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Abstract. Methods for enumerating cryptographic keys based on par-
tial information obtained on key bytes are important tools in crypt-
analysis. This paper discusses two contributions related to the practical
application and algorithmic improvement of such tools.
On the one hand, we observe that modern computing platforms al-
low performing very large amounts of cryptanalytic operations, approx-
imately reaching 250 to 260 block cipher encryptions. As a result, cryp-
tographic key sizes for such ciphers typically range between 80 and 128
bits. By contrast, the evaluation of leaking devices is generally based
on distinguishers with very limited computational cost, such as Kocher’s
Differential Power Analysis. We bridge the gap between these cryptana-
lytic contexts and show that giving side-channel adversaries some com-
puting power has major consequences for the security of leaking devices.
For this purpose, we first propose a Bayesian extension of non-profiled
side-channel attacks that allows us to rate key candidates in function
of their respective probabilities. Next, we investigate the impact of key
enumeration taking advantage of this Bayesian formulation, and quantify
the resulting reduction in the data complexity of the attacks.
On the other hand, we observe that statistical cryptanalyses usually try
to reduce the number and size of lists corresponding to partial informa-
tion on key bytes, in order to limit the time and memory complexity of
the key enumeration. Quite surprisingly, few solutions exist that allow
an efficient merging of large lists of subkey candidates. We provide a new
deterministic algorithm that significantly reduces the number of keys to
test in a divide-and-conquer attack, at the cost of limited (practically
tractable) memory requirements. It allows us to optimally enumerate
key candidates from any number of (possibly redundant) lists of any
size, given that the subkey information is provided as probabilities. As
an illustration, we finally exhibit side-channel cryptanalysis experiments
where the correct key candidate is ranked up to position 232, in which our
algorithm reduces the number of keys to test offline by an average factor
25 and a factor larger than 210 in the worst observed cases, compared
to previous solutions. We also suggest examples of statistical attacks in
which the new deterministic algorithm would allow improved results.
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1 Introduction

Side-channel attacks represent an important threat to the security of crypto-
graphic hardware products. As a consequence, evaluating the information leak-
age of microelectronic circuits has become an important part in the certification
of secure devices. Most of the tools/attacks that have been published in this
purpose are based on a so-called “divide-and-conquer” approach. That is, in a
first “divide” part, the evaluator/adversary recovers information about different
parts of the master key, usually denoted as subkeys (as a typical example, the
target can be the 16 AES key bytes). Next, a “conquer” part aims to combine the
information gathered in an efficient way, in order to recover the full master key.

Research over the last ten years has been intensive in the optimization of the
divide part of attacks. Kocher et al.’s Differential Power Analysis (DPA) [17]
and Brier et al.’s Correlation Power Analysis (CPA) [7] are notorious examples.
One limitation of such approaches is their somewhat heuristic nature, as they
essentially rank the subkeys according to scores that do not have a probabilistic
meaning. As demonstrated by Junod in the context of linear cryptanalysis, such
heuristic key ranking procedures may be suboptimal compared to Bayesian key
recoveries [15]. The template attacks introduced by Chari et al. in 2002 typi-
cally aims to get rid of this limitation [8]. By carefully profiling a probabilistic
model for the physical leakages, such attacks offer a direct path towards Bayesian
subkey testing procedures. Template attacks are optimal from an information
theoretic point of view, which makes them a prime tool for the worst-case secu-
rity evaluation of leaking devices [35]. However, they also correspond to strong
adversarial assumptions that may not be met in practice. Namely, actual adver-
saries are not always able to profile an accurate leakage model, either because of
a lack of knowledge of the target devices or because of physical variability [29].
As a consequence, attacks profiling an “on-the-fly” leakage model such as the
stochastic approach introduced by Schindler et al. [30] and discussed by Doget
et al. [11] are an important complement to a worst-case security analysis.

By contrast, only little attention has been paid to the conquer part in side-
channel analysis. That is, in most cases the attacks are considered successful
if all the subkeys are recovered with high confidence, which generally implies
an extremely small time complexity for the offline computations. This situation
is typically exemplified by initiatives such as the DPA contest [25], where the
success rate in recovering a master key is directly obtained as the success rates
for the concatenated 16 subkeys ranked first. In fact, the most noticeable excep-
tions attempting to better exploit computational power in physical attacks are
based on advanced techniques, e.g. exploiting the detection of collisions [5, 18,
31, 32], or taking advantage of algebraic cryptanalysis [6, 23, 27, 28], of which the
practical relevance remains an open question (because of stronger assumptions).
But as again suggested by previous works in statistical cryptanalysis, optimal
key ranking procedures would be a more direct approach in order to better trade
data and time complexities in “standard” side-channel attacks.



In this paper, we propose to improve both the divide and the conquer parts
of side-channel attacks, with two main contributions. Regarding the divide part,
we start with the observation that non-profiled side-channel attacks are usually
limited by their heuristic use of scores when ranking subkey candidates. As a
consequence, we propose a method for non-profiled attacks that allows deriving
probability mass functions for the subkey hypotheses. This tool can be viewed as
a natural extension of the stochastic approach, but is also applicable to DPA and
CPA. Afterwards, obtaining the probability of a full key candidate boils down to
multiplying the probabilities of the corresponding subkeys. Hence, it has appli-
cations both in the online analysis of an attack (e.g. in order to express the level
of knowledge about a subkey) and in the combination of independent attacks
(e.g. exploiting multiple points of interest in the leakage traces). More generally,
expressing the information obtained through non-profiled side-channel attacks
with probabilities allows us to connect them better with template attacks, where
the scores are already expressed as subkey probability mass functions.

