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ABSTRACT
DNS over TLS (DoT) protects the confidentiality and integrity of
DNS communication by encrypting DNS messages transmitted
between users and resolvers. In recent years, DoT has been deployed
by popular recursive resolvers like Cloudflare and Google. While
DoT is supposed to prevent on-path adversaries from learning and
tampering with victims’ DNS requests and responses, it is unclear
how much information can be deduced through traffic analysis on
DoT messages. To answer this question, in this work, we develop a
DoT fingerprinting method to analyze DoT traffic and determine if a
user has visited websites of interest to adversaries. Given that a visit
to a website typically introduces a sequence of DNS packets, we
can infer the visited websites by modeling the temporal patterns of
packet sizes. Our method can identify DoT traffic for websites with
a false negative rate of less than 17% and a false positive rate of less
than 0.5% when DNS messages are not padded. Moreover, we show
that information leakage is still possible even when DoT messages
are padded. These findings highlight the challenges of protecting
DNS privacy, and indicate the necessity of a thorough analysis of
the threats underlying DNS communications for effective defenses.
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1 INTRODUCTION
As users increasingly rely on the Internet for diverse, daily interac-
tions, the demand for secure online communications with privacy
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protection increases. The main threat to secure and private com-
munication is "pervasive monitoring" announced in an RFC by the
IETF [27], which describes the network adversaries who can moni-
tor Internet communications and infer users’ private information.
While network encryption provides a certain degree of protection
by obscuring the content of packets, metadata like packet size and
timing are still exposed. This information can be exploited for the
purpose of website fingerprinting, i.e., learning which websites a
user has visited, and a number of prior works have explored this
idea [19, 26, 32, 33, 48, 49, 62, 63].

While those works have demonstrated that website fingerprint-
ing is an effective attack vector, they all focus on the protocol that
is directly related to a visit to a website, HTTP(s). In this work,
we study another protocol that is relevant to a website visit in an
indirect way, DNS. As stated in [16]: "Almost every activity on the
Internet starts with a DNS query (and often several). Its use has
many privacy implications[.]" However, exploiting DNS for web-
site fingerprinting was a less attractive research idea as most DNS
messages are sent in plain text, which is rather different from the
deployment of encryption on HTTP.

Recently, this situation has been changing. As advocated by the
IETF, the research community, and industry, there is a strong push
to apply network encryption on DNSmessages. In fact, several RFCs
about DNS encryption have been established, and a number of DNS
service and software providers have implemented the RFCs in their
products. As such, we believe that now is the time to investigate the
protection of DNS encryption on user privacy, especially whether
and how it can defend against website fingerprinting attacks. In
this work, we focus on DNS over TLS (DoT) that has been both
standardized and extensively implemented [23, 35].

Although the information from the encrypted DNS and HTTP
messages could be similar under website fingerprinting, DNS poses
greater challenges in achieving the same level of effectiveness,
since the packet size of DNS is usually much smaller than that of
HTTP, which could result in a higher similarity between different
website visits. We tackle this issue by incorporating a list of traffic
features found in existingworks (such as time intervals and ordering
groups) and new features unique to DoT (such as the number of DNS
messages within a TLS record). We evaluated our approach using
Random Forest and Adaboost classifiers. The evaluation results
indicate that website fingerprinting is still a serious threat under
DoT. In particular, we collected DoT traces of 98 sensitive websites
under three categories (health insurance, dating, and gambling).
When DNS messages are not padded, the false negative rate (FNR)
and false positive rate (FPR) of category classification are less than
7% and 5%, respectively. For classifying individual pages, the FNR
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and FPR are less than 17% and 0.5%, respectively, without padding.
Even with padding, classification still works relatively well, with
the FNR or FPR as low as zero when identifying individual websites.
The result is consistent across different public DoT resolvers we
tested, including Google, Cloudflare, and Surfnet. More surprisingly,
we found that though DNS messages can be padded, i.e., through
enabling EDNS(0) option, reasonable fingerprinting accuracy can
still be achieved. Finally, we make recommendations on effective
defenses against DoT fingerprinting attacks.

The rest of the paper is organized as follows. Section 2 presents
the background of DNS, especially DNS privacy and DNS over TLS.
Section 3 defines our threat model. Section 4 details our proposed
approach for DoT traffic fingerprinting. Section 5 describes our
evaluation methodology and results. Section 6 further discusses
limitations of our work and effective defenses. Section 7 reviews
relevant studies. Finally, Section 8 concludes the paper.

2 BACKGROUND
In essence, DNS comprises a hierarchical database of resource
records distributed across a global network of nameservers. This
distributed system serves to map a domain name (e.g., example.com)
to one or more associated IP addresses, and vice versa.

Typically, to initiate a DNS lookup for a host name, a user first
needs to communicate with a stub resolver and/or recursive resolver.
The resolver acts as a proxy, and completes the DNS name resolu-
tion for the user. If the record requested is in the resolver’s cache,
the cached response will be used to reply to the user. Otherwise, the
resolver will communicate with other DNS servers to obtain the de-
sired information. A stub resolver (which usually runs on the user’s
machine) will send the query to a recursive resolver. A recursive
resolver will traverse the hierarchical tree of nameservers, starting
from the root until the resolver has the authoritative answer to the
user’s request. Recursive resolvers are typically operated by service
providers or organizations to serve multiple users. A user may also
run a recursive resolver on his or her own machine, and commu-
nicate directly with authoritative nameservers. This approach is
less common, as shared caching at the recursive resolver is key
to decreasing the latency experienced by clients and the traffic at
nameservers [36, 56].

2.1 DNS Privacy
When the DNS standard was proposed, privacy issues were not
considered [43, 44]. By default, DNS messages are sent in plain text,
allowing any party capable of monitoring network traffic to eaves-
drop on DNS messages [16]. DNS messages contain a great deal of
information about which domains users visit, what services or ap-
plications they use, and with whom they communicate [20, 31, 64].
A person may have various reasons for keeping such information
private, including circumventing censorship and avoiding surveil-
lance. This situation has led to the development of secure protocols
and standards for providing privacy for DNS communications. In
this work, we focus on one of these protocols: DoT.

DoT attempts to provide privacy via encryption for the most
vulnerable portion of a DNS lookup: the segment between a user and
his/her recursive resolver. Using DoT, a client on the user’s machine
will establish a TLS session with a recursive resolver, and then use

this session to exchange encrypted DNS queries and responses. This
segment is themost vulnerable to attacks on privacy, as traffic in this
segment can be more easily associated with individual users. DoT
may also be used between the recursive resolver and nameservers.
Organizations operating public resolvers and nameservers have
also done experiments using DoT [21].

