
Fast Deterministic Selection
Andrei Alexandrescu

The D Language Foundation

Abstract
The selection problem, in forms such as finding the median or choosing the k top ranked

items in a dataset, is a core task in computing with numerous applications in fields as diverse as
statistics, databases, Machine Learning, finance, biology, and graphics. The selection algorithm
Median of Medians, although a landmark theoretical achievement, is seldom used in practice be-
cause it is slower than simple approaches based on sampling. The main contribution of this paper
is a fast linear-time deterministic selection algorithm MedianOfNinthers based on a refined
definition of MedianOfMedians. A complementary algorithm MedianOfExtrema is also pro-
posed. These algorithms work together to solve the selection problem in guaranteed linear time,
faster than state-of-the-art baselines, and without resorting to randomization, heuristics, or fall-
back approaches for pathological cases. We demonstrate results on uniformly distributed random
numbers, typical low-entropy artificial datasets, and real-world data. Measurements are open-
sourced alongside the implementation at https://github.com/andralex/MedianOfNinthers.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Selection Problem, Quickselect, Median of Medians, Algorithm Engineer-
ing, Algorithmic Libraries

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.24

1 Introduction

The selection problem is widely researched and has numerous applications. Selection is
finding the kth smallest element (also known as the kth order statistic): given an array A of
length |A| = n, a non-strict order ≤ over elements of A, and an index k, the task is to find
the element that would be in slot A[k] if A were sorted. A variant that is the focus of this
paper is partition-based selection: the algorithm must also permute elements of A such that
A[i] ≤ A[k] ∀i, 0 ≤ i < k, and A[k] ≤ A[i] ∀i, k ≤ i < n.

Quickselect, originally called Find by its creator C.A.R. Hoare [17], is the selection
algorithm most used in practice [29, 8, 25]. Like Quicksort [16], Quickselect relies on
a separate routine Partition to divide the array into elements less than or equal to, and
greater than or equal to, a specifically chosen element called the pivot. Unlike Quicksort
which recurses on both subarrays left and right of the pivot, Quickselect only recurses on
the side known to contain the kth smallest element.

The pivot choosing strategy is crucial for Quickselect because it conditions its per-
formance between O(n) and O(n2). Commonly used heuristics for pivot choosing—e.g. the
median of 1–9 elements [30, 14, 3, 8]—work well on average but have high variance and
do not offer worst-case guarantees. The “Median of Medians” pivot selection algorithm [4]
solves the selection problem in guaranteed linear time. However, MedianOfMedians is
seldom used in practice because it is intensive in element comparisons and especially swaps.
Musser’s Introselect algorithm [25] proceeds with a heuristics-informed Quickselect that
monitors its own performance and only switches to MedianOfMedians if progress is slow.
Contemporary implementations of selection (such as GNU C++ STL [13] and NumPy [28])

© Andrei Alexandrescu;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/andralex/MedianOfNinthers
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Fast Deterministic Selection

use Quickselect or Introselect in conjunction with simple pivot choosing heuristics.
However, all current implementations are prone to high variance in run times even if we
discount rare pathological cases. If heuristics provide poor pivot choices for the first 1–4
partition passes (when there is most data to process), the total run time increases strongly
above its average [18, 9]. A selection algorithm that combines the principled nature and
theoretical guarantees of MedianOfMedians with good practical performance on average
has remained elusive.

We seek to improve the state of the art in deterministic selection. First, we improve the
definition of MedianOfMedians to reduce comparisons and swaps. Second, we introduce
sampling to improve average performance without compromising algorithm’s linear asymp-
totic behavior. The resulting MedianOfNinthers algorithm is principled, practical, and
competitive. Third, we introduce adaptation based on the observation that MedianOfMe-
dians is specialized to find the median, but may be used with any order statistic. That
makes its performance degrade considerably when selecting order statistics away from the
median. (These situations occur naturally even when searching for the median due to the way
Quickselect works.) We devise a simple and efficient partitioning algorithm MedianOfEx-
trema for searching for order statistics close to either end of the searched array. A driver
algorithm QuickselectAdaptive chooses dynamically the most appropriate partitioning
method to find the median in linear time without resorting to randomization, heuristics,
or fallback approaches for pathological cases. Most importantly, QuickselectAdaptive
does not compromise on efficiency—it was measured to be faster than a number of baselines,
notably including GNU C++ std::nth_element. We open-sourced the implementation of
QuickselectAdaptive along with the benchmarks and datasets used in this paper [1].

The paper uses the customary pseudocode and algebraic notations. Divisions of integrals
yield the floor as in many programming languages, e.g. n/3 or n

3 are
⌊
n
3
⌋
. We make the

floor notation explicit when at least one operand is not integral. Arrays are zero-based. The
length of array A is written as |A|. We denote with A[a : b] (if a < b) a “slice” of A starting
with A[a] and ending with (and including) A[b− 1]. The slice is empty if a = b. Elements of
the array are not copied—the slice is a bounded view into the given array.

2 Related Work

Hoare created the Quickselect algorithm in 1961 [17], which still is the preferred choice of
practical implementations, in conjunction with various pivot choosing strategies. Martínez et
al. [22] analyze the behavior of Quickselect with small data sets and propose stopping
Quickselect’s recursion early and using sorting as an alternative policy below a cutoff,
essentially a simple multi-strategy Quickselect. The same authors [23] propose several
adaptive sampling strategies for Quickselect that take into account the index searched.

Blum, Floyd, Pratt, Rivest, and Tarjan created the seminal MedianOfMedians algo-
rithm [4], also known as BFPRT from its authors’ initials. Subsequent work provided variants
and improved on its theoretical bounds [12, 33, 34, 21, 5, 11]. Chen and Dumitrescu [6]
propose RepeatedStep (discussed in detail in §3), a variant of MedianOfMedians that
groups 3 or 4 elements (the original uses groups of 5 or more elements) and prove its lin-
earity. Battiato et al. [2] describe Sicilian Median Selection, an algorithm for computing an
approximate median that may be considered the transitive closure of RepeatedStep.

Floyd and Rivest created the randomized SELECT algorithm [12] in 1975. Although
further improved and benchmarked with favorable results by Kiwiel [19], at the time of this
writing we found no implementation available online and no evidence of industry adoption.