Second, and most importantly, we provide the first comprehensive investi-
gation of the conquer part of side-channel attacks. For this purpose, we start
from the motivation that testing several billions of key candidates on a modern
computer is not far-fetched: being able to recover a master key after such a com-
putation is indeed a security breach. Next, we observe that two main solutions
for testing key candidates from partial information on the subkeys exist in the
literature. On the one hand, Meier and Staffelbach proposed a probabilistic al-
gorithm in 1991. However, it turns out that in our side-channel attack context,
this solution implies significant overheads in terms of number of keys to test. On
the other hand, Pan, van Woudenberg, den Hartog and Witteman described a
deterministic key enumeration algorithms at SAC 2010. But large memory re-
quirements prevent the application of this second solution when the number of
keys to enumerate increases. For example in [24], the authors were limited to the
enumeration of 216 candidates. As none of these tools is perfectly suited to our
side-channel attack context, we propose a new deterministic algorithm for key
enumeration that is time and memory efficient, and allows the optimal enumer-
ation of full keys by decreasing order of probabilities. It takes advantage of the
probability mass functions of subkeys made available through our first contribu-
tion. The new algorithm can be viewed as a refinement of the SAC 2010 one, in
which we reduce the memory complexity of the enumeration thanks to a recur-
sive decomposition of the problem. Interestingly, and as previously observed in
other cryptanalysis settings, this improvement of the key ranking strategy also
has a significant impact on the data complexity of side-channel key recoveries.

In practice, and for illustration, we can output the best 232 candidates of an
attack using 2gb of memory, against only 220 candidates using more than 7gb
using the SAC 2010 proposal. Moreover, our solution also allows significantly
improved execution speeds, as it is less affected by the access times in large data
sets. Eventually, in a similar context (i.e. the enumeration of 232 candidates) and
compared to the probabilistic solution of Meier and Staffelbach, the determin-
istic algorithm allows reducing the number of keys to test offline by an average



factor 25 and a factor larger than 210 in the worst observed cases. Summariz-
ing, this work brings an interesting complement to the evaluation framework
in [35]. It allows stating standard side-channel attacks as a data complexity vs.
time complexity tradeoff. On the theoretical side, the proposed key enumeration
algorithm leads to a proper estimation of security metrics such as high-order
success rates or guessing entropy, for block cipher master keys (this estimation
was previously limited to subkeys or small orders). In practice, experimental
results also exhibit that considering adversaries with a reasonable computing
power leads to significant improvements of standard side-channel attacks. These
gains are particularly interesting if we compare them with the ones obtained
by only working on the statistics in the divide part of side-channel attacks [34].
Hence, we believe that the tools introduced in this paper have an important
impact for the security evaluations of leaking devices, e.g. for certification labo-
ratories. In this respect, it is worth noticing the gap between the computational
complexities usually considered in the evaluation of side-channel attacks and the
ones considered for evaluating security against mathematical attacks [19, 26].

We finally note that the tools introduced in this paper are generic and have
potential impact in other cryptanalytic settings (e.g. based on faults [2], or sta-
tistical [1, 21]), although standard side-channel attacks are a very natural envi-
ronment for using them. We briefly list possible applications in Section 6.

2 Background

The “standard” side-channel attacks considered in this work use a divide-and-
conquer approach in which the side-channel subkey recovery phase focuses on
one specific operation at a time [20]. In block ciphers like the AES, this operation
is usually one 8-bit S-box in the first encryption round. We denote with p and
k the byte of the plaintext and the byte of the key (i.e. the subkey) that are
used in the attack, with x = p ⊕ k the input value of the S-box, and with
y = S(x) the corresponding output value. The goal of a side-channel subkey
recovery phase is to identify the best (and hopefully correct) subkey candidate

k̂ from the set of all possible key hypotheses K, using q measured encryptions.
For each target S-box the adversary collects a data set of pairs {(pi, li)}1≤i≤q1,
with pi the ith plaintext byte involved in the target S-box computation, and li
the corresponding leakage value. For simplicity, and because it has little impact
on our following discussions, we assume unidimensional leakages. In addition, we
assume leakage samples composed of a deterministic and a random part, with
the deterministic part depending only on the S-box output (i.e. we use the EIS
assumption introduced in [30]). The leakage samples can consequently be written
as li = L(yi) = f(yi) + n, with n a Gaussian distributed noise. In general, side-
channel attacks can be classified as profiled and non-profiled attacks, depending
on whether the adversary can perform a training phase or not.

