центре камеры свинцовую пластинку толщиной 6 мм. Оказалось, что над пластиной величины импульсов частиц с треками электронного типа в два с лишним раза превышают эти показатели в нижней части камеры — отсюда следовало, что все частицы движутся сверху вниз. Этот же прием доказал, что частицы с аномальной закруткой не могут быть протонами — те бы застряли в свинцовом экране.

В конце концов Андерсон пришел к выводу, что почти все аномальные треки принадлежат каким-то легким частицам с положительным зарядом. Однако Милликен в это не поверил, а Андерсон без одобрения шефа не хотел публиковаться в научной печати. Поэтому он ограничился коротким письмом в популярный журнал Science News Letter и приложил к нему фотографию аномального трека. Согласившийся с интерпретацией Андерсона редактор предложил назвать новую частицу позитроном. Этот снимок был опубликован в декабре 1931 года.

Компьютерная модель аннигиляции вещества и антивещества. <i>Красные линии</i> — фотоны, разлетающиеся в противоположных направлениях при аннигиляции позитронов, а <i>желтые</i> — частицы, образующиеся при аннигиляции антипротонов. Треки исходят из одной точки — это свидетельство того, что антипротоны и позитроны образуют атомы антиводорода (эксперимент ATHENA в ЦЕРН). Изображение: «Популярная механика»
Компьютерная модель аннигиляции вещества и антивещества. Красные линии — фотоны, разлетающиеся в противоположных направлениях при аннигиляции позитронов, а желтые — частицы, образующиеся при аннигиляции антипротонов. Треки исходят из одной точки — это свидетельство того, что антипротоны и позитроны образуют атомы антиводорода (эксперимент ATHENA в ЦЕРН). Изображение: «Популярная механика»

Теперь вспомним, что Дирак обнародовал гипотезу о существовании антиэлектрона еще в сентябре. Однако и Андерсон, и Милликен почти ничего не знали о его теории и вряд ли понимали ее суть. Поэтому Андерсону не пришло в голову отождествить позитрон с дираковским антиэлектроном. Он еще долго пытался убедить Милликена в собственной правоте, но, так и не достигнув успеха, в сентябре 1932 года опубликовал в журнале Science заметку о своих наблюдениях. Однако в этой работе речь идет все-таки не о двойнике электрона, а лишь о положительно заряженной частице неизвестного вида, масса которой много меньше массы протона.

Следующий шаг к идентификации антиэлектрона сделали в месте его предсказания — в Кембридже. Английский физик Патрик Блэкетт и его итальянский коллега Джузеппе Оккиалини занимались исследованием космических лучей в знаменитой Кавендишской лаборатории, возглавляемой великим Резерфордом. Оккиалини предложил оснастить камеру Вильсона электронной схемой (придуманной его соотечественником Бруно Росси), включавшей камеру в случае одновременного срабатывания счетчиков Гейгера, один из которых был установлен над камерой, а другой – под ней. К осени 1932 года партнеры получили около 700 фотографий треков, которые можно было приписать заряженным частицам космического происхождения. Среди них имелись и V-образные трековые пары, порожденные расходящимися в магнитном поле электронами и позитронами.

Блэкетт знал о предсказанном Дираком антиэлектроне, но не принимал его теорию всерьез. Сам Дирак тоже не разглядел своей гипотетической частицы на снимках Блэкетта. В итоге Блэкетт и Оккиалини правильно интерпретировали свои фотоснимки лишь позднее, когда ознакомились с сентябрьской публикацией Андерсона. Свои выводы они представили в статье со скромным заголовком «Фотографии треков проникающей радиации», добравшейся до редакции журнала Proceedings of the Royal Society 7 февраля 1933 года. К этому времени Андерсон узнал о конкурентах из Кавендиша и вполне адекватно изложил свои результаты в четырехстраничной статье «Положительный электрон», которая поступила в журнал Physical Review 28 февраля. Поскольку приоритет Андерсона был установлен предыдущими публикациями, он один и получил за открытие позитрона Нобелевскую премию (в 1936 году, совместно с первооткрывателем космических лучей Виктором Гессом). Блэкетт был удостоен этой награды 12 годами позже (с формулировкой «За усовершенствование методов наблюдений на камере Вильсона и за открытия в области ядерной физики и космической радиации»), а вот Оккиалини премией обошли — считается, что по политическим соображениям.