A. Alexandrescu 24:3

3 Background: Quickselect, MedianOfMedians, and RepeatedStep

Quickselect [8, 20] takes as parameters the input array A and the sought order statistic k.
To facilitate exposition, our variant (Algorithm 1) also takes as parameter the partitioning
primitive Partition, in a higher-order function fashion. Partition(A) chooses and returns
an index p ∈ {0, 1, . . . , |A|−1} called pivot, and also partitions A around A[p]. Quickselect
uses the pivot to either reduce the portion of the array searched from the left when p < k,
reduce it from the right when p > k, or end the search when p = k.

Algorithm 1: Quickselect

Data: Partition, A, k with |A| > 0, 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k]

and partitions A around it.

1 while true do
2 p← Partition(A);
3 if p = k then
4 return;
5 end
6 if p > k then
7 A← A[0 : p];
8 else
9 k ← k − p− 1;

10 A← A[p+ 1 : |A|];
11 end
12 end

The running time of Quickselect is linear if Partition(A) returns in linear time a
pivot p ranked within a fixed fraction 0 < f < 1 from either extremum of A. Most pivot
selection schemes use heuristics by choosing a pivot unlikely to be close to an extremum in
conjunction with HoarePartition, which partitions the array in O (n). (Many variants
of Hoare’s Partition algorithm [15] exist; Algorithm 2 is closer to the implementation we
used, than to the original definition.) Heuristics cannot provide a good worst-case run time
guarantee for Quickselect, but perform well on average.

Algorithm 2: HoarePartition

Data: A, p with |A| > 0, 0 ≤ p < |A|
Result: p′, the new position of A[p]; A partitioned

at A[p′]
1 Swap(A[p], A[0]);
2 a← 1;
3 b← |A| − 1;

4 loop: while true do
5 while true do
6 if a > b then break loop;
7 if A[a] ≥ A[0] then break;
8 a← a+ 1;
9 end

10 while A[0] < A[b] do b← b− 1;
11 if a ≥ b then break;
12 Swap(A[a], A[b]);
13 a← a+ 1;
14 b← b− 1;
15 end
16 Swap(A[0], A[a− 1]);
17 return a− 1;

MedianOfMedians, prevalently implemented as shown in BFPRTBaseline (Algo-
rithm 3) [10, 7, 26, 32], spends more time to guarantee good pivot choices. The algorithm
first computes medians of groups of 5 elements for a total of |A|5 groups. The rote routine
Median5(A, a, b, c, d, e) swaps the median of A[a], . . . , A[e] into A[c]. Computing the median
of these medians yields a pivot p with a useful property. There are |A|10 elements less than or
equal to A[p], but each of those is the median of 5 distinct elements, so A[p] is not smaller
than at least 3|A|

10 elements. By symmetry, A[p] is not greater than at least 3|A|
10 elements.

SEA 2017

24:4 Fast Deterministic Selection

Algorithm 3: BFPRTBaseline

Data: A
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 5 then
2 return HoarePartition(A, |A|/2);
3 end
4 i← 0; j ← 0;

5 while i+ 4 < |A| do
6 Median5(A, i, i+ 1, i+ 2, i+ 3, i+ 4);
7 Swap(A[i+ 2], A[j]);
8 i← i+ 5;
9 j ← j + 1;

10 end
11 Quickselect(BFPRTBaseline, A[0 : j], j/2);
12 return HoarePartition(A, j/2);

Selection is initiated by invoking Quickselect(BFPRTBaseline, A, k). To prove
linearity, let us look at the worst-case number of comparisons depending on n = |A|:

C(n) ≤ C
(n

5

)
+ C

(
7n
10

)
+ 6n

5 + n (1)

where the first term accounts for the median of medians computation, the second is the time
taken by Quickselect after partitioning, the third is the cost of computing the medians of
five, and the last is the cost of HoarePartition. Consequently C(n) ≤ 22n.

The number of swaps is also of interest. BFPRTBaseline uses a common optimiza-
tion [10, 7, 26, 32]—it reuses the first quintile of A for storing the medians. S(n) satisfies:

S(n) ≤ S
(n

5

)
+ S

(
7n
10

)
+ 7n

5 +
n− n

10
2 (2)

The terms correspond to those for C(n). Consequently S(n) ≤ 37n
2 . However, neither

bound is tight, meaning they only have advisory value; given that generating worst-case data
for MedianOfMedians remains an open problem, we use empirical benchmarks (§ 7) to
compare the performance of all algorithms discussed.

Recently Chen and Dumitrescu [6] proposed linear-time MedianOfMedians variants
that use groups of 3 or 4 elements, disproving long-standing conjectures to the contrary.
Algorithm 4 shows the pseudocode of their RepeatedStep algorithm with a group size of 3.

Algorithm 4: RepeatedStep

Data: A
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 9 then
2 return HoarePartition(A, |A|/2);
3 end
4 i← 0; j ← 0;
5 while i+ 2 < |A| do
6 Median3(A, i, i+ 1, i+ 2);
7 Swap(A[i+ 1], A[j]);
8 i← i+ 3;
9 j ← j + 1;

10 end
11 i← 0; m← 0;
12 while i+ 2 < j do
13 Median3(A, i, i+ 1, i+ 2);
14 Swap(A[i+ 1], A[m]);
15 i← i+ 3;
16 m← m+ 1;
17 end
18 Quickselect(RepeatedStep, A[0 : m],m/2);
19 return HoarePartition(A,m/2);

Key to the algorithm is that the median of medians step is repeated, thus choosing the
pivot as the median of medians of medians of three (sic). This degrades the pivot’s quality,
placing it within 2n

9 elements from either extremum of A. However, the median of medians
computation only needs to recurse on n

9 elements. Intuitively, trading off some pivot quality
for faster processing in MedianOfMedians is a good idea for competing with imprecise but
fast pivot heuristics. C(n) for Quickselect(RepeatedStep, A, k) satisfies (n = |A|):

C(n) ≤ C
(n

9

)
+ C

(
7n
9

)
+ 3n

3 + 3n
9 + n (3)

A. Alexandrescu 24:5

where the first term is the cost of computing the median of medians of medians, the second is
the worst-case time spent processing the remaining elements, and the last three terms account
respectively for computing the medians of 3, computing the medians of 3 medians of 3, and
the partitioning. Consequently C(n) ≤ 21n. For S(n), each median of three uses at most 1
swap, to which we add 1 for swapping the median to the front of the array. Partitioning
costs at most n

2 swaps in general, but the first n
18 elements are not swapped:

S(n) ≤ S
(n

9

)
+ S

(
7n
9

)
+ 2n

3 + 2n
9 +

n− n
18

2 (4)

which solves to S(n) ≤ 49n
4 . These bounds prove linearity but are not necessarily tight.