1 In order to lighten the notations, we omit the index 1 ≤ i ≤ q after the data sets.



Profiled attacks, like template attacks [8], take advantage of their profiling
phase to characterize the leaking device with a probabilistic model. This allows
the adversary to rank the subkey hypotheses k according to their actual prob-
abilities: k̂ = arg maxk Pr[k|{(pi, li)}]. These probabilities can then directly be
used to build a Probability Mass Function (PMF): fK(k) = Pr[k|{(pi, li)}], with
K the discrete random variable corresponding to the unknown subkey byte. This
PMF will be needed to perform the key enumeration in Section 4.

By contrast, in the case of non-profiled attacks (e.g. DPA [17] or CPA [7]),
the best subkey hypothesis is not chosen based on probabilities, but on the
value produced by a statistical distinguisher (namely, a difference-of-means test
for Kocher’s DPA and Pearson correlation coefficient for CPA). For these non-
profiled attacks, there is thus no straightforward way to produce the PMF we
need to enumerate the master keys: the distinguisher outputs a ranking of the
subkey candidates, which has no probabilistic meaning.

In order to apply our key enumeration algorithm, we need a way to extract
probabilities from a non-profiled attack. For this purpose, we will use a natu-
ral extension of the non-profiled version of Schindler’s stochastic approach [30].
Hence, we first recall how the non-profiled stochastic attack works [11]. A stochas-
tic model θ(y) is a leakage model used to approximate the leakage function:
L(y) ' θ(y), where θ(y) is built from a basis g(y) = {g0(y), ..., gB−1(y)} cho-
sen by the adversary (usually gi(y) are polynomials in the bits of y). Eval-
uating θ(y) boils down to estimating the coefficients αi such that the vector
θ(y) =

∑
j αjgj(y) is a least-square approximation of the measured leakages

li. The idea of a non-profiled stochastic attack is to build |K| stochastic models
θk(y) by considering the data set {(pi, li)} under the assumption that the correct
key hypothesis is k. These stochastic models are then used as a distinguisher: for
a correct key hypothesis (and a relevant basis), the error between the predicted
values and the actual leakage values should have a smaller standard deviation
than for a wrong key hypothesis. The pseudo-code of the attack is given in Al-
gorithm 1. In general, an interesting feature of such attacks is that they allow
trading robustness for precision in the models, by adapting the basis g(y). That
is, a simpler model with less parameters is more robust, but a more complex
model can potentially more accurately approximate the real leakage function.

Algorithm 1 Non-profiled stochastic attack

1: Acquire {(pi, li)}1≤i≤q.
2: Choose a basis g(y).
3: for k ∈ K do
4: Compute the S-box output hypotheses yi,k = S(pi ⊕ k).
5: Use the basis g(y), the data set and the subkey hypothesis k

in order to build a stochastic model θk.
6: Compute the error vector ek: ei,k = li − θk(yi,k).
7: Evaluate the precision of the model: σk = standard deviation(ek).
8: end for
9: Choose k̂ = arg mink σk



3 Bayesian extension of non-profiled SCAs

As the straightforward application of a stochastic attack does not produce PMFs,
we propose in this section to perform an additional Bayesian step after building
the stochastic models. We show that this Bayesian model comparison produces
probabilities, and that the criterion of maximizing the likelihood of the subkey
is equivalent to minimizing the error vector standard deviation, meaning that
this extension indeed ranks the subkeys in the same order as the standard non-
profiled stochastic attack. As a bonus, we observe that this extension also gives
us a very natural way to combine independent leakage samples in an attack.

In the Bayesian version of the non-profiled stochastic attack, we perform a
Bayesian hypothesis test on subkey candidates (under the assumption that the
basis used for the stochastic attack is valid). It consists in estimating the proba-
bility of the observed data set assuming that they are produced from the model
θk (i.e. Pr[{(pi, li)}|θk]). Then, we use Bayes’ theorem to deduce the likelihood
of the models (and thus the probabilities of the subkey hypotheses) given the
data (i.e. Pr[θk|{(pi, li)}]), as described by the pseudo-code of Algorithm 2.

Algorithm 2 Bayesian non-profiled stochastic attack

1 to 8: Same as Algorithm 1.
9: Perform a Bayesian model comparison: evaluate for each subkey hypothesis the
likelihood Pr[θk|{(pi, li)}] using Bayes’ theorem.
10: Choose k̂ = arg maxk Pr[θk|{(pi, li)}].

We now show how to compute these probabilities, starting with the probabil-
ity of observing the data set {(pi, li)} assuming it is produced by the model θk,
using the subkey hypothesis k. This probability is computed by multiplying the
probabilities of each individual event (pi, li) of the data set:

Pr[{(pi, li)}|θk] = Pr[{(pi, li)}|θk,K = k],

=

q∏
i=1

N (li|θk(S(pi ⊕ k)), σk),

where N (x, µ, σ) is the value of the normal distribution of mean µ and standard
deviation σ evaluated at point x. If we denote the S-box output hypotheses as
yi,k = S(pi ⊕ k), the previous equation can be rewritten as:

Pr[{(pi, li)}|θk] =

q∏
i=1

1√
2π σk

exp
− 1

2σ2
k

(li−θk(yi,k))2
.