While DoT is supported by many groups and tools, DNS over
HTTPS (DoH) has also gained a substantial following. Both DoT and
DoH encrypt DNS communications. One of the major differences
between these two protocols lies in that DoT has its own port, Port
853, but DoH uses Port 443, which is the standard port for HTTPS
traffic.

The protocol creates opportunities for significant changes in
how DNS is handled. As noted in the RFC, DoH "is more than a
tunnel over HTTP" [34]. DoH allows DNS records to be integrated
into the HTTP ecosystem of "caching, redirection, proxying, au-
thentication, and compression" [34]. While various groups have
been developing tools for DoH for months, the potential for control
and customization introduced by DoH has yet to be fully explored.
Until these changes take place, we believe the insights gained from
DoT will also apply to DoH.We confirm this by conducting a simple
test, which is presented in Appendix A.

2.2 DNS over TLS
2.2.1 Implementation Status. DoT deployment has been growing
steadily over the past few years. The IETF published the RFC speci-
fying DoT in 2016 [35]. The list of DoT implementations maintained
by the DNS Privacy Project includes stub and recursive resolvers,
forwarders, command line tools, and a browser [23]. Currently, sev-
eral public recursive resolvers provide DoT with varying levels of
support for features such as padding and query name minimization.
The implementation and adoption of DoT is ongoing. In early 2019,
Google announced support for DoT in its public resolvers [25], and
developers of Stubby (the main stub resolver associated with DoT)
have provided new packages and installers [24].

2.2.2 DoT and Traffic Analysis. Encrypting DNS does not entirely
eliminate concerns regarding the privacy of DNS. An adversary
may still gain information about a user’s activities by analyzing
DoT traffic. The specification for DoT notes the possibility for such
an attack against encrypted DNS [35].

Additional measures may thus be necessary to ensure the pri-
vacy of DoT. Padding encrypted DNS messages has already been
proposed and implemented as one such protection measure, al-
though it remains to be determined how effective this approach is.
For DNS, one might expect padding to be highly effective, since
DNS messages tend to be short and their size can be hidden in
a relatively easy manner. Still, no prior research has conducted a
thorough analysis on the privacy implications of DoT deployments.
Our work aims to fill this gap, assess whether the communication
privacy is adequately protected, and provide recommendations for
more effective defense.

2.2.3 Insights of DoT Traffic. The traffic analysis of DoT shares the
same general approach as previous works involving HTTPS traffic.
However, the nature of the underlying systems makes the traffic
analysis on DoT, in some ways, a more difficult problem.
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Figure 1: Threatmodel: passive eavesdropper between a user
and recursive resolver.

The challenge for DNS lies largely in its relatively low traffic
volume and small message sizes. To load a webpage, a browser will
issue several GET requests to retrieve all the objects of the page.
Not all of these requests require a unique DNS lookup, as multiple
objects may be stored on the same host. One measurement study
found that the median number of objects required to load a page
was 40, but for 60% of pages, at most 20 servers were contacted [17].
Since DNS queries will be largely driven by the number of servers
contacted, this finding suggests that the number of DNS messages
sent when loading a page will tend to be lower than the number of
HTTP messages.

Moreover, the size of a DNS message is normally small. HTTP
requests can include a variety of fields that lead to significantly dif-
ferent message sizes [47]. The sizes of the objects on a webpage may
span orders of magnitude, from less than 100 bytes up to thousands
of bytes [17]. By contrast, DNS messages have historically been
constrained to be less than 512 bytes when transmitted over UDP
(which is by far the most common method) [44]. DNS Extensions
now allow DNS messages over 512 bytes [41], and DNSSEC often
generates messages over 512 bytes [57]. However, the DNSSEC
deployment is still relatively low [7, 8].

3 THREAT MODEL
We consider a scenario, illustrated in Figure 1, in which a user
is using DoT for DNS privacy, while an adversary attempts to
infer that user’s Internet activities from his/her DoT traffic. The
adversary has two primary goals. First, the adversary attempts
to learn if the victim is visiting a particular category of websites,
which the adversary deems sensitive or controversial. Second, the
adversary is interested in identifying if the victim visits a specific
website.

In our threat model, we assume that the adversary has the capa-
bility to eavesdrop on the network traffic between the victim user
and the recursive resolver.

However, the adversary is limited to accessing one vantage point
and cannot collect data from the path between the recursive resolver
and nameservers, where eavesdropping is typically much more
difficult. Based on the terminology defined by Díaz et al. [22], our
adversary is passive and local. As suggested by [33], this kind of
adversaries widely exist in the real world.

Figure 2: Data collection.

4 PROPOSED DOT FINGERPRINTING
The design of our proposed DoT fingerprinting is based on the
observations described in Section 2.2.3. To conduct DoT finger-
printing, the adversary first needs to collect DoT traces by visiting
websites of interest using an environment similar to that of the
victim, e.g., using the same browser family. Then, the adversary will
extract features from the DoT traces based on the specific objective,
i.e., category or website classification, and derive fingerprinting
models (or classifiers) based on machine learning. After the training
stage mentioned above, the adversary will need to collect the DoT
traces of the targeted victim (e.g., by monitoring the traffic flowing
to destination port 853) and apply the trained classifier to predict
whether the victim has visited a website of interest.

Following this strategy, we collected a large number of DoT
traffic instances related to website visits to train and test models.
In Section 4.1, we describe the details of our testing setup and
data collection. In Section 4.2, we elaborate on how features are
extracted from DoT traffic. Finally, in Section 4.3, we describe how
the classifiers are chosen and implemented.

4.1 Environment and Data Collection
4.1.1 Test Setup. We set up our testing environment on a virtual
machine rented from Amazon EC2 to generate website visits and
capture the associated DoT traffic. The instance was located in the
us-east-1 availability zone and ran Ubuntu 18.10 as the operating
system. Each website visit is executed by Firefox (Extended Release
Support version 60.4.0) [9]. Given that a large number of DoT traces
need to be collected, we automate the task by using Python Sele-
nium [46] to drive Firefox actions in headless mode, under which
Firefox runs without showing a GUI [10].