4 Partitioning During Pivot Computation

We now set out to improve these algorithms. One starting observation is that heuristics-based
partition uses a O (1) step (picking a pivot) followed by a linear pass (invoking Hoare-
Partition). In contrast, BFPRTBaseline and RepeatedStep make two linear passes:
one for finding the pivot, and one for the partitioning step (also using HoarePartition).
Therefore, algorithms in the MedianOfMedians family are at a speed disadvantage.

This motivates one key insight: we aim to integrate the two steps, i.e. make the com-
parisons and swaps performed during pivot computation also count toward partitioning.
RepeatedStep organizes the array in groups of 3 and computes the median of each group;
then it repeats the same procedure for the medians of three. That imparts a non-trivial
implicit structure onto the input array in addition to computing the pivot. However, that
structure is not used by HoarePartition. Ideally, that structure should be embedded in
the array in a form favorable to the subsequent partitioning step.

Our approach (MedianOfNinthersBasic shown in Algorithm 5) is to make the small
groups non-contiguous and choose their placement in a manner that is advantageous for the
partitioning step, so as to avoid comparing and swapping elements more than once. To that
end, we place the subarray of medians in the very middle of A, more precisely in the 5th
9thile of the array. (Recall that RepeatedStep computes a subarray of medians of medians
with |A|9 elements and recurses against it to compute its median.)

Also, instead of executing two loops, we execute a single pass that ensures the same
postcondition. This is done with Tukey’s Ninther routine [31, 3], which takes 9 array
elements, computes the medians of 3 disjoint groups of 3, and yields the median of those 3
medians. Specifically, Ninther(A, i1, i2, i3, i4, i5, i6, i7, i8, i9) computes the index of the
median of A[i1], A[i2], and A[i3] into i′1, the index of the median of A[i4], A[i5], and A[i6]
into i′2, and the index of the median of A[i7], A[i8], and A[i9] into i′3. Then it swaps A[i5]
with the median of A[i′1], A[i′2], and A[i′3]. After this operation, A[i5] is no less than at
least 3 elements and no greater than at least 3 other elements among A[i1], . . . , A[i9]. We
use Ninther against groups that pick 4 elements from the front of A, one from the mid
9thile (which receives the median), and 4 from the right of that 9thile.

These changes have important theoretical and practical advantages. First, Ninther
computes the same medians of 3 medians of 3 as the first two loops in RepeatedStep
using the same number of comparisons (12 per group of 9) but with 0–1 swaps instead
of 0–3. Second, a single pass is better than the two successive loops in RepeatedStep.
Third, after recursing to Quickselect against A

[
4|A|

9 : 5|A|
9

]
, the mid 9thile is already

partitioned properly around the pivot; there is no need to visit it again. That way, the
medians computation step contributes one ninth of the final result at no additional cost.

SEA 2017

24:6 Fast Deterministic Selection

The pivot computation leaves the array well suited for partitioning by visiting 9thiles 1–
4 and 6–9 (subarrays A

[
0 : 4|A|

9

]
and A

[
5|A|

9 : |A|
]
). This work is carried by Expand-

Partition (not shown, available online [1]), a modified HoarePartition algorithm
that takes into account the already-partitioned subarray around the pivot. The call
ExpandPartition(A, a, p, b) proceeds by the following scheme, starting with i = 0 and
j = |A| − 1 and moving them toward a and b, respectively:

≤ A[p]
0

?
i→

≤ A[p]
a

A[p]
p

≥ A[p]

b

?
← j

≥ A[p]

The procedure swaps as many elements as possible between A[i : a] and A[b+ 1 : j + 1]
because that is the most efficient use of swapping—one swap puts two elements in their final
slots. There may be some asymmetry (one of i and j reaches its limit before the other) so
the pivot position may shift to the left or right. ExpandPartition returns the final position
of the pivot, which BFPRTImproved forwards to the caller. ExpandPartition(A, a, b)
performs a+ |A| − b comparisons and at most max(a, |A| − b) swaps.

Algorithm 5: MedianOfNinthersBasic

Data: A
Result: Pivot p, 0 ≤ p < |A|; A partitioned at p

1 if |A| < 9 then
2 return HoarePartition(A, |A|/2);
3 end
4 f ← |A|/9;

5 for i← 4f through 5f − 1 do
6 l← i− 4f ;
7 r ← i+ 5f ;
8 Ninther(A, l, l + 1, l + 2, l + 3, i,

r, r + 1, r + 2, r + 3);
9 end

10 Quickselect(RepeatedStepBasic,
A[4f : 5f], f/2);

11 return
ExpandPartition(A, 4f, 4f + f/2, 5f − 1);

The number of comparisons C(n) satisfies the recurrence:

C(n) ≤ C
(n

9

)
+ C

(
7n
9

)
+ n+ n

3 + 8n
9 (5)

The only difference from the corresponding bound of RepeatedStep is the last term,
which is slightly smaller in this case because we don’t revisit the middle 9thile during
partitioning. The recurrence solves to C(n) ≤ 20n.

For S(n), each Ninther contributes at most 1 swap per 9 elements. In the worst case
ExpandPartition needs to swap 4n

9 elements from the left side with 4n
9 elements from the

right. However, the swaps don’t sum because one swap operation takes care of two elements
wherever possible. So the number of swaps performed by ExpandPartition is at most 4n

9 .

S(n) ≤ S
(n

9

)
+ S

(
7n
9

)
+ n

9 + 4n
9 (6)

Consequently S(n) ≤ 5n, a sizeable improvement over RepeatedStep. Integrating pivot
searching with partitioning is crucial for improving efficiency. MedianOfNinthersBasic
not only has much better performance, but also allows further optimizations to build upon it.

5 Sampling Without Compromising Linearity

We are now ready to introduce MedianOfNinthers (Algorithm 6). It uses a hyperparameter
0 < φ ≤ 1 from which it derives a subsample size n′ =

⌊
φ|A|

3

⌋
and a gap length g =

A. Alexandrescu 24:7

|A|−3n′

4 , after which it chooses three equidistant disjoint subarrays from A as follows: Al =
A [g : g + n′], Am = A [2g + n′ : 2g + 2n′], and Ar = A [3g + 2n′ : 3g + 3n′]. The three
subarrays have length n′ each, and the gaps around them have length g each (except for the
last gap which is longer by (|A| − 3n′) mod 4), as illustrated below.