Since σ2
k =

∑i=q
i=1(li−θk(yi,k))2/q (see Algorithm 1), if we use all q measurements,

we can simplify the exponent and move all constants coefficients that do not
depend on k in a normalization term Z, that is:

Pr[{(pi, li)}|θk] = Zσ−qk . (1)



Then, using Bayes’ theorem, we deduce the probabilities of the subkeys from the
respective likelihood values of the models θk given the data (in other words, we
perform a Bayesian model comparison):

Pr[k|{(pi, li)}] = Pr[θk|{(pi, li)}],

=
Pr[{(pi, li)}|θk].Pr[θk]

Pr[{(pi, li)}]
, (Bayes’ theorem)

=
Pr[{(pi, li)}|θk].Pr[θk]∑

k′∈K Pr[{(pi, li)}|θk′ ].Pr[θk′ ]
.

Assuming a uniform prior Pr[θk]=Pr[k]= 1
|K| and using Equation 1, we get:

Pr[k|{pi, li}] =
σ−qk∑
k′ σ
−q
k′

.

From these probabilities, we can directly build the PMF required for key enu-
meration. Note that these likelihood values are not exactly the same as the ones
we used in template attacks. In the last case, the characterization of a device al-
lows exploiting a precise estimation of the leakage distributions. By contrast, in
a Bayesian non-profiled stochastic attack, they depend on the basis g(y) chosen
by the adversary. Finally, the subkey hypotheses can be ranked according to the
likelihood values of the corresponding model given the data, that is:

k̂ = arg max
k

σ−qk ,

= arg min
k

σk,

i.e. providing the same ranking as for the original non-profiled stochastic attack.
Besides their use for key enumeration in the next section, an appealing property
of using probabilities instead of other criteria (e.g. like a correlation coefficient)
is that combining independent measurement points becomes very natural. Let
us suppose that our implementation leaks information at two different times:
Lt0 = ft0(x)+nt0 and Lt1 = ft1(y)+nt1 (with nti a Gaussian noise). The Bayesian
writing makes it straightforward to combine their corresponding probabilities,
by multiplication and normalization. Note also that the proposed attack can
additionally be seen as a generalization of DPA or CPA, by simply replacing the
leakage basis by a single-bit or Hamming weight model.

4 Efficient algorithms for combining subkeys

Following the evaluation framework in [35], different metrics can be used to
analyze the security of an implementation against side-channel attacks. Of par-
ticular interest in this work are the so-called “security metrics” (namely, the
success rate and guessing entropy), of which the goal is to estimate the efficiency
of a given distinguisher in exploiting the leakage to recover keys. Intuitively, a



success rate of order o corresponds to the probability that the correct key is
rated among the o first candidates provided by the distinguisher. The guessing
entropy corresponds to the average number of keys to test before reaching the
correct one. As suggested in [24], one can also consider a guessing entropy of
order o, in order to capture the fact that in practice, only a maximum number
of o keys can be tested by the evaluators. Empirical comparisons of distinguish-
ers using such metrics have been performed in [34], but were limited to subkey
recoveries (i.e. key bytes, typically). In the following, we consequently tackle the
(most practically relevant) problem of how to efficiently estimate these metrics
for master keys. In the extreme case (i.e. success rate of order 1), the solution
is straightforward, as e.g. illustrated by the DPA contest [25]. We consider the
general case of large lists and large orders, to carefully address the problem of
the “conquer” part in a side-channel attack. The problem of extracting the rank
of a correct key is equivalent to the problem of enumerating keys stated below.

Key-enumeration problem. The attacker obtains PMFs corresponding to d
independent subkeys, each PMF taking n different values. The problem is to
enumerate complete keys from the most probable to the least probable one.

The naive algorithm for solving this problem generates the list of all possible
keys, computes the corresponding likelihood values (by multiplying subkey prob-
abilities) and sorts them accordingly. It can be used only with key candidates lists
of limited size. In the remainder of this section, we propose an algorithm that
efficiently solves this problem and allows deterministic key-enumeration, even
when the number and size of subkey lists makes the naive approach untractable.

4.1 An efficient and deterministic key-enumeration algorithm

The key enumeration problem can be more readily understood as a geometric
problem. We first consider the simpler bi-dimensional case (that is 2 subkeys).
The key space can be identified with a compartimentalized square of length 1.
The enumeration process is illustrated in Figure 1. The 4 columns (resp. rows)
correspond to the four possible values of the first (resp. second) subkey, sorted by
decreasing order of probability. Width and height correspond to the probability

of the corresponding subkey. Let us denote by k
(j)
i the jth likeliest value for

the ith subkey. Then, the intersection of row j1 and column j2 is a rectangle

corresponding to the key (k
(j1)
1 , k

(j2)
2 ) with probability equal to the area of the

rectangle. Using this geometric view of the problem, an optimal key enumeration
algorithm outputs compartments by decreasing order of area.

Step 1. The most likely key is (k
(1)
1 , k

(1)
2 ). Hence, we output this one first (rep-

resented in dark gray). At this point, the only possible next key candidates are

the successors (k
(2)
1 , k

(1)
2 ) and (k

(1)
1 , k

(2)
2 ), shown in light gray. We denote by F

this set of potential next candidates (where F is standing for frontier).
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Fig. 1: Geometric representation of the proposed algorithm

Step 2. Any new candidate has to belong to the frontier set. We extract the most
likely candidate from this set and output it. It corresponds to rectangle 2 in our
example. F is updated by inserting the potential successors of this candidate.