One thing to note is that at the time of this writing, Firefox
does not integrate a DoT stub resolver. As a result, we needed to
configure an external DoT stub resolver and use it to relay Firefox
DNS queries. To this end, we used a forwarder named Stubby
[6], which is a local, non-caching stub resolver developed under
the getdns project. Stubby listens to the loopback address and
forwards the plain-text DNS messages it receives to the recursive
resolver using DoT. Relaying DNS messages through DoT prevents
us from viewing the DNS traces for analysis. To address this issue,
we set up a network proxy named SSLSplit [53] between Stubby
and the recursive resolver. SSLSplit allows us to decrypt DoT
traffic and recognize the fields. We note that SSLSplit is only used
for debugging and labeling. None of the decrypted information is
leveraged for features of classifiers, as they should not be available
to our on-path adversary. Finally, SSLSplit communicates with
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Table 1: Summary of datasets

Number of instances
Dataset
long1

Padded Target Top Background

Surfnet 0 Yes 3,443 2,780 1,429
No 3,818 3,782 972

Surfnet 1 Yes 1,294 3,314 806
No 1,256 2,922 1,154

Google Yes 1,334 3,561 1,496
No 1,302 3,967 735

Cloudflare Yes 1,330 3,862 1,509
No 1,350 3,873 879

the recursive resolver, and the traffic between them is captured by
tcpdump [12]. Figure 2 illustrates the data collection setup.

Regarding the tested recursive resolvers, we chose Google, Cloud-
flare, and Surfnet. Surfnet resolvers are defaults for Stubby. Google
and Cloudflare are well-known resolvers. For most tests, we chose
the Surfnet resolver because its padding policy depends on the
EDNS(0) padding option from the client, allowing us to assess the
impact of padding on the inference results. This decision and the
resolvers’ padding policies are further discussed in Section 5.2.4.

4.1.2 Dataset. We chose websites to be visited in three groups: tar-
get (visits to the sites are sensitive and monitored by adversaries),
top (popular sites users are likely to visit) and background (less
popular sites visited during testing but not training). For the target
group, we selected 98 websites under three sensitive categories:
health insurance, dating, and gambling websites. We decided to use
those websites after searching keywords related to each category
and using the Alexa Top Sites categorical lists for gambling and
dating [13]. The top group includes 100 websites taken from the
150 most popular sites ranked by Alexa after filtering out localized
versions of domains (i.e., if example.com and example.us both ap-
peared on the list, we would only keep example.com) and pages that
had problems loading in pre-tests. The background group contains
1,650 less popular websites, selected from the Alexa Top Sites list
in groups of 75 pages at intervals of 5,000, starting at rank 5,000.
We obtained the lists for the top and background groups using the
Alexa Top Sites API to get pages ranked by popularity in the United
States [5]. We removed the duplicates shared by at least two lists
to ensure there is no overlap between different groups.

For each website, we directed Firefox to visit its homepage and
captured the associated DoT traffic. Before loading a page, we
started running tcpdump, and we stopped tcpdump after the page
was considered to be loaded in order to create separate pcap files for
different webpage visits. In particular, each page is given 30 seconds
to load, and we waited an additional 5 seconds between webpage
visits. This approach models a scenario in which an attacker is able
to determine the exact start and end of DoT messages associated
with a single webpage. In practice, the attacker may make such
a determination by using heuristics related to intervals between
queries as in [58], or more sophisticated clustering methods as in
[15]. Our testing environment (Firefox and Stubby) does not cache
the DNS responses locally to avoid interference between visits. For

each page load, we also saved its HTML code to a disk. We used
the HTML file information (i.e., its size and keywords in the title
field) to filter out failed page loads. This filtering procedure yields
a set of “good” instances that we used for further analysis. Table 1
summarizes the datasets after filtering.

We ran three rounds of data collection over two months. We
collected data from the Surfnet resolvers in early February and
late March 2019, and from the Google and Cloudflare resolvers in
early April 2019. Regarding the tests for the top and target groups,
we loaded each homepage 80 times: 40 times without padding
queries and another 40 with padded queries. Our data collector
visits the pages in a round-robin fashion, in that all pages are visited
sequentially before the next round. Sometimes, the DNS caching
at the recursive resolver might introduce prominent changes to
the subsequent visit. To address this issue, we shuffled the order of
webpage visits per round to let as many caches expire as possible.
Since the background group is mainly for balancing the training and
testing dataset with irrelevant instances, we loaded each webpage
in the group only twice (once padded and once non-padded).

4.1.3 Ethics of Data Collection. The webpage visits are executed by
our automated data collector so that no human subjects are involved.
While the sites in the target group are considered sensitive to human
users, none of them are illegal in United States; therefore, visiting
them does not break the law. The main ethical concern of data
collection is that our visits could introduce excessive overhead on
the public recursive resolver. To address this concern, we limited the
number of webpage visits in a given time period to a rate similar to
what is expected for a human user browsing the Internet. We gave
each visit 30 seconds to finish, consistent with a measurement study
of webpage visits collected by European ISP [58], which suggests
that 50% visits take 30 seconds or less.

4.2 Features
From an adversary’s point of view, the DoT traces associated with
one webpage visit can be considered as a time-sequence of packets.
Due to the encryption performed by DoT, only the size, timestamp,
and direction are useful to the adversary (the destination port,853, is
a constant and the destination IP belongs to the recursive resolver).
As such, the traces for one webpage visit can be represented as
[(t0, l0,d0), (t1, l1,d1), ..., (tn , ln ,dn )], where ti is the timestamp, li is
the length of packet, anddi is the direction (DNS query or response).
Given that awebpage usually combines content frommany different
origins, one webpage visit usually yields a varying number of DNS
requests and responses with different ti , li , and di . As such, we
extract statistical feature values from the packet sequence and use
them for classification.

In particular, we include minimum, maximum, median, mean,
deciles, and count on a subset or the whole packet sequence. The fea-
ture values are decimal numbers, which can be directly consumed
by machine-learning models. Below we give details of each feature
we use. We acknowledge that some of these features are inspired
by previous works on website fingerprinting (though the protocols
targeted by those works are mainly HTTPS or Tor, which are differ-
ent from ours), and we reference those features in the description
below. We also derive new features based on our observations of
DNS traffic characteristics.
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4.2.1 Query Length and Response Length. These two features rep-
resent the length (in bytes) of TLS records carrying DNS queries
and responses. We found the maximum, median, mean, minimum,
and deciles of the query and response lengths in a trace. This length
is distinct from the TCP payload size of a single packet, as the TCP
payload may contain multiple TLS records. In addition, this field
might not be equal to the DNS message size, as a single TLS record
may contain multiple DNS queries or responses. Individual message
sizes have been often used in similar studies [1, 19, 33, 48, 49, 62].