0

Al

g g + n′

Am

2g + n′ 2g + 2n′
Ar

3g + 2n′3g + 3n′

The plan is to save time by computing the pivot solely by looking at Al, Am, and Ar
instead of visiting the entire array. The approach is essentially to perform the same algorithm
as MedianOfNinthersBasic against the conceptual concatenation of Al, Am, and Ar.

The challenge is choosing an appropriate iteration schedule for picking the 9 elements to
pass to Ninther. We do so by pairing successive triples of adjacent elements in Al with
the triple Am[i], Am[i + n′/3], Am[i + 2n′/3] (having i range in {0, 1, . . . , n′/3 − 1}) and
with successive triples of adjacent elements in Ar. The result of each ninther is swapped to
Am[2i], i.e. to the second tertile of Am, which in turn is in the middle of A. After the loop,
the second tertile of Am contains the medians needed for recursion.

Algorithm 6: MedianOfNinthers

Data: A
Result: Pivot p, 0 ≤ p < |A|; A partitioned at p

1 n← |A|;
2 n′ ← bφn/3c;
3 if n′ < 3 then
4 return HoarePartition(A, |A|/2);
5 end
6 g ← (n− 3n′)/4;
7 Am ← A

[
2g + n′ : 2g + 2n′

]
;

8 l← g;
9 m← 2g + n′;

10 r ← 3g + 2n′;
11 for i← 0 through n′/3− 1 do
12 Ninther(A, l,m, r, l + 1,m+ n′/3, r + 1,

l + 2,m+ 2n′/3, r + 2,m,m+ n′/3,
m+ 2n′/3);

13 m← m+ 1;
14 l← l + 3;
15 r ← r + 3;
16 end
17 Quickselect(MedianOfNinthers, Am, n

′/2);
18 return ExpandPartition(A,

2g + n′, 2g + n′ + n′/2, 2g + 2n′);

Let us prove linearity of Quickselect(MedianOfNinthers, A, k) by computing an
upper bound of the number of comparisons C(n) from the recurrence:

C(n) ≤ C
(
φn

9

)
+ C

(
n− 2φn

9

)
+ 12φn

9 + n(9− φ)
9 (7)

The first term accounts for the recursive call to Quickselect, which processes that many
elements. The second term accounts for processing the remainder of the array (as reasoned
for RepeatedStep, in the worst case 2φn

9 elements are eliminated in one partitioning step),
the third is the cost of the first loop (12 comparisons for each Ninther call, of which there
are φn

9), and the last is the cost of ExpandPartition. Consequently C(n) ≤ (11φ+9)n
φ . As

expected, the number of comparisons goes up as φ goes down. For swaps we obtain (with
the same term positions):

S(n) ≤ S
(
φn

9

)
+ S

(
n− 2φn

9

)
+ φn

9 + (9− φ)n
18 (8)

resulting in the bound S(n) ≤ (φ+9)n
2φ . Although this result is theoretically unremarkable, it

is attractive engineering-wise. It means we can fine-tune the tradeoff between the time spent
computing the pivot and the quality of the pivot, without ever losing the linearity of the
algorithm. An entire spectrum opens up between the constant sample size used by heuristics
and the full scan performed by all MedianOfMedians variations discussed so far.

SEA 2017

24:8 Fast Deterministic Selection

6 Adaptation: MedianOfExtrema

Finding the kth order statistic in A is most difficult for k = |A|
2 . However, sometimes k may

be closer to one side of A than to its middle. Skewed values of k are possible not only when
requested by the caller (e.g. fetch the 1000 best-ranked items from a large input), but also
while computing the median proper. Recall that Quickselect (Algorithm 1) reduces |A|
progressively in a loop, which changes the relationship between |A| and k. A few iterations
bring the median search to an endgame of chasing a k close to 0 or |A|.

Quickselect(A, k) runs faster for skewed values of k than for k = |A|
2 because any

pivot choosing method has a higher likelihood of finding a good pivot (one that allows
eliminating a large fraction of the searched array). This puts elaborate pivot computing
methods at a disadvantage compared to simple heuristics, so such situations are worth
addressing. To that end we define a specialized algorithm MedianOfExtrema with two
variants, MedianOfMinima for order statistics close to 0, and MedianOfMaxima for
order statistics close to |A|. In the following we limit the discussion to MedianOfMinima.
The corresponding variant MedianOfMaxima is defined analogously.

For small values of k relative to |A|, the partition function should not find a pivot to
the left of k because that would only eliminate a small portion of the input. Martínez
et al. discuss this risk for their related proportional-of-3 strategy [23]. So we require that
MedianOfMinima must find a pivot not smaller than k.

MedianOfMinima (Algorithm 7) is based on the following intuition. MedianOfMedi-
ans computes medians of small groups and takes their median to find a pivot approximating
the median of A. In this case, we pursue an order statistic skewed to the left, so instead of
the median of each group, we compute its minimum; then, we obtain the pivot by computing
the median of those groupwise minima. By construction, the pivot’s rank will be shifted to
the left of the true median. This is an easier task, too, because computing the minimum of a
group is simpler and computationally cheaper than computing the group’s median. We place
these minima at A’s front so they don’t need to be swapped again.

The outer loop in Algorithm 7 organizes A such that its first 2k slots contain the minima
of groups of size γ = |A|

2k elements. Specifically, A[0] receives the minimum over A[0] and
the first group of γ − 1 elements of A [2k : |A|]; A[1] receives the minimum over A[1] and
the second group over γ − 1 elements of A [2k : |A|]; and so on through A[2k − 1], which
receives the minimum over A[2k−1] and the 2kth group of γ−1 elements of A [2k : |A|]. This
permutation ensures that for each element in A [0 : 2k], there are at least γ − 1 additional
elements in A [2k : |A|] greater than or equal to it.

The next steps compute the kth order statistic over A [0 : 2k] (i.e. the upper median of
the subarray of minima, as the name of the algorithm suggests), and uses the obtained A[k]
as pivot to expand the obtained partition to the entire array A. The recursive call replaces
Quickselect with QuickselectAdaptive. The latter (fully specified in the next section)
chooses to use either MedianOfMinima, MedianOfNinthers, or MedianOfMaxima
depending on the ratio of k to |A|.