Next steps. Step 2 is repeated until the correct key is output, or if the size of
the frontier set F exceeds the available memory space.

Notice that in step 2, (k
(2)
1 , k

(1)
2 ) is a more likely candidate than (k

(2)
1 , k

(2)
2 ) by

construction. Hence, (k
(2)
1 , k

(2)
2 ) should not be inserted into F (this is represented

on the figure by red crosses). There is a simple rule for handling such cases, which
allows us to minimize the memory requirements of our algorithm.

Rule 1. The set F may contain at most one element in each column and row.

We explicit the process in Algorithm 3.

Algorithm 3 Optimal key-enumeration.

F ←− {(k(1)1 , k
(1)
2 )};

while F 6= ∅ do
(k

(i)
1 , k

(j)
2 )←− most likely candidate in F ;

Output (k
(i)
1 , k

(j)
2 );

F ←− F \ {(k(i)1 , k
(j)
2 )};

if i+ 1 ≤ #k1 and no candidate in row i+ 1 then
F ←− F ∪ {(k(i+1)

1 , k
(j)
2 )};

end if
if j + 1 ≤ #k2 and no candidate in column j + 1 then
F ←− F ∪ {(k(i)1 , k

(j+1)
2 )};

end if
end while

Operations on the frontier set can be performed efficiently if candidate keys
are stored in an ordered structure. Indeed, these operations simply consist in
finding the most likely element in the set, inserting and removing elements.
Using balanced trees, these manipulations are logarithmic in the size of the set.
The test of Rule 1 can be implemented using arrays of Boolean values.



Generalization to multiple lists. In practice, one often has to merge together
more than two lists of subkeys. Direct extensions of our algorithm to higher di-
mensions lead to either suboptimal or slow roles for frontier set reduction. On
the one hand, the direct transposition of Rule 1 will minimize memory, but im-
plies adjacency tests in multiple dimensions, leading to unacceptable reductions
of the enumeration speed. On the other hand, simplifying the rule in order to
maintain a good enumeration speed implies the storage of many non-necessary
candidates in the frontier set, which rapidly leads to unsustainable memory re-
quirements. In order to obtain good results for more than two lists, we apply a
recursive decomposition of the problem.

We only use the algorithm for merging two lists, and its outputs are used to
form larger subkey lists which are in turn merged together. This way, merging
n lists is done by merging two lists n − 1 times. The order of merging is such
that lists merged together are of similar sizes. In the case of the aes, we obtain
something similar to a binary tree. Still considering the case of the aes, we
notice that enumerating 128-bit keys is done by merging two lists of size 264.
Such lists cannot be generated or stored efficiently. Fortunately, we can instead
generate these lists only as far as required by the key enumeration. Whenever
a new subkey is inserted in the candidate set, we get it from the enumeration
algorithm applied to the lower level (64-bit subkeys obtained by merging two 232

element lists), and so on. This ensures that the storage and enumeration effort
are minimized.

The process is illustrated in Figure 2. Enumerating 16-byte keys consists in

enumerating subkeys taken from the two 264-element lists k
(j)
0,...,7 and k

(j)
8,...,15,

which in turn are built using four 232-element lists k
(j)
0,...,3, k

(j)
4,...,7, etc. This pro-

cess is repeated until we reach the original 28-element subkey distributions. The
recursive decomposition combined with our lazy evaluation technique keep com-
putations and memory requirements to a minimum and allow us to enumerate
a large number of key candidates. Note that since there are only few dependen-
cies between the enumeration lists, the algorithm can additionally be accelerated
through parallelization.

4.2 Key rank and high-order success rate

The algorithm used here is specifically designed in order to allow an adversary to
recover encryption keys when it is not ranked first. A close but simpler problem
is that of estimating the rank of the correct key, which does not necessarily
require to enumerate all the keys candidates ranked before: we just need to
estimate how many they are. This problem occurs for example during security
evaluation, where the correct key is usually known and the question is to rate
the recovery effort in terms of trace acquisitions and key trials.

Note that a deterministic algorithm, to the best of our knowledge, would
have a complexity close to that of actual enumeration. We sketch a heuristic
algorithm that provides a range estimate of the correct key rank. Considering the
problem in d dimensions, the checker plane seen before becomes a partitionned
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Fig. 2: Recursive enumeration from multiple lists of key candidates.

hypercube. If we imagine equipotential surfaces on candidate probability in this
cube, the key rank is related directly to the number of candidates contained in
the volume between the surface passing through the correct key point and the
planes delimiting the hypercube. By sampling key candidates, it is possible to
give higher and lower estimates of this value, thereby computing ranges for key
ranks.