4.2.2 Total Number of Queries and Responses. How resources are
included by a webpage (e.g., JavaScript files, iFrame content, im-
ages, and Adobe Flash video) usually has a significant impact on
the number of queries and responses [16]. Such numbers can be
distinctive among pages for different websites and website cate-
gories. For example, a news website can integrate many online
advertisements, resulting in many DNS resolutions. By contrast, a
government website can have far fewer queries because content
from external sources is less likely to be included. This feature is
equivalent to the packet count features in [32, 39, 48, 49, 62].

4.2.3 Cumulative Bytes of Queries and Responses. While it is obvi-
ous that the sum of bytes of queries and responses can be distinctive
for a webpage visit, given that their number and individual record
sizes are different, we also found that the size and rate over time
can be distinctive as well. For example, a webpage might load all the
needed external resources in the very beginning, while another web-
page might load the resources intermittently, triggered by events or
timeouts. We constructed this feature by calculating the cumulative
bytes sent and received at each point a packet is captured, and then
by finding the maximum, median, mean, and deciles of these values.
This method is similar to the one used by [48]. We also found the
ratio of cumulative bytes received to cumulative bytes sent. To
construct this feature, we divided the trace into tenths and found
the ratio of bytes transmitted to bytes received at the end of each
segment, as well as the mean of the ratios calculated at each point
a packet is captured.

4.2.4 Time Intervals. Similar to [32], we extracted the features from
the intervals between packets. Firstly, we considered the intervals
between two consecutive queries and two consecutive responses.
Secondly, we considered the intervals between an adjacent pair of
a query and response (and vice versa). We found the maximum,
minimum, median, mean, and deciles of both types of intervals in a
trace.

4.2.5 Total Transmission Time. We found that somewebpages keep
loading resources, resulting in long transmission times, but there
are webpages that finish resource loading quite early.

We computed the total time elapsed between the timestamps
of the first and last TLS record containing application data (sent
or received) in the trace, and used the result as the feature. This
feature is also used in [26, 62].

4.2.6 Ordering Group. The response is not always successive to the
corresponding query. In fact, the client may send multiple queries
before receiving a response. Additionally, multiple responses may
arrive without a query inserted in between, possibly due to a prior

burst of queries. We call a series of the uninterrupted queries or re-
sponses an ordering group, and we computed the maximum, median,
and mean over the query and response groups. Similar features
have been used in [32, 49, 62].

4.2.7 Number of DNS Messages within a TLS record. We observed
that a recursive resolver may place multiple DNS messages in a TLS
record. Though the number of messages is not explicitly available
from a field in the TLS record, we found that this can be inferred
if padding is performed by the recursive resolver. To obtain this
feature, we found all TLS records in a trace containing multiple DNS
messages, and then calculated the maximum and median number
of messages contained in these records. This feature only applies
when responses are padded.

4.2.8 Queries per Second. While the sequence order features tell
how many queries or responses were seen in ordering groups, they
do not reflect how close in time the queries and responses are
observed. In fact, one ordering group can take a few seconds to
finish the transmission while another with the same number of
queries and responses can only take a few milliseconds. To measure
such timing distribution, we computed the number of queries or
responses in non-overlapping, 1-second windows, and then found
the maximum, median, mean, minimum, and deciles of these values.
The same feature was used by [32].

4.2.9 Time to receive first N bytes. The time to receive a response
can reflect whether the recursive resolver has the response cached.
Caching may reflect aspects of a page, such as popularity or geo-
graphical location of its nameserver. Since not every query is closely
followed by its response, determining the timing duration for all
query-response pairs is impossible. As an alternative approach, we
focus on the queries and responses at the beginning of a trace,
which include the query for the domain under which the webpage
is hosted. While a browser may issue several other queries before
the query for the target domain, these will follow a pattern, and it is
possible to choose N , such that the first N queries include the one
for the target domain. Based on our observations of the patterns
generated by our browser, we set N to 3,000 bytes when responses
are not padded, 4,000 when responses are padded with a block size
of 128 octets, and 5,000 when responses are padded with a block
size of 468 octets. Features focused on the packets at the beginning
of a trace are also included in [49, 62].

As a final step of feature extraction, we removed features with
zero variance from the dataset. When padding is applied, most of
the features involving message response lengths are dropped. Most
of the other features dropped, with or without padding, related to
time intervals.

4.3 Classifiers
To determine which classifiers to use, we tested a number of widely
used machine-learning classifiers, including Naive Bayes, Simple
Logistic, SMO, J48 Decision Tree, and Random Forest. Note that this
exploratory analysis is conducted on a dataset having no overlap
with the datasets we used for evaluation.

From the preliminary results, we found that Random Forest per-
forms best, so we continued to use this algorithm for the evaluation.
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Table 2: Results for Random Forest classifiers identifying
DoT traffic instance category. Values given are mean ±SEM

Category F1 FNR FPR

Pa
dd

ed
0 Dating 0.783±0.002 29.21 ±0.27% 4.31±0.03%

Gambling 0.782±0.001 30.65 ±0.17% 3.39±0.02%
Health
Insurance

0.839±0.001 21.31 ±0.2% 3.38±0.05%

Pa
dd

ed
1* Dating 0.874±0.001 17.1 ±0.12% 2.93±0.05%

Gambling 0.875±0.001 17.69 ±0.11% 2.53±0.05%
Health
Insurance

0.924±0.001 9.55 ±0.16% 2.04±0.03%

U
np

ad
de
d Dating 0.976±0.0 3.85 ±0.08% 0.33±0.02%

Gambling 0.964±0.001 6.35 ±0.12% 0.23±0.01%
Health
Insurance

0.959±0.001 6.27 ±0.08% 0.54±0.02%

*The second set of results for padding use the technique
of inferring the number of DNS messages per TLS record.

In later tests, we found that AdaBoost works better in some sce-
narios, so we also used this algorithm. Both Random Forest and
AdaBoost are ensemble-based classifiers, which construct multiple
weaker learners (that may be other classifiers) and combine their
outputs to generate the final prediction [52].

For the task of identifying the webpage category, we found that
the Random Forest classifier performs slightly better than AdaBoost.
On the other hand, when we attempted to identify an individual
page, Random Forest performs worse than AdaBoost. Based on the
work in [30], we speculate that AdaBoost might be better suited to
processing imbalanced datasets.