Let us assess the quality of the pivot p obtained by calling MedianOfMinima(A, k),
i.e. the length of the subarray we can eliminate from the search after one call to Medi-
anOfMinima. Obviously p ≥ k because the recursive call to QuickselectAdaptive
places k elements to the left of A[k] that are no greater than it. In addition, each of the k
elements in subarray A [k : 2k] is greater than or equal to the pivot; but by construction,
for each of these elements there are γ − 1 others greater than or equal to the pivot in the
subarray A [2k : |A|]. It follows that at least k

⌊
|A|
2k

⌋
elements of A are greater than or equal

A. Alexandrescu 24:9

Algorithm 7: MedianOfMinima

Data: A, 0 < k < |A|/6
Result: Pivot p, k ≤ p ≤ |A|/2; A partitioned at

A[p]
1 if |A| = 1 then
2 return 0;
3 end
4 γ ← |A|/2k;
5 k ← G;

6 for i← 0 through 2k − 1 do
7 m← 2k + i(γ − 1);
8 for j ← m+ 1 through m+ γ − 1 do
9 if A[j] < A[j - 1] then

10 m← j;
11 end
12 end
13 if A[m] < A[i] then
14 Swap(A[i], A[m]);
15 end
16 end
17 QuickselectAdaptive(A[0 : 2k], k);
18 return ExpandPartition(A, 0, k, 2k);

to the pivot. Through algebraic manipulation we get k
⌊
|A|
2k

⌋
≥ |A|−2k+1

2 ≥ |A|2 − k so the

call MedianOfMinima(A, k) yields a pivot that allows the elimination of at least |A|2 − k
elements from the search.

These elements are eliminated from the search at the next iteration of QuickselectA-
daptive, and we want to make sure the cost of the computation stays within linear bounds.
The cost of eliminating these elements is n− k for the minima computations plus a recursion
on 2k elements. We conservatively require by the Master Theorem [27] that the recursion
on 2k elements eliminates more than 2k elements, so n

2 − k > 2k, which results in the
requirement k < n

6 . Conversely, for the MedianOfMaxima the threshold is k > 5n
6 . These

thresholds work well in practice and are used in the implementation and experiments.

6.1 Choosing Strategy Dynamically: QuickselectAdaptive
In order to implement adaptation, we need to dynamically choose the partitioning algorithm
from among MedianOfMinima, MedianOfNinthers, and MedianOfMaxima. A good
place to decide strategy is the Quickselect routine itself, which has access to the information
needed and drives the selection process. Before each partitioning step, the appropriate
partitioning algorithm is chosen depending on the relationship between |A| and k. After
partitioning, both A and k are modified and a new decision is made, until the search is over.
QuickselectAdaptive (Algorithm 8) embodies this idea.

7 Experiments and Results

For the implementation [1] we choose the sampling constant for MedianOfNinthers
φ = 1.0

64.0 for arrays up to 217 elements and φ = 1.0
1024.0 for larger arrays. Performance is

not highly dependent on φ, for example there are no dramatic changes when halving or
doubling φ. However, sampling is needed; with φ = 1, the algorithm falls behind the best
baseline. The data sets used are:

random: uniformly-distributed random floating-point numbers.
random01 : n

2 zeros and n
2 ones, shuffled randomly. This puts to test algorithms’ ability

to cope with many duplicates.
m3killer : Musser’s “median-of-3-killer sequence” [25].
organpipe: numbers 0, 1, 2, . . . , n2 − 1, n2 − 1, . . . , 1, 0.
sorted: numbers 0, 1, 2, . . . , n− 1.

SEA 2017

24:10 Fast Deterministic Selection

Algorithm 8: QuickselectAdaptive

Data: A, k with 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k]

and partitions A around it.

1 while true do
2 if |A| ≤ 16 then
3 p← HoarePartition(A, k);
4 else if 6k < |A| then
5 p←MedianOfMinima(A, k);
6 else if 6k > 5|A| then
7 p←MedianOfMaxima(A, k);
8 else
9 p←MedianOfNinthers(A);

10 end
11 if p = k then return;
12 if p > k then
13 A← A[0 : p];
14 else
15 i← k − p− 1;
16 A← A[p+ 1 : |A|];
17 end
18 end

rotated: numbers 1, 2, . . . , n− 1, 0.
googlebooks: We complement artificial data sets with a real-world task—compute the
median frequency of 1-grams (words) in different languages in the Google Ngrams
corpus [24]. These data sets consist of between 5.4M and 20M 1-grams along with
their frequencies. Words have been grouped per year with summing of frequencies. The
part-of-speech annotations have been kept. The languages processed are English (eng),
Russian (rus), French (fre), German (ger), Italian (ita), and Spanish (spa).

The artificial data sizes increase exponentially from 10, 000 to 10, 000, 000 with step
√

10.
For baseline algorithms, we chose the pivot strategies most competitive and in prevalent

industrial use: MedianOf3Randomized (which chooses the pivot as the median of three
random array elements), Ninther (Tukey’s ninther deterministic), and GNUIntroselect,
GNU’s implementation of the C++ standard library function std::nth_element. (To avoid
clutter, we did not plot other heuristics that performed worse, such as single random pivot,
ninther randomized, and median of 3 and 5 elements.)

First, we benchmarked run times on a desktop computer (Intel Core i7 3.6 GHz) against
arrays of 64-bit floating point data. The compiler used was gcc version 5.4.0 invoked with
-O4 -DNDEBUG. We ran each experiment 102 times, eliminated the 2 longest measurements to
account for outliers caused by cache warmup and other additive noise, and took the average
of the remaining timings. For random data, the input was randomly shuffled before each run.

GNUIntroselect is our main baseline because it is an independent and mature im-
plementation that has received extensive use and scrutiny. All speed benchmarks plotted
are normalized such that GNUIntroselect has relative speed y = 1.0, so as to make it
easier to compare algorithms across widely different input sizes. Larger numbers are better,
e.g. y = 2.0 means twice the speed.

Fig. 1 plots the run times of the algorithms tested for finding the median in arrays of
uniformly-distributed floating point numbers. (All run times are given in Appendix A.)
QuickselectAdaptive is faster by a large margin for all data sizes.

For the random01 data set (Fig. 2), again the ranking puts QuickselectAdaptive
first (albeit by a smaller margin), followed by GNUIntroselect. There is no noticeable
difference between the performances of the two other algorithms.