4.3 Comparison with previous works

The investigations in this paper have strong connections with previous works
in the area of statistical cryptanalysis. In particular, the problem of merging
two lists of subkey candidates was encountered by Junod and Vaudenay [16].
The small cardinality of the lists (213) was such that the simple approach that
consists in merging and sorting the lists of subkeys was tractable. Markus Dichtl
considered a similar problem of enumerating key candidates by decreasing order
of probabilities, thanks to partial information obtained for each key bit individ-
ually [10]. We tackle the more general and challenging problem of exploiting any
partial information on subkeys. A frequent reference for solving this problem,
i.e. enumerating many keys from lists that cannot be merged, is the probabilistic
algorithm that was proposed in [22]. In this work, the attacker had no access to
the subkey distributions but was able to generate subkeys according to them.
Hence, the solution proposed was to enumerate keys by randomly drawing sub-
keys according to these distributions. Implementing this algorithm is equivalent
to uniformly picking up a point in the square of Figure 1 and testing the cor-
responding key. This does not require any memory but the most probable keys
may be drawn many times, leading to useless repetitions. Indeed given a correct
key with probability p the number of keys to try before it is found follows a
geometric distribution with parameter p and thus has an expected value equal
to 1/p with a variance of 1−p

p2 . By contrast, for Algorithm 3, this number of

keys to test is at most b1/pc (usually much less). Actually, our algorithm will
output exactly n keys before the correct one if it is ranked in the n-th position,



removing the variance issues of the probabilistic test. Overall, the probability-
driven approach tends to lead to much more tests than optimal deterministic
enumeration, as will be illustrated experimentally in the next section.

In terms of complexities, it is easy to see that the probability-driven algo-
rithm can output new keys in constant time and has a very small memory re-
quirement. The case of our deterministic enumeration algorithm is more difficult.
The use of balanced trees for the frontier set and the recursive decomposition of
the problem point towards a logarithmic time complexity. However, it appears
from the experiments in the next section that the algorithm enumerates keys in
amortized time close to constant. Summarizing, both methods lead to a linear
time complexity in the total number of key candidates that are output, with the
enumeration algorithm also requiring a sub-linear amount of memory.

As previously mentioned, an enumeration algorithm similar to ours was pro-
posed in a paper by Pan, van Woudenberg, den Hartog and Witteman [24]. It
also enumerates key candidates in optimal order, but the reduction rule 1 is not
used, nor the recursive decomposition that allows us to efficiently apply rule 1
with more than two lists. Therefore, the frontier set of their algorithm is not min-
imal, and the memory requirements are much larger. In practice, since the main
limitation for optimal key enumeration appears to be memory, this non-minimal
version of enumeration does not allow an adversary to output a large number
of key candidates. Moreover, handling a larger frontier set implies time com-
plexity penalties, which makes our new algorithm faster than this previous one.
Implementation results confirming these claims are given in the next section.

We note that another related problem is list decoding of convolutional codes
through the Viterbi algorithm (see, e.g. [33]). However, such algorithms are gen-
erally designed to output a small number of most likely candidates determined a
priori, whereas we target the enumeration of 232 or more master key candidates.

Finally, the application of Algorithm 3 in the context of [22] may also be
relevant. If keys can be generated according to an unknown distribution, this
distribution can be estimated. Hence, by performing such a pre-processing phase,
the deterministic algorithm can be used. The resulting enumeration avoids repe-
titions and tend towards optimal as the distribution estimates become accurate.

5 Experiments

In order to validate our approach, we led several experiments. The cipher under
investigation was the AES, with key size of 128 bits. Our side-channel attacks
targeted the output of the S-boxes in the first round, resulting in 16 indepen-
dent subkey probability mass functions. We used the same assumptions as in
Section 2 and considered simulated leakages, following a Hamming weight leak-
age model on the S-box output, with an independent additive Gaussian noise,
i.e. f(y) = HW(y) +N (0, 42). Note that the type of experiments performed (i.e.
analyzing the impact of key enumeration) is essentially independent of both the



cipher and experimental setup. We carried out both template attacks with per-
fect profiling (since the leakage function is known) and non-profiled Bayesian
stochastic attacks assuming a basis made of the S-box output bits.

5.1 Comparing optimal and probabilistic key-enumerations

Table 1 gives some performance results for key enumeration obtained on our
setup (Intel core i7 920 running a 64-bit Ubuntu 11.04 distribution), further
predicted for 236 and 240 key candidates. These comparative results show that
both the sampling algorithm and ours can output key candidates at essentially
the same speed. The results for the enumeration algorithm described in [24] are
also given. As expected, they exhibit larger memory requirements, which bounds
the number of key candidates that can be enumerated and increases time com-
plexity. In practice, we were limited to 220 candidates using this algorithm. By
contrast, the memory requirements of our deterministic algorithm are low enough
to allow us reaching 232 key candidates in one hour, using less than 2gb. Predic-
tions show that it is possible to reach 240 using 70gb of memory in nine days.
Note that enumeration time can be improved using parallel implementations.

Method #trials 212 216 220 224 228 232 236 240

Sampling Time 0s 0.04s 0.31s 10.1s 160s 2560s 11h 182h

[24] Time 0.05s 0.96s 18.1s
X X X X X

Memory 7.7mb 118mb 7.7gb

Proposed Time 0s 0.03s 0.55s 9.2s 163s 3130s 12h 221h
Memory 88kb 405kb 2.7mb 20mb 225mb 1.8gb 10gb 70gb

Table 1: Practical comparison of key-enumeration algorithms.