We used implementations of Random Forest and AdaBoost from
the Scikit-learn libraries [50], leavingmost of the default parameters
unchanged. The exceptions are that we used 200 estimators (weak
learners) and set the random state. The random state provides
the seed for the random number generator that the classifier uses.
Setting the random state to a fixed number yields a constant result
for the same dataset.

5 EVALUATION
5.1 Evaluation Methodology
Unless otherwise noted, in our experiments we used 10-fold cross
validation 2 and adjusted the validation process slightly when creat-
ing test sets as follows. We first used the datasets for top and target
webpages to generate folds and train the classifiers. In the testing
stage, we then added instances of background pages to the test set.
Thus, classifiers are trained on folds containing instances of top and
target pages, and tested on folds containing instances of top, target,
and background pages. Background pages allow us evaluate how
well the classifiers will work when presented with DoT traffic for
those websites not observed in the training. Such a scenario would
occur if a victim visits random websites that the adversary has
not observed in the training. The number of background instances
added to a test set is equal to a ratio (0, 5%, 10%, 15%) times the

2Some pages have less than 10 instances, and we removed these in tests using 10-fold
cross validation.

Figure 3: ROC curves for gambling pages.

number of target and popular instances in the test set. We chose
the ratio of background pages based on the fact that the popularity
of websites follows a power law [14, 59], which suggests that most
web requests are for a few popular websites so that an adversary
can observe most websites that (>80%) a user is likely to visit during
the training.

To measure the classifier’s performance, we primarily used FNR,
FPR, and F1 score. We also examined the receiver operating charac-
teristic curve (ROC) and equal error rate (EER). We repeated cross
validation 10 times, using classifiers built with different seeds for
the pseudo-random generator that is used to generate the splits,
and computed the standard error of the mean (SEM) of the results.

5.2 Evaluation Results
5.2.1 Classification of Groups of Websites. We first considered the
scenario where an adversary attempts to determine if a victim is
visiting any of the group of websites of interest. For example, given
a sample of DNS traffic generated by the user, the attacker predicts
if the user visited any of popular a group of gambling sites.

For this experiment, we used a Random Forest classifier, and
explored the effects of including varying levels of background web-
sites in test sets. Table 2 summarizes the results for the base case,
where no background websites have been included. When DNS
messages are not padded, the FNR is less than 7%, and the FPR is
less than 1% for all categories. When DNS messages are padded,
the FNR is less than 31%, and the FPR is less than 5%, without using
the technique of inferring the number of DNS messages in a TLS
record. With the additional processing, the results with padding
improve substantially, yielding the FNR of less than 18% and the
FPR of less than 3%.

To compare the results with different ratios of background pages,
we use EER and AUC. Table 3 shows results for all three target
categories under different padding conditions, as the portion of
background pages varies. Figure 3 shows results for the gambling
category3. As expected, the classifier performance drops as the
number of background pages in the test set increases; still the
AUC remains above 0.92, and the EER under 15% in all tests. With

3We used threshold averaging as defined in [28] to average the curves generated by 10
classifiers. The SEM is at least an order of magnitude smaller than the TPR and FPR,
so error bars are not shown here.
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Table 3: Area under ROC and EER for Experiment 1

Background: 0 Background: 0.05 Background: 0.1 Background: 0.15
Category AUC EER AUC EER AUC EER AUC EER

Un
pa
dd

ed Dating 0.999 ±0.0 1.4 ±0.04% 0.996 ±0.01 2.27 ±0.03% 0.993 ±0.01 3.41 ±0.02% 0.991 ±0.01 4.23 ±0.03%
Gambling 0.999 ±0.0 1.16 ±0.03% 0.997 ±0.0 2.31 ±0.02% 0.995 ±0.0 3.48 ±0.04% 0.992 ±0.0 4.45 ±0.02%
Health 0.998 ±0.0 1.85 ±0.04% 0.997 ±0.0 2.71 ±0.05% 0.994 ±0.0 3.46 ±0.03% 0.992 ±0.01 4.16 ±0.04%
Insurance

Pa
dd

ed
0 Dating 0.949 ±0.03 12.2 ±0.08% 0.942 ±0.03 13.24 ±0.07% 0.935 ±0.03 14.2 ±0.08% 0.928 ±0.03 14.92 ±0.1%

Gambling 0.956 ±0.03 11.02 ±0.11% 0.949 ±0.03 12.05 ±0.1% 0.942 ±0.03 12.9 ±0.08% 0.934 ±0.03 13.61 ±0.08%
Health 0.974 ±0.01 8.36 ±0.08% 0.970 ±0.02 8.93 ±0.07% 0.964 ±0.02 9.68 ±0.1% 0.961 ±0.02 10.19 ±0.08%
Insurance

Pa
dd

ed
1* Dating 0.978 ±0.02 7.45 ±0.05% 0.973 ±0.02 8.45 ±0.06% 0.967 ±0.02 9.31 ±0.04% 0.963 ±0.02 10.14 ±0.07%

Gambling 0.979 ±0.01 7.3 ±0.07% 0.974 ±0.01 8.38 ±0.06% 0.968 ±0.02 9.36 ±0.05% 0.964 ±0.01 10.12 ±0.04%
Health 0.992 ±0.01 4.03 ±0.05% 0.989 ±0.01 4.65 ±0.03% 0.986 ±0.01 5.3 ±0.07% 0.983 ±0.01 5.84 ±0.05%
Insurance

* The second set of results for padding use the technique of inferring the number of DNS messages per TLS record .

padding, and using the maximum ratio (0.15) of background pages,
the classifiers achieve a TPR of at least 99%, with an FPR of at most
42%. Without padding, a TPR over 99% can be achieved, with an
FPR of less than 15%, even with the maximum ratio of background
pages.

5.2.2 Classification of Individual Websites. We next explored the
scenario in which an adversary attempts to determine if the user
is visiting a specific website. In these experiments, we used an
AdaBoost Classifier. Figure 4 summarizes the FNR for identifying
the homepage of individual websites.