A. Alexandrescu 24:11

The m3killer dataset (Fig. 3) has GNUIntroselect as winner for most data sizes. The
reason is that the median-of-3-killer pattern was intended to cause quadratic behavior to
algorithms choosing the pivot as the median of A[0], A[|A|/2], and A[|A| − 1], but GNUIn-
troselect uses A[1] instead of A[0]. Therefore, the first pivot chosen by GNUIntroselect
is the median of |A|/2 + 1, 2, and |A|, which is exactly the upper median of the entire array.
Therefore, all other algorithms compete against one single pass through a highly optimized
implementation of HoarePartition.

The organpipe dataset (Fig. 4) features Ninther and QuickselectAdaptive as best
performers. Ninther makes good median choices because its sample positions are close to
the actual median (which is at the 25th and 75th percentiles). QuickselectAdaptive’s
sampling strategy also finds the median with relative ease. The same pattern can be noted
on the sorted dataset (Fig. 5).

Fig. 6 shows one interesting pathological case: GNUIntroselect is up to 30x slower
than the other algorithms, and the gap grows with the size of the data set. This is surprising
because the rotated data set (essentially a sorted sequence with a small value at the end)
may plausibly occur in practice (e.g. a sorted array with one appended element).

Fig. 7 compares performance for computing the median frequency of words in the Google
Ngrams corpus [24]. QuickselectAdaptive outperforms all baselines.

7.1 Measuring comparisons, swaps, and variance of run times
Next, we tested the hypothesis (made in the introduction) that QuickselectAdaptive has
lower variance than heuristics-based algorithms, by measuring and comparing the coefficient
of variation σ

µ (standard deviation divided by mean) of run times. (Comparing σ values
directly would not be appropriate because they characterize distributions with different
averages.) We also measured the number of comparisons and swaps. The worst-case number
of comparisons for computing the median has the lower bound C(n) = (2 + ε)n, where ε > 0
is a constant [11]. On random data, the expected number of swaps by an optimal median
selection algorithm is S(n) = n

4 (statistically half of the elements on either side of the median
need to be swapped).

For the algorithms tested, Fig. 8 shows comparisons per element C(n)
n , Fig. 9 shows swaps

per element S(n)
n , and Fig. 12 shows the coefficient of variation σ

µ of the algorithms tested
for 100 trial runs against the random dataset (n = 10, 000, 000). Data has been shuffled
between runs.

The coefficient of variation σ
µ of run times of QuickselectAdaptive is one order of

magnitude smaller than that of the baselines for medium and large data sets. The results
for C(n) and S(n) indicate that QuickselectAdaptive makes a large reduction in the
gap between theory and practice. Fig. 10 and 11 reveal that the improvements also apply
to real-world data. (Appendix A provides detailed numeric results.) Also, we speculate
that further improvements will likely be difficult. C(n) may still be improved significantly
because (2 + ε)n describes the worst, not average, case, but S(n) is virtually at its theoretical
optimum.

Acknowledgements. Thanks to Timon Gehr, Ivan Kazmenko, Scott Meyers, and Todd
Millstein who reviewed drafts of this document. Teppo Niinimäki provided support code.

SEA 2017

24:12 Fast Deterministic Selection

104 105 106 107

0

0.5

1

1.5

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 1 Speed relative to GNUIntroSelect
(random dataset)

104 105 106 107

0

0.5

1

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 2 Speed relative to GNUIntroSelect
(random01 dataset)

104 105 106 107

0

0.5

1

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 3 Speed relative to GNUIntroSelect
(m3killer dataset)

104 105 106 107

0

1

2

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 4 Speed relative to GNUIntroSelect
(organpipe dataset)

104 105 106 107

0

1

2

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 5 Speed relative to GNUIntroSelect
(sorted dataset)

104 105 106 107

0

10

20

30

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 6 Speed relative to GNUIntroSelect
(rotated dataset)

eng fre ger itarus spa
0

0.5

1

1.5

Corpus Language

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 7 Speed relative to GNUIntroSelect (googlebooks dataset)

A. Alexandrescu 24:13

104 105 106 107

0

1

2

3

Input size

C
om

pa
ris

on
s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 8 Comparisons per element (random
dataset)

104 105 106 107

0

0.2

0.4

0.6

Input size

Sw
ap

s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 9 Swaps per element (random dataset)

eng fre ger itarus spa
0

1

2

3

Corpus Language

C
om

pa
ris

on
s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 10 Comparisons per element (google-
books dataset)

eng fre ger itarus spa
0

0.2

0.4

0.6

Corpus Language

Sw
ap

s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 11 Swaps per element (googlebooks
dataset)

104 105 106 107

0

5 · 10−2

0.1

0.15

Input size

σ µ

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 12 Coefficient of variation (random dataset)

SEA 2017

24:14 Fast Deterministic Selection

References
1 Andrei Alexandrescu. Median of ninthers: code, data, and benchmarks. https://github.

com/andralex/MedianOfNinthers, 2017.
2 Sebastiano Battiato, Domenico Cantone, Dario Catalano, Gianluca Cincotti, and Micha

Hofri. An efficient algorithm for the approximate median selection problem. In Algorithms
and Complexity, pages 226–238. Springer, 2000.

3 Jon L Bentley and M Douglas McIlroy. Engineering a sort function. Software: Practice
and Experience, 23(11):1249–1265, 1993.

4 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, August 1973. doi:10.
1016/S0022-0000(73)80033-9.

5 Svante Carlsson and Mikael Sundström. Algorithms and Computations: 6th International
Symposium, ISAAC ’95 Cairns, Australia, December 4–6, 1995 Proceedings, chapter Linear-
time in-place selection in less than 3n comparisons, pages 244–253. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1995. doi:10.1007/BFb0015429.

6 Ke Chen and Adrian Dumitrescu. Select with groups of 3 or 4. In Algorithms and Data
Structures: 14th International Symposium, WADS, 2015.

7 Derrick Coetzee. An efficient implementation of Blum, Floyd, Pratt, Rivest, and Tarjan’s
worst-case linear selection algorithm. 2004. URL: http://moonflare.com/code/select/
select.pdf.

8 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

9 Jean Daligault and Conrado Martínez. On the variance of quickselect. In Proceedings of the
Meeting on Analytic Algorithmics and Combinatorics, pages 205–210. Society for Industrial
and Applied Mathematics, 2006.

10 Kevin Dinkel and Andrew Zizzi. Fast median finding on digital images. In AIAA Regional
Student Paper Conference, 2012.