Вскоре исследования позитрона двинулись вперед семимильными шагами. Парижский физик Жан Тибо наблюдал электронно-позитронные пары земного происхождения, порожденные торможением в свинце гамма-квантов от радиоактивного источника. Он доказал, что у обеих частиц отношение заряда к массе по абсолютной величине совпадает с очень высокой точностью. В 1934 году Фредерик Жолио и Ирен Кюри обнаружили, что позитроны возникают и при радиоактивном распаде. Так что к середине 30-х годов ХХ века существование предсказанных Дираком антиэлектронов превратилось в установленный факт.

Антинуклоны

Механизм порождения позитронов космическими лучами установлен давно. В основном первичное космическое излучение состоит из протонов с энергией более 1 ГэВ, которые при столкновениях с ядрами атомов в верхних слоях атмосферы порождают пионы и прочие нестабильные частицы. Пионы дают начало новым распадам, в ходе которых появляются гамма-кванты, которые при торможении в веществе производят электронно-позитронные пары.

Достаточно быстрые протоны при столкновении с атомными ядрами способны непосредственно порождать антипротоны и антинейтроны. В середине ХХ века физики уже не сомневались в возможности подобных превращений и искали их следы во вторичных космических лучах. Результаты некоторых наблюдений вроде бы можно было интерпретировать как аннигиляцию антипротонов, но без полной уверенности. Поэтому американские физики предложили проект сооружения протонного ускорителя на 6 ГэВ, на котором, согласно теории, было возможно получить оба типа антинуклонов. Эта машина, названная беватроном, была запущена в Лаборатории имени Лоуренса в Беркли в 1954 году. Спустя год Оуэн Чемберлен, Эмилио Сегре и их коллеги получили антипротоны, обстреливая протонами медную мишень. Еще через год другая группа физиков на той же установке зарегистрировала антинейтроны. В 1965 году в ЦЕРНе и в Брукхейвенской национальной лаборатории были синтезированы ядра антидейтерия, сложенные из антипротона и антинейтрона. А в начале 1970-х из СССР пришло сообщение, что на 70-ГэВ протонном ускорителе Института физики высоких энергий синтезированы ядра антигелия-3 (два антипротона и антинейтрон) и антитрития (антипротон и два антинейтрона); в 2002 году несколько ядер легкого антигелия были получены и в ЦЕРНе. Дальше дело пока не двинулось, так что синтез хотя бы одного ядра антизолота — дело неблизкого будущего.

Рукотворное антивещество

Ядра ядрами, но для настоящего антивещества требуются полноценные атомы. Простейший из них — атом антиводорода, антипротон плюс позитрон. Такие атомы были впервые созданы в ЦЕРНе в 1995 году — через 40 лет после открытия антипротона. Вполне возможно, что это были первые атомы антиводорода за время существования нашей Вселенной после Большого взрыва — в природных условиях вероятность их рождения практически нулевая, а существование внеземных технологических цивилизаций всё еще под вопросом.