Next, as mentioned in Section 4, Algorithm 3 performs key trials in the
best possible order, therefore minimizing the enumeration effort at the cost of a
growing amount of memory space. By contrast, the probability-driven algorithm
may miss some key candidates and output some more than once. In order to
illustrate these differences we led the following experiment. A large number of
side-channel attacks followed by a key recovery were performed, and we mea-
sured the key rank (which is also the number of trials for the optimal algorithm),
the expected number of trials for the probability-driven algorithm and the mem-
ory used during optimal enumeration. Figure 3 illustrates the expected overhead
of the probability-driven method over the deterministic one in terms of key tri-
als (green dots, left scale) and the memory cost of the enumeration algorithm
(blue dots, right scale). We observe that the probability-driven algorithm re-
quires more key trials on average to complete an attack. The overhead increases
consistently, and the median of the expected ratio value (green curve) appears
to tend towards a linear relation on the log-log scale. An approximated power
law gives 23.2+log2(r)/20, e.g. 16 for 216, 21 for 232, an extrapolated 36 for 240.
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Fig. 3: Overhead of the probability-driven method in function of the key rank
(green), and memory requirements of the deterministic enumeration (light blue).

In some cases, we also observe overheads very far from the median value (well
over 1000), even when the correct key is ranked among the 4 first ones. On top
of this expected number of trials, we have to consider that, since the probabilis-
tic method follows a geometric law, the number of key trials will have a very
large variance (approximately the square of expected value). This makes the
probabilistic method both more costly and less reliable than our deterministic
algorithm. Besides, the memory space requirement of the enumeration method
also appears to follow a power law. We can see that enumerating up to 232 re-
quires about 1gb of memory. Extrapolations up to 240 keys give an estimated
70gb, which is easily manageable using hard-disk drives in less than two weeks.
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Fig. 4: Success rate of template attacks. Left: enumeration, right: sampling.



5.2 Application of key-enumeration to side-channel attacks

Figure 4 illustrates the success rate of different orders for a template attack, in
function of the number of traces measured. The alternated light and gray zones
correspond to the evolution of the success rate each time the number of tested
keys is multiplied by 16. The rightmost dark gray curve is obtained by only
testing the first key candidate, the first light gray curve by testing 24 keys, then
28, . . . We again considered the optimal and the probabilistic enumerations, for
different number of enumerated key candidates. The optimal enumeration was
led up to 232 candidates, and the probabilistic method up to 228. As expected,
allowing more key candidates to be tested can dramatically increase the efficiency
of a key recovery. For 120 messages measured, the best key candidate is the
correct one about 2% of the time, while there is a 91% chance for the correct
key to be found among the first 224 candidates with the optimal enumeration
algorithm (or an 84% chance with the probability driven method). In other
words, increasing the number of key trials significantly improves the success
rate, thereby providing a tradeoff between the data and time complexities of
the attacks. As in the previous subsection, we also observe that the optimal
enumeration algorithm leads to higher success rates compared to the random
sampling for a given number of key trials, at the cost of additional memory
requirements. Figure 5 shows a similar curve for the non-profiled variant of the
stochastic attack described in Section 3, using the deterministic enumeration
algorithm. It confirms the correctness of our Bayesian formulation2.
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Fig. 5: Success rates of the Bayesian stochastic attack with optimal key enumer-
ation. Left: 9-element linear basis. Right: 2-element Hamming weight basis.

Figure 6 provides an orthogonal view of the problem: for a given number of
traces, one can increase the key success rate by enumerating more key candidates.

2 Similar curves could also be obtained by performing a correlation attack, where the
subkey probabilities are approximated using normalized correlation scores. Although
such an approximation is not backed up by any theoretical argument, it worked well
in simple implementation contexts (e.g. Hamming weight leakage model, typically).



The figure shows the cumulative probability function (cdf) of key recoveries for
an attack with a fixed number of traces, in function of the number of key trials.
The pmfs used for this experiment are output by two template attacks. The
first attack (left) targets only 2 key bytes, the second (right) targets all 16 key
bytes. As expected, the cumulative probability starts from 0 and reaches 1 once
a sufficient number of keys have been tested. Also, the brute force testing is only
possible in the left case (i.e. when we can enumerate the full list). In general, we
see that the side-channel information allows obtaining high success rates with
a limited number of key trials (here, up to 230). More importantly, the figure
again confirms the interest of the deterministic algorithm in terms of “number
of keys to test”. Reaching a similar success rate with the probabilistic algorithm
requires between 22 and 24 more tests, depending on the success rates.
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Fig. 6: Enumeration success rates. Left: 2 S-boxes, right: 16 S-boxes.

Finally, Figure 7 summarizes the previous observations and further illustrates
the tradeoff between measurements and computations in the case of a template
attack. The classical “best-key” success rate curve is shown in thick. The other
curves give the number of key trials that are necessary in order to reach some
success rate, given a number of measured encryptions, and for different quantiles.
For example, let us consider the success median which corresponds to a 50%
chance of key recovery. This rate can be acheived using 190 messages if only the
best key candidate is considered (bottom black dot), 135 messages for 28 key
trials (middle black dot), or only 110 messages for 216 key trials (top black dot).
Finally, the thick gray curve in the figure gives the entropy of the key distribution
while the template attack is performed. This entropy is simply obtained by
summing up the 16 independent entropies of the subkeys. Interestingly, it can be
noticed that this entropy (that can be evaluated “on-the-fly” during an attack)
is a good indicator of the remaining workload to recover the master key.
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Fig. 7: Success rate for the best key candidate (thick), entropy of the key candi-
dates distribution (gray), and key tries needed to reach a given success proba-
bility (dotted: 1% and 99%, dashed: 25% and 75%, solid: 50%).