11 Dorit Dor and Uri Zwick. Median selection requires (2+ε)N comparisons. SIAM J. Discret.
Math., 14(3):312–325, March 2001. doi:10.1137/S0895480199353895.

12 Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Commun.
ACM, 18(3):165–172, March 1975. doi:10.1145/360680.360691.

13 GNU Team. Implementation of std::nth_element, 2016. [Online; accessed 27-Nov-
2016]. URL: https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.
4/a01347.html.

14 Robin Griffin and K. A. Redish. Remark on algorithm 347 [m1]: An efficient algorithm for
sorting with minimal storage. Commun. ACM, 13(1):54–, January 1970. doi:10.1145/
361953.361993.

15 C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321–, July 1961. URL:
http://doi.acm.org/10.1145/366622.366642, doi:10.1145/366622.366642.

16 C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961. doi:
10.1145/366622.366644.

17 C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961. doi:
10.1145/366622.366647.

18 Peter Kirschenhofer and Helmut Prodinger. Comparisons in Hoare’s find algorithm.
Combinatorics, Probability and Computing, 7:111–120, 3 1998. URL: http://journals.
cambridge.org/article_S0963548397003325, doi:null.

19 Krzysztof C. Kiwiel. On Floyd and Rivest’s SELECT Algorithm. Theor. Comput. Sci.,
347(1-2):214–238, November 2005. URL: http://dx.doi.org/10.1016/j.tcs.2005.06.
032, doi:10.1016/j.tcs.2005.06.032.

https://github.com/andralex/MedianOfNinthers
https://github.com/andralex/MedianOfNinthers
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/BFb0015429
http://moonflare.com/code/select/select.pdf
http://moonflare.com/code/select/select.pdf
http://dx.doi.org/10.1137/S0895480199353895
http://dx.doi.org/10.1145/360680.360691
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
http://dx.doi.org/10.1145/361953.361993
http://dx.doi.org/10.1145/361953.361993
http://doi.acm.org/10.1145/366622.366642
http://dx.doi.org/10.1145/366622.366642
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://journals.cambridge.org/article_S0963548397003325
http://journals.cambridge.org/article_S0963548397003325
http://dx.doi.org/null
http://dx.doi.org/10.1016/j.tcs.2005.06.032
http://dx.doi.org/10.1016/j.tcs.2005.06.032
http://dx.doi.org/10.1016/j.tcs.2005.06.032

A. Alexandrescu 24:15

20 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

21 Tony W. Lai and Derick Wood. SWAT 88: 1st Scandinavian Workshop on Algorithm
Theory Halmstad, Sweden, July 5–8, 1988 Proceedings, chapter Implicit selection, pages 14–
23. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. doi:10.1007/3-540-19487-8_2.

22 Conrado Martínez, Daniel Panario, and Alfredo Viola. Mathematics and Computer Sci-
ence II: Algorithms, Trees, Combinatorics and Probabilities, chapter Analysis of Quick-
find with Small Subfiles, pages 329–340. Birkhäuser Basel, Basel, 2002. doi:10.1007/
978-3-0348-8211-8_20.

23 Conrado Martínez, Daniel Panario, and Alfredo Viola. Adaptive sampling strategies for
quickselect. ACM Trans. Algorithms, 6(3):53:1–53:45, July 2010. doi:10.1145/1798596.
1798606.

24 Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K Gray,
Joseph P Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, et al. Quantitative
analysis of culture using millions of digitized books. science, 331(6014):176–182, 2011.

25 David R Musser. Introspective sorting and selection algorithms. Software—Practice &
Experience, 27(8):983–993, 1997.

26 Himangi Saraogi. Median of medians algorithm. 2013. URL: http://himangi774.
blogspot.com/2013/09/median-of-medians.html.

27 Uwe Schöning. Mastering the master theorem. Bulletin of the EATCS, 71:165–166, 2000.
URL: http://dblp.uni-trier.de/db/journals/eatcs/eatcs71.html#Schoning00.

28 SciPy.org. Implementation of argpartition, 2017. [Online; accessed Feb 9, 2017]. URL:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.
html.

29 R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011. URL: https://books.
google.com/books?id=idUdqdDXqnAC.

30 Richard C. Singleton. Algorithm 347: An efficient algorithm for sorting with minimal
storage [m1]. Commun. ACM, 12(3):185–186, March 1969. doi:10.1145/362875.362901.

31 JW Tukey. The ninther, a technique for low-effort robust (resistant) location in large
samples. Contributions to Survey Sampling and Applied Statistics in Honor of HO Hartley,
Academic Press, New York, pages 251–258, 1978.

32 Wikipedia. Median of medians, 2016. [Online; accessed 25-Feb-2016]. URL: https://en.
wikipedia.org/wiki/Median_of_medians.

33 Andrew C. Yao and F. F Yao. On the average-case complexity of selecting the k-th best.
Technical report, Stanford, CA, USA, 1979.

34 Chee K. Yap. New upper bounds for selection. Commun. ACM, 19(9):501–508, September
1976. doi:10.1145/360336.360339.

A Additional Measurement Results

SEA 2017

http://dx.doi.org/10.1007/3-540-19487-8_2
http://dx.doi.org/10.1007/978-3-0348-8211-8_20
http://dx.doi.org/10.1007/978-3-0348-8211-8_20
http://dx.doi.org/10.1145/1798596.1798606
http://dx.doi.org/10.1145/1798596.1798606
http://himangi774.blogspot.com/2013/09/median-of-medians.html
http://himangi774.blogspot.com/2013/09/median-of-medians.html
http://dblp.uni-trier.de/db/journals/eatcs/eatcs71.html#Schoning00
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.html
https://books.google.com/books?id=idUdqdDXqnAC
https://books.google.com/books?id=idUdqdDXqnAC
http://dx.doi.org/10.1145/362875.362901
https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Median_of_medians
http://dx.doi.org/10.1145/360336.360339

24:16 Fast Deterministic Selection

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 7.45·10−2 0.19 8.14·10−2 7.81·10−2 6.01·10−2

31, 620 0.22 0.61 0.25 0.25 0.18
100, 000 0.72 1.97 0.77 0.76 0.53
316, 220 2.15 6.19 2.48 2.47 1.61