In tests where DNS messages are not padded, more than half of
the pages have the FNR of less than 3%, and the FPR of less than
0.5%, even when the maximum ratio of background pages is added.
The two pages with the highest FNR (16.25% and 15%), both of
which are in the health insurance category, were run by the same
provider using a shared template, and appeared almost identical.
For the other four pages with an FNR of more than 10%, the queries
sent were not consistent. Three pages did not generate the same set
of queries each time; at least one-fourth of the queries that appeared
in any of the DoT traces for one of these pages appeared in less
than 50% of its traces. For the other pages, the set of queries was
relatively consistent, but several of the queries sent in all instances
were sent twice as many times in a few instances. Inspection of the
values for the top 10 features of the incorrectly classified instances
shows that for most, the number of bytes received was substantially
higher than the median for all instances. This finding suggests that
the incorrectly classified instances contained extra queries. Some
pages without a low FNR have variations in queries; thus, while
change in the content and number of queries is the underlying
cause in those cases with a high FNR, these variations do not result
in a high FNR for all pages.

With padding, the FNR and FPR increase in general, although for
some pages, they are still quite low. The median FNR increases from
2.5% without padding to 26% when padding is applied, although the
FNR drops to 17% when applying processing to infer the number
of DNS messages per TLS record. The results suggest that padding

does provide some defense, but it is not adequate for all pages. We
may still identify several pages with an FNR or FPR as low as 0.

5.2.3 Classification with Time Stability. Over time, changes in a
webpage or in the infrastructure supporting the DNS resolutions
will affect the profile of the DoT traffic, such that classifiers trained
on older data may no longer be able to identify traffic instances.
To explore the impact of these changes upon the ability to iden-
tify webpages, we conducted additional experiments. Five weeks
after the end of the initial data collection from the Surfnet resolver,
we collected a second set of DoT traffic for the homepages of the
gambling sites and the top sites from the same resolver. In these
experiments, we did not use 10-fold cross validation, since we have
distinct datasets for training and testing. Instead, we built 10 classi-
fiers by splitting the target and popular pages from the early dataset
into training as if doing cross validation. Then, after building the
AdaBoost classifier on a training set, we tested on the entire new
dataset. We focused on the case without background pages being
added. In comparison to the results obtained with cross validation
within one dataset, the FNR and FPR increase for most pages, with
or without padding. To understand what changes in DNS traffic
might cause the increase of incorrect classifications, we examined
the number of DNS queries generated when a page was loaded.
The changes in the number of queries will affect most other fea-
tures. For each page, we found the relative change between the two
datasets: ∆NQ = |NQ0 − NQ1 |/NQ0, where NQ0 and NQ1 are the
median number of queries in the DoT traces for a page in the first
and second datasets, respectively. As Figures ?? and ?? show, those
pages with a higher FNR also tend to have higher values of ∆NQ .

A shift in the number of queries indicates a change in the content
of a webpage, which may be characterized by the hostnames in DNS
queries. Thus, we further evaluated the DNS queries to understand
these changes. For each page in the gambling category, we found
the queries that appeared in at least 90% of the traces in the earlier
datasets (February) but did not appear in at least 90% of the traces in
the later datasets, and vice versa. These we call unstable queries. We
also found queries that appeared in over 90% of the traffic instances



CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Rebekah Houser, Zhou Li, Chase Cotton, and Haining Wang

(a) Dating Pages (b) Gambling Pages (c) Health Insurance Pages

Figure 4: FNR for identification of individual webpages. Results for Padded 0 and Padded 1 both used the same set of padded
DNS. Additional processing was used for Padded 1 to map TLS record sizes to the number of included DNS messages.

5a FNR with with 5 weeks between training and test data collection

5b Change in queries with 5 weeks between training and test data collection

for both datasets. These we call stable queries.4 For each query, we
used Virus Total [4] to find the Threat Seeker categories [11] for the
second level domain (e.g., for gambling.example.com, we would find
the category for example.com). We found that the largest category
for unstable queries is advertisements; 26% of unstable queries were
advertisements compared to only 15% of stable queries. Appendix
B includes further details about the categories of the queries.

4In each dataset used to calculate the query stability, less than 1% of the traces could
not be decrypted. We do not use these when computing stability.

5.2.4 Comparison of Recursive Resolvers. The ability to identify
DoT traffic instances may vary with respect to the recursive re-
solver being used, especially its padding policy. To explore this
issue, we ran a set of tests with different resolvers. In our tests,
we observed three basic approaches to padding among several re-
cursive resolvers: 1) always pad responses, 2) never pad responses,
and 3) pad responses when the client sends the EDNS(0) option,
indicating padding (12) [41]. For recursive resolvers that pad, we
found two padding approaches: using fixed block size padding (128
or 468 octets) or variable amounts of padding. Table 4 summarizes
our findings. Measurements were taken for 22 providers and 36
servers.

We attempted to study the effects of having all DNS messages
either padded or unpadded. Thus, the tests discussed in the previ-
ous sections used the data from a recursive resolver that padded
responses only if the client sent the EDNS(0) option for padding.
The other recursive resolvers we chose to test either always padded
(Cloudflare), or never padded (Google). As the purpose of this ex-
periment is to compare resolvers, we only explored the base case
and did not include background pages in these tests. For the Surfnet
results, we used processing to enable us to infer the number of
DNS messages per TLS record when messages are padded. We did
not apply this processing to the Google or Cloudflare traffic or use
the feature Number of DNS Messages within a TLS record, since the
Google resolvers do not pad, and we observed that Cloudflare does

Table 4: DoT Resolver Padding Strategies.

Pads Responses Padding
(octets)

Providers Servers

Never 0 14 21

Always 128 1 2
468 3 3

When prompted 468 2 5
Variable 2 5
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Figure 5: Comparison of recursive resolvers.

not place multiple messages in one TLS record. We used Random
Forest classifiers for each resolver. Figure 5 summarizes the results.

The FNR and FPR are much higher when using the Surfnet
resolver and padding DNS messages than when using either of
the other two resolvers in any scenario. The low FNR and FPR
for the Google resolvers are expected, since responses are never
padded. Although the results for Google show that padding queries
decreases the classifier’s performance, the change is relatively small.

The difference in performance between the Cloudflare and Surfnet
resolvers is caused by, at least in part, the padding block size. The
Surfnet resolver padded responses to 468 octets, while the Cloud-
flare resolver padded responses to 128 octets. The difference in
performance does not necessarily imply that the larger block size
should be used. While 468 octets as the padding block size for re-
sponses has been recommended based on one study [42], there is no
padding approach appropriate to every scenario. Additional privacy
provided by larger block sizes comes at the cost of extra bandwidth
and energy consumption. The RFC’s providing recommendations
for padding policies highlights the need for special considerations
of scenarios where resources such as battery life or bandwidth are
constrained [42].