6 Other applications

As mentioned earlier, the interest of the proposed key-enumeration algorithm is
not restricted to the context of side-channel cryptanalysis: the problem of enu-
merating keys from subkey distributions may also arise in the case of multiple
statistical cryptanalysis. Indeed, when considering a single statistical character-
istic, one obtains a list of subkeys (typically corresponding to key bits used for a
partial decryption) with their probabilities. When more characteristics are used,
an attacker obtains different lists of subkeys and has to combine them.

This is the case, for instance, in multiple differential cryptanalysis [4] and
multiple linear cryptanalysis [3]. Both types of cryptanalyses belong to the same
family of so-called last-rounds attacks that consist in partially decrypting the
available ciphertexts (e.g. by inverting few S-boxes), in order to compute some
statistic related to a chosen characteristic (typically, a differential or linear ap-
proximation of the target cipher). As only k key-bits are required to perform
the partial decryption, one can decrypt the ciphertexts for all possible values of
this k-bit subkey, obtaining as many statistics. From them, the attacker derives
the likelihood of being the correct subkey for each candidate. Using more than
one characteristic directly leads to different lists of candidates and their proba-
bilities. In general, the choice of characteristics is limited by the total number of
key bits guessed. Indeed, if all the key bits are involved in at least one charac-
teristic, recovering the full key by generating the list of candidates will be more
time-consuming than exhaustive search. However, using an optimal enumeration
algorithm, the set of characteristics can be split in many groups - each involving
a small number of key-bits - so that generating the list of subkeys is tractable
and the master key can then be enumerated from these lists.

This idea can be illustrated with the multiple linear cryptanalysis of Serpent
[9]. In this attack, three different sets of linear approximations are formed, lead-



ing to attacks recovering 32, 40 and 44 key-bits. Merging the three lists obtained
from these groups would dramatically increase the time and memory complexi-
ties, leading to a worse attack than using only one group. Using the optimal key
enumeration algorithm, we obtain an attack that outperforms the ones proposed
in the original paper. A similar gain can be observed for the linear cryptanalysis
of DES proposed in [12]. Here, using all the linear approximations, the number
of involved key bit reaches 56 (i.e. the full-key size). Hence, authors only used a
subset of approximations (32968 out of 74086) leading to a list of 242 candidates.
Again, the optimal enumeration algorithm allows us to extract more information
from the available plaintext/ciphertext pairs, leading to a more efficient attack.

Subkey-bits overlap. We note that it is unlikely that sets of key bits corresponding
to different characteristics are disjoints. Hence, Algorithm 3 has to be patched
to be applied to multiple statistical cryptanalyses. This can be easily done by
adding a rule in successor insertion, that skips inconsistant couples of subkeys
when updating the frontier set. The time overhead induced by this additional
rule remains small as the proportion of overlapping bits is typically small.

7 Conclusion

This paper complements standard side-channel cryptanalysis by investigating
the attack improvements obtained by adversaries with non-negligible compu-
tational power. For this purpose, we first proposed an extension of non-profiled
stochastic attacks that outputs probability mass functions, providing us with the
likelihood values of subkey candidates. Next, we proposed a new and determin-
istic key enumeration algorithm, in order to take advantage of these likelihood
values. Our experiments show that this order-optimal enumeration algorithm
leads to more efficient attacks than a sampling-based algorithm from Eurocrypt
1991. In particular, the probabilistic algorithm suffers from its underlying ge-
ometric law, that implies an increasingly large overhead over the deterministic
method (in terms of key trials), as the number of keys to enumerate increases.
The deterministic method additionally allows removing the possibility of compu-
tationally intensive worst cases, which makes it a particularly suitable solution
for side-channel security evaluations, in which we want to derive security met-
rics with high confidence. Finally, our proposal significantly reduces the memory
requirements of a deterministic algorithm from SAC 2010, making it the best
practical solution for enumeration of up to 240 key candidates. As a result, the
solutions in this paper allow us to properly trade side-channel measurements for
offline computations. They create a bridge between classical DPA and brute-
force key recovery, where information extracted through side-channels is used to
improve an exhaustive search. Hence, an interesting scope for further research
is to compare computationally-enhanced DPA attacks with other types of more
computational side-channel attacks, e.g. based on the detection of collisions.

Note finally that the complete key recoveries we considered in this work can
possibly be performed in a ciphertext-only context. That is, the adversary can



evaluate a key candidate by partially decrypting the ciphertext and computing
the probability of the leakages in the previous rounds. This probability will
only be non-negligible if the ciphertext was decrypted with the correct key.
Interestingly, in this particular setting, the test of one key candidate is especially
expensive, making the optimal enumeration algorithm particularly relevant.
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