1, 000, 000 6.99 19.74 7.90 7.96 4.96
3, 162, 280 23.11 62.86 25.73 25.52 15.75

10, 000, 000 71.67 198.41 80.74 79.84 48.57
Table 1 Run times in milliseconds (random dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 5.76·10−2 0.14 6.40·10−2 6.46·10−2 5.37·10−2

31, 620 0.17 0.44 0.20 0.21 0.16
100, 000 0.55 1.35 0.62 0.64 0.52
316, 220 1.71 4.19 1.97 2.02 1.44

1, 000, 000 5.50 13.31 6.33 6.47 5.12
3, 162, 280 17.92 43.54 20.13 20.70 16.26

10, 000, 000 57.47 142.78 64.48 65.96 50.66
Table 2 Run times in milliseconds (random01 dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 8.58·10−3 0.11 1.88·10−2 2.01·10−2 1.61·10−2

31, 620 2.79·10−2 0.28 5.83·10−2 5.43·10−2 4.89·10−2

100, 000 8.65·10−2 1.05 0.18 0.16 0.16
316, 220 0.25 2.42 0.53 0.53 0.47

1, 000, 000 1.25 9.43 1.85 1.91 1.73
3, 162, 280 5.42 33.15 7.28 4.89 7.13

10, 000, 000 19.06 109.99 27.24 27.99 19.52
Table 3 Run times in milliseconds (m3killer dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 5.19·10−3 2.24·10−2 8.83·10−3 2.89·10−3 4.10·10−3

31, 620 1.60·10−2 6.24·10−2 2.71·10−2 1.01·10−2 1.24·10−2

100, 000 4.86·10−2 0.29 7.90·10−2 2.90·10−2 3.92·10−2

316, 220 0.15 0.74 0.24 9.60·10−2 0.10
1, 000, 000 0.47 2.61 0.74 0.27 0.32
3, 162, 280 2.33 10.00 2.92 1.16 1.27

10, 000, 000 8.37 37.28 9.61 3.71 4.13
Table 4 Run times in milliseconds (organpipe dataset)

A. Alexandrescu 24:17

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 9.92·10−3 5.54·10−2 1.74·10−2 5.70·10−3 7.71·10−3

31, 620 3.12·10−2 0.14 4.82·10−2 1.73·10−2 2.32·10−2

100, 000 9.51·10−2 0.79 0.15 5.41·10−2 7.22·10−2

316, 220 0.30 1.60 0.47 0.17 0.20
1, 000, 000 1.40 5.84 1.81 0.74 0.88
3, 162, 280 4.93 20.28 5.94 2.50 2.51

10, 000, 000 17.10 81.60 19.67 7.66 7.77
Table 5 Run times in milliseconds (sorted dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 9.45·10−2 5.29·10−2 1.73·10−2 1.08·10−2 1.17·10−2

31, 620 0.32 0.15 5.18·10−2 3.33·10−2 3.48·10−2

100, 000 1.12 0.59 0.16 0.10 0.11
316, 220 3.92 1.57 0.47 0.32 0.31

1, 000, 000 16.91 5.90 1.70 1.27 1.15
3, 162, 280 98.91 20.29 5.75 3.93 3.64

10, 000, 000 366.41 82.09 18.89 12.38 11.71
Table 6 Run times in milliseconds (rotated dataset)

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 117.81 396.29 162.80 135.19 94.40
fre 49.69 169.70 70.12 70.14 43.21
ger 77.98 222.23 92.16 100.67 54.86
ita 37.96 106.29 43.49 33.15 27.98
rus 64.83 224.04 93.15 93.12 56.44
spa 50.01 134.70 55.74 54.52 39.07
Table 7 Run times in milliseconds (Google Ngram dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 2.80 6.75 2.77 2.40 2.31
31, 620 2.81 6.91 2.70 2.43 2.26

100, 000 2.89 7.14 2.72 2.32 2.22
316, 220 2.72 7.21 2.77 2.47 2.07

1, 000, 000 2.74 7.30 2.77 2.47 2.04
3, 162, 280 2.89 7.33 2.77 2.52 2.03

10, 000, 000 2.80 7.34 2.75 2.44 2.02
Table 8 Comparisons per element (random dataset)

SEA 2017

24:18 Fast Deterministic Selection

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 2.02 7.29 2.18 1.95 2.01
fre 2.58 7.45 3.14 2.29 2.03
ger 2.38 7.54 3.04 2.62 2.03
ita 2.19 7.58 2.19 1.95 2.06
rus 1.98 7.44 3.57 2.14 2.03
spa 2.19 7.38 2.27 2.09 2.09
Table 9 Comparisons per element (googlebooks dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 0.55 3.28 0.55 0.53 0.33
31, 620 0.55 3.35 0.55 0.54 0.30

100, 000 0.57 3.46 0.54 0.52 0.29
316, 220 0.54 3.50 0.55 0.54 0.29

1, 000, 000 0.54 3.54 0.55 0.55 0.27
3, 162, 280 0.57 3.54 0.56 0.55 0.26

10, 000, 000 0.55 3.55 0.55 0.54 0.26
Table 10 Swaps per element (random dataset)

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 0.45 3.43 0.54 0.45 0.25
fre 0.48 3.50 0.55 0.55 0.27
ger 0.53 3.49 0.65 0.60 0.26
ita 0.52 3.55 0.48 0.43 0.28
rus 0.45 3.50 0.59 0.53 0.27
spa 0.54 3.44 0.54 0.52 0.31
Table 11 Swaps per element (googlebooks dataset)

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 0.13 0.11 0.13 0.13 0.11
31, 620 0.14 8.63·10−2 0.11 0.11 6.97·10−2

100, 000 0.11 2.57·10−2 0.14 9.80·10−2 5.05·10−2

316, 220 0.13 5.13·10−2 0.13 0.11 7.72·10−2

1, 000, 000 0.12 1.56·10−2 0.14 0.10 6.09·10−2

3, 162, 280 0.11 1.61·10−2 0.12 0.11 2.66·10−2

10, 000, 000 0.13 1.57·10−2 0.12 0.11 1.87·10−2

Table 12 Coefficient of variation of run time (random dataset)

	Introduction
	Related Work
	Background: Quickselect, MedianOfMedians, and RepeatedStep
	Partitioning During Pivot Computation
	Sampling Without Compromising Linearity
	Adaptation: MedianOfExtrema
	Choosing Strategy Dynamically: QuickselectAdaptive

	Experiments and Results
	Measuring comparisons, swaps, and variance of run times

	Additional Measurement Results