Padding is not the only factor contributing to the difference in
performance between different resolvers. Another difference be-
tween resolver behaviors is the inclusion of multiple DNS responses
in a single TLS record. Figure 6 shows the number of TLS records
that contain different numbers of DNS responses. The maximum
number contained in any message is six for Google, one for Cloud-
flare, and 13 for Surfnet resolvers. As the inclusion of multiple
messages per record undermines the stability of features, such as
the number and size of responses, it will decrease the ability to
use these features for classification. Thus, the larger number of
messages per record in the Surfnet traffic also helps to explain the
difference in performance.

5.3 Feature Importance
Finally, we would like to understand how much individual features
or groups of features contribute to the ability to classify webpages.
The Random Forest and AdaBoost classifiers in Scikit-learn both
assign feature importance scores based Gini impurity.

Figure 6: Comparison of recursive resolvers’ behaviors of in-
cluding multiple DNS responses in a single TLS record.

To find importance, we selected the classifiers used in the scenar-
ios described in Sections 5.2.1 and 5.2.2. For each category or page,
we first found the mean score assigned by all of the learners built.
We then found the median and mean scores over all categories or
pages. Appendix C provides the list of the top 10 features for the
experiments in Sections 5.2.1 and 5.2.2.

As expected, the query and response lengths are the most im-
portant features when DNS messages are not padded, while when
messages are padded, the classifiers rely on more features. In par-
ticular, the intervals between responses followed by queries or vice
versa (RQ/QR interval) is important for individual pages. Informa-
tion about the overall amount of data transmitted is a key feature,
more so for the category-level classification than per page.

In addition to considering the top 10 features, we examined the
overall impact of all features. Figures ?? and ?? show the median
importance assigned to each feature, with features plotted in groups.
These graphs highlight that features related to query and response
lengths and bytes exchanged, tend to dominate when DNSmessages
are not padded. When messages are padded, the model tends to
rely more evenly on a larger set of features.

6 DISCUSSION
6.1 Limitations and Future Work
The results of this study can be recognized as an upper-bound on
the effectiveness of the website fingerprinting attack against DoT
traffic, due to its three major limitations. (1) Caching effects at
the client browser are not considered. (2) Our experiments are not
conducted in a true open-world scenario, and previous works have
shown that it is more challenging to achieve successful website
fingerprinting in more realistic, true open-world scenarios [37, 48].
(3) Our experiments explore a relatively narrow set of parameters,
and how the results can be generalized to other settings requires
further investigation. Below we elaborate on these limitations.

The primary concern regarding our attack is how the browser
cache on the victim side impacts our fingerprinting method. In a
real-world scenario, DNS requests related to a webpage visit would
vary based on which domain resolutions are already cached by
the user’s browser or operating system. The effects of caching and
varying page content would degrade the attacker’s ability to identify
a user’s visits to a target webpage. While such an impact needs
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7a Feature importance for per-category classification 7b Feature importance for per-page classification

to be assessed, we argue that it should not be significant enough
to prevent DoT information leakage, mainly due to the following
two observations. (1) The largest common TTL for a DNS record
is 48 hours, but the most common TTLs are currently set to much
smaller values such as one hour [45]. (2) There is an increasing
usage of privacy-preserving techniques to obfuscate users’ network
traffic.

For example, to eliminate side-channel attacks exploiting a shared
cache in browsers, major browsers such as Safari and Chrome ei-
ther have implemented or are implementing cache partitioning
[2, 3, 54]. The policy for partitioning (e.g., per domain, per URL, or
a combination of factors) will determine the probability that the
browser cache has been reset when a user visits a page. In all cases,
however, partitioning will increase this probability and the chance
that our attack succeeds. Similarly, users who employ incognito
mode will generate DNS traffic that tends to be generic.

Thus, the empty-cache scenario we study could often occur in
many real-world scenarios.

While the attack scenario modeled is not unrealistic, we note
that the results presented here represent an early exploration of
this area, and we would like to emphasize that similar limitations
are embodied in other research focusing on the privacy of network
traffic (e.g., Tor traffic). Many of the prior works also considered
scenarios without caching [1, 32, 49, 63]. Those that did explore
caching suggested that the attacks were still reasonably successful
with warmed caches [19, 33]. Some early works focused on closed-
world scenarios [1, 33], and most considered an individual page
as representative of a site. A few works explored fingerprinting
websites [19, 48]. While the feasibility of these attacks in real-world
scenarios has not been fully understood, they did motivate Tor
developers to add features to combat website fingerprinting [51].
In a similar fashion, we believe our research could motivate new
designs of DoT to defend against website fingerprinting.

We plan to address the limitations of this work in the future pri-
marily by exploring caching, dynamic content, and open world sce-
narios, but also by expanding the parameters of the experiments and

considering additional threat models. Specifically, our future work
would consider additional resolvers, vantage points, and browsers,
including regular (not headless) browsers.

For this study, to understand the impact of using a headless
browser, we did a simple test to compare DNS queries generated
by a headless browser to those of a browser with a GUI. Details of
the test are included in Appendix D. We found that the numbers of
queries sent on both cases are comparable, and we expect results to
be similar when using a browser with a GUI. Other parameters to
consider involve the classifiers. We may further improve results by
using other classifiers or tuning hyper-parameters. Finally, threat
models that allow an attacker additional capabilities would gain
better results. In this work, we have intentionally excluded HTTP
traffic from the fingerprinting in order to better understand the
dynamics of DoT. This approach models an attacker on the path
between the user and recursive resolver but outside the user’s local
network. If we assume the attacker has access to other user traffic,
we expect the ability to fingerprint websites would increase. Our
future work could explore this scenario further and evaluate the
contribution of DoT traffic to other fingerprinting attacks. Also,
while we only consider a passive attacker, an active attacker may be
able to create conditions that will increase the chances of a success-
ful fingerprinting attack. For example, an attacker can issue DNS
requests to a resolver shared with the victim so that the resolver’s
cache can be impacted in a way favorable to the attacker. We leave
a systematic evaluation on these factors as our future work.