Водород и антиводород по своему строению совершенно идентичны — они состоят из адрона и лептона. В первом случае положительно заряженный протон, состоящий из трех кварков (двух верхних и одного нижнего), и отрицательно заряженный электрон образуют атом хорошо знакомого нам водорода. Антиводород состоит из отрицательно заряженного антипротона, который, в свою очередь, построен из трех соответствующих антикварков и положительно заряженного позитрона (античастицы электрона). Изображение: «Популярная механика»
Водород и антиводород по своему строению совершенно идентичны — они состоят из адрона и лептона. В первом случае положительно заряженный протон, состоящий из трех кварков (двух верхних и одного нижнего), и отрицательно заряженный электрон образуют атом хорошо знакомого нам водорода. Антиводород состоит из отрицательно заряженного антипротона, который, в свою очередь, построен из трех соответствующих антикварков и положительно заряженного позитрона (античастицы электрона). Изображение: «Популярная механика»

Этот эксперимент был осуществлен под руководством немецкого физика Вальтера Олерта. В ЦЕРНе тогда действовало накопительное кольцо LEAR, в котором хранились низкоэнергетические (всего-то 5,9 МэВ) антипротоны (оно проработало с 1984 по 1996 год). В эксперименте группы Олерта антипротоны направляли на струю ксенона. После столкновения антипротонов с ядрами этого газа возникали электронно-позитронные пары, и некоторые позитроны крайне редко (с частотой 10–17%!) объединялись с антипротонами в атомы антиводорода, движущиеся почти что со скоростью света. Незаряженные антиатомы больше не могли вращаться внутри кольца и вылетали по направлению к двум детекторам. В первом приборе каждый антиатом ионизировался, и освобожденный позитрон аннигилировал с электроном, порождая пару гамма-квантов. Антипротон уходил во второй детектор, который до исчезновения этой частицы успевал определить ее заряд и скорость. Сопоставление данных с обоих детекторов показало, что в эксперименте было синтезировано не меньше 9 атомов антиводорода. Вскоре релятивистские атомы антиводорода были созданы и в Фермилабе.

С лета 2000 года в ЦЕРНе действует новое кольцо AD (Antiproton Decelerator). В него поступают антипротоны с кинетической энергией 3,5 ГэВ, которые замедляются до энергии в 100 МэВ и затем используются в разнообразных экспериментах. Антивеществом там занялись группы ATHENA и ATRAP, которые в 2002 году стали разово получать десятки тысяч атомов антиводорода. Эти атомы возникают в особых электромагнитных бутылках (так называемых ловушках Пеннинга), где смешиваются поступающие из AD антипротоны и рождающиеся при распаде натрия-22 позитроны. Правда, жизнь нейтральных антиатомов в такой ловушке измеряется всего лишь микросекундами (зато позитроны и антипротоны могут храниться там месяцами!). В настоящее время отрабатываются технологии более длительного хранения антиводорода.

Проекционная камера эксперимента PANDA международного центра FAIR в Дармштадте. Изображение: «Популярная механика»
Проекционная камера эксперимента PANDA международного центра FAIR в Дармштадте. Изображение: «Популярная механика»

В беседе с «ПМ» руководитель группы ATRAP (проект ATHENA уже завершен), профессор Гарвардского университета Джеральд Габриэлс подчеркнул, что, в отличие от LEAR, установка AD позволяет синтезировать относительно медленные (как говорят физики, холодные) атомы антиводорода, с которыми намного проще работать. Сейчас ученые пытаются еще сильнее охладить антиатомы и перевести их позитроны на уровни с меньшей энергией. Если это получится, то появится возможность дольше удерживать антиатомы в силовых ловушках и определять их физические свойства (к примеру, спектральные характеристики). Эти показатели можно будет сопоставить со свойствами обычного водорода и понять наконец, чем антивещество отличается от вещества. Работы еще непочатый край.

Наука невозможного

Активное использование антиматерии началось еще в середине XX века. Правда, только в фантастике.

Писатели-фантасты давным-давно предсказали космические корабли на антиматерии. Из серьезных специалистов первым этой темы коснулся крупный немецкий инженер-ракетчик Ойген Сангер, один из изобретателей прямоточного воздушно-реактивного двигателя. В 1953 году он опубликовал проект фотонной ракеты, получающей энергию от аннигиляции электронов и позитронов. Позднее было предложено использовать в качестве топлива более массивные и, соответственно, более энергоемкие протоны и антипротоны.


Идея использования антивещества в качестве топлива для космических кораблей часто встречается у фантастов. В легендарном космическом крейсере из сериала Star Trek («Звездный путь») энергия, высвобождающаяся при аннигиляции вещества и антивещества, питает двигатель искривления пространства (Warp Drive), который позволяет крейсеру двигаться быстрее скорости света. Изображение «Популярная механика»
Идея использования антивещества в качестве топлива для космических кораблей часто встречается у фантастов. В легендарном космическом крейсере из сериала Star Trek («Звездный путь») энергия, высвобождающаяся при аннигиляции вещества и антивещества, питает двигатель искривления пространства (Warp Drive), который позволяет крейсеру двигаться быстрее скорости света. Изображение «Популярная механика»

На первый взгляд эта идея кажется весьма привлекательной. Аннигиляция протонов и антипротонов должна дать на три порядка больше энергии, нежели ядерное топливо, и на два порядка больше, чем термояд. Около половины этой энергии съедят мгновенно разлетающиеся и посему бесполезные для космонавтики нейтрино. Оставшаяся энергия после серии промежуточных реакций с участием пионов, мюонов, электронов и позитронов выделится в виде жесткого гамма-излучения, которое можно пустить на подогрев рабочего тела реактивного мотора (прямая реактивная лучевая тяга не получится, поскольку гамма-кванты изотропно разлетятся во всех направлениях). Более экзотические проекты предлагают с помощью электромагнитных полей стягивать родившиеся в результате аннигиляции заряженные частицы в направленные струи и отбрасывать их против движения ракеты.

Но теория теорией, а практика практикой. Для полета в пределах Солнечной системы потребуется как минимум несколько граммов антивещества. Сейчас антипротоны изготовляют в Фермилабе и в ЦЕРН, причем не больше одного-двух нанограммов в год. КПД современных технологий производства антипротонов ничтожен — одна стомиллионная доля процента. Так что энергия, которую пришлось бы затратить на синтез необходимой массы антипротонов, примерно на три порядка превышает годовое производство электричества на Земле. К тому же антипротоны (в первозданном виде, в составе антиводорода или в плазменном окружении) нужно где-то хранить, а как это сделать — непонятно. Пока никому не удалось удержать в ловушке больше миллиона антипротонов, а это всего лишь 10-18 г.


Расположенный в кормовой части космического крейсера аннигиляционный реактор дает энергию в виде так называемой электро-плазмы, которая по электромагнитным трубопроводам передается в двигатель искривления пространства (<i>Warp Drive</i>), а также расходится по всему кораблю для питания других систем. Изображение: «Популярная механика»
Расположенный в кормовой части космического крейсера аннигиляционный реактор дает энергию в виде так называемой электро-плазмы, которая по электромагнитным трубопроводам передается в двигатель искривления пространства (Warp Drive), а также расходится по всему кораблю для питания других систем. Изображение: «Популярная механика»

Правда, есть другой путь, гораздо более привлекательный. Антипротоны можно использовать в качестве катализатора комплексной ядерной реакции, включающей процессы деления и синтеза. Одна из подобных схем выглядит так. Капсулу из урана-238 со смесью дейтерия и трития сильно сжимают (например, лазерными импульсами), а потом облучают пучком антипротонов. Антипротоны заставят уран делиться с образованием большого количества нейтронов, которые разогреют начинку капсулы до миллионов градусов и запустят термоядерный синтез гелия. Вычисления показывают, что для полета к границам Солнечной системы хватит нескольких микрограммов (максимум десятков микрограммов) антипротонов. Если создать новые технологии получения этих античастиц, повысив сегодняшний КПД в тысячу раз, а заодно решить проблему их длительного хранения, то для одного полета хватит часовой, а то и минутной работы всех электростанций планеты. Не исключено, что когда-нибудь человечество пойдет на такие затраты.


Популярный сериал Star Trek («Звездный путь») вызвал появление множества книг, посвященных конструкции кораблей USS Enterprise. На этой диаграмме из книги Star Trek: The Next Generation Technical Manual показана конструкция реактора крейсера NCC-1701-D класса «Галактика». Изображение: «Популярная механика»
Популярный сериал Star Trek («Звездный путь») вызвал появление множества книг, посвященных конструкции кораблей USS Enterprise. На этой диаграмме из книги Star Trek: The Next Generation Technical Manual показана конструкция реактора крейсера NCC-1701-D класса «Галактика». Изображение: «Популярная механика»

А как дела насчет взрывчатки? В 2004 году в американскую печать проникли сведения, что командование ВВС изучает возможность создания бомбы на антиматерии. Эта шумиха вскоре заглохла, тем более что Пентагон отказался ее комментировать. Тем не менее совершенно очевидно, что боевая антивзрывчатка, несмотря на всю свою мощь, не имеет смысла. Полная аннигиляция грамма антипротонов (а это огромное количество!) с граммом протонов выдаст на-гора около 43 кт — мощность не особенно большой атомной бомбы. Про сравнительную стоимость того и другого способа можно даже и не говорить. Так что полную возможность самоуничтожения человечество имеет и без всякой антиматерии.

А вот где антиматерия действительно уже служит человечеству — так это в медицине. Античастицы в лице позитронов давно работают в позитронных эмиссионных томографах. Источниками этих частиц служат некоторые короткоживущие изотопы, такие как углерод-11 и кислород-15. В последние годы излучатели позитронов используют и в материаловедении.


2
Показать комментарии (2)
Свернуть комментарии (2)

  • pta.sistem  | 18.08.2010 | 01:56 Ответить
    Трудно комментировать такой обстоятельный рассказ. Поэтому позволю себе несколько штрихов к уже загрунтованному "холсту":
    1.В Природе нет "элементарных" - принципиально - частиц.Есть - структурно - базовые элементы. Каждый ее объект - базовый.
    2."Элементарность"- всего лишь неразличимость полноты объекта.
    3.Природа не располагает ни одним! элементом, который был бы идентичен другому.
    4.Противопоставление частицы и "античастицы" исключительно вопрос восприятия - как в искусстве - реального их взаимодействия в конкретной координате. При смещении в другую координату - если бы это было возможно в принципе - та же "античастица" немедленно оказывалась бы обычной. "Антивещество" - проблема не того, что видит Интеллект. А того, что он не видит!
    5.Аннигиляция - превращение в Ничто - верно передает только наблюдаемое, но не его смысл.
    6.Все проблемы Интелекта относительно сферы "элементарного" обусловлены природным запретом проникновения туда для произвольных манипуляций.Это, кроме прочего, природная защита Вещества от распространения локально возникающего, при таком проникновении, катаклизма на окружающий массив. Иначе бы первый же эксперимент Интеллекта взорвал бы систему его пребывания.В то время, как при природном - органичном взаимодействии природных объектов такой запрет, в необходимой и достаточной мере, снимается.
    7.Вообще-то, Земля, в качестве природной лаборатории, универсальнее любого коллайдера.
    Рад был помочь.
    Ответить
  • Wyvern  | 25.05.2013 | 22:51 Ответить
    Небольшая (всего в 1000 раз :)) ошибка в тексте: 1 грамм антивещества при аннигиляции с 1 граммом обычного в-ва выделит не 43 КИЛОтонны, а 43,6 МЕГАтонны. Правда, таки треть этой энергии выделится в виде нейтрино, не имеющих "народно-хозяйственного значения" Т.е. бомба содержащая 1 грамм антивещества будет равна по мощности примерно 30 мегатонному термоядерному заряду. Вдвое мощнее, чем Castle Bravo (15Мт) - самый мощный американский заряд, и в 1,5 раза менее мозшде, чем "Мать Кузьмы" (52Мт)- самый мощный советский и в мире.
    Ответить
Написать комментарий
Элементы

© 2005–2024 «Элементы»