6.2 Defense
Based on our results, padding as a baseline defense does impact
the effectiveness of adversarial traffic analysis, but other methods
might also be needed to fully mitigate the threat. We observed
that the padding block size is important, with a larger block size
disguising the traffic better. However, as discussed in Section 5.2.4,
the choice of padding size must be balanced against other factors,
such as overhead.
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While padding is effective at preventing recognition of some
pages, other methods are necessary to prevent identification in all
scenarios. Additional methods of defending against traffic analysis
could include disguising the amount of data exchanged, and ensur-
ing uniform time intervals. For the former defense, the stub should
send the same number of queries and responses for each page,
or each page within a group. Groups would comprise pages that
normally send a similar number of queries. Variations of such an
approach have been proposed for defenses against website finger-
printing attacks on Tor [18, 26, 61]. To disguise timing, extraneous
packets may be introduced to maintain desired intervals, similar
to the approach proposed in [38]. Delaying packets to maintain
a desired profile may also be an approach to disguise timing, but
would not be recommended, given the demands on DNS for low
latency.

7 RELATEDWORK
There are two categories of related works. First, we discuss previous
works that have specifically explored DNS privacy protection or
traffic analysis of DNS protection mechanisms. Then we describe
previous works in the area of website fingerprinting. Since the
objective of website fingerprinting is similar to that of our threat
model, our work is based on several of the concepts or approaches
they proposed.

7.1 DNS Privacy
Some early proposals to address DNS privacy rely on obscuring DNS
queries largely by using noise, i.e., the inclusion of extra queries
to hide the true interests of a user. Variations on this approach,
called range queries, have been proposed in several prior works
[20, 29, 31, 40, 64, 65]. In most of the proposed designs, DNS mes-
sages are still transmitted in plain text. Thus, while some of the
proposed attack scenarios are similar (i.e., privacy leaks via eaves-
dropping), their approaches are fundamentally different from those
we have explored for DoT. The works that consider adversarial
approaches closest to ours are the two that suggest using mixers
(e.g., Tor) for DNS exchanges [29, 31]. Both works leverage the pos-
sibility that an adversary could use traffic analysis to guess a user’s
activity. Garcia-Alfaro et al. [31] discussed attacks using the corre-
lation between traffic at different nodes, rather than fingerprinting
encrypted traffic. The latter subject is addressed by Federrath et al.
[29], who recommended padding.

While the aforementioned works focus on the protection of DNS
privacy, there are other proposed approaches that one might use to
undermine protections. In [60], the authors explored the ability to
use plain text DNS to identify which websites a user accesses. The
technical aspects of the attack are significantly different from ours,
given that the attacker has access to the plain text of DNS queries.
In a study more closely related to ours, Shulman examined the
potential privacy of encrypted DNS [55]. Shulman’s experiments
explore issues of privacy, compatibility, and increased overhead
related to the use of encrypted DNS. However, the adversary’s goal
in this work is to determine the identity of the nameserver being
contacted. In [55], Shulman noted that since nameservers often host
multiple zones, knowing the target nameserver does not necessarily
provide much information about what content the victim requested.

Thus, the information available to an adversary and the features
used to perform identification in Shulman’s work are very different
from those we consider. In our threat model, the adversary does
not have access to information about any nameservers contacted
except the recursive resolver. Moreover, in Shulman’s study, defense
mechanisms such as padding are not considered.

7.2 Website Fingerprinting
Our threat model is similar to those scenarios presented in the
studies on website fingerprinting for identifying which websites a
user has visited based on encrypted HTTP traffic.

Liberatore and Levine [1] used two classification methods, Naive
Bayes and one based on Jaccard’s coefficient, representing traffic
instances to capture the size and direction of packets. Herrmann et
al. [33] used a Multinomial Naive Bayes classifier with various text-
mining transformations to characterize packet frequency and size
as features but timing and order were not considered. Panchenko et
al. [49] developed a richer feature set and used an SVM for website
fingerprinting in onion routing-based anonymization networks.
Dyer et al. [26] evaluated multiple algorithms with Panchenko’s
augmented features, and explored the use of a Naive Bayes classi-
fier with their own feature set, which uses information regarding
timing, size, direction, and bandwidth. Cai et al. [19] proposed a
new method for website fingerprinting by leveraging edit distance
between traces to create a kernel matrix for SVM. Wang and Gold-
berg [63] developed a similar approach of using SVM, with two
different methods for calculating edit distance. In both works, traces
are represented as vectors of integers indicating packet sizes. Wang
et al. [62] proposed a new approach to deriving a more complex fea-
ture set, and used these features to calculate the distance between
instances for classification by utilizing the K-Nearest Neighbor algo-
rithm. In [48], Panchenko et al. proposed an alternative approach to
capturing much of the same information without requiring manual
selection, and again they tested the proposed features by using
SVM.

The work perhaps most relevant to ours is that of Hayes and
Danezis [32]. They used a list of features that explicitly capture
information about the traffic andwhat the traffic represents (loading
a web page). This work also uses Random Forest, but the output of
the classifier is not used directly for prediction. In addition, they
did not test on the encrypted DNS traffic.

8 CONCLUSION
In this work, we have conducted an investigation on the informa-
tion leakage of DNS over TLS (DoT) through traffic analysis. We
have developed a novel DoT fingerprinting method, and then we
have demonstrated that this proposed approach is effective for iden-
tifying these websites a user visits. More specifically, we have found
that when DNS messages are not padded, we are able to identify
whether a user has visited one of a group of websites in sensitive
categories (health insurance, dating, and gambling) with the FNR
and FPR of less than 7% and 5%, respectively. Further, we are able
to identify whether the user has visited specific websites with the
FNR of less than 17% and the FPR of less than 0.5%, respectively.
Even when DNS messages are padded, our proposed DoT finger-
printing is still able to achieve relatively low FNR and FPR, even
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zero for some individual websites. Since the security vulnerability
of DoT has not yet been fully investigated, we expect that our re-
sults represent a baseline for the classification of DoT traffic. More
importantly, our findings will help future research to develop more
effective defense mechanisms against traffic analysis of DoT, and
help public DNS resolvers to use DoT for DNS communications in
a more secure manner.
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A DNS OVER HTTPS
We ran a test to explore the effectiveness of the proposed analysis
methods against DNS over HTTPS (DoH). The major difference
between the DoH and DoT experimental setups was that we did not
use SSLSplit or Stubby for DoH. Since Firefox supports DNS over
HTTPS, and provides a method to obtain the key for decrypting
the traffic, these tools were not needed. As Firefox does not provide
settings to configure padding, we did not perform different tests for
different padding configurations, and we used a recursive resolver
provided by Cloudflare.

Figure 7: DNS over HTTPS classification.

Table 5: Categorization of Queries

Category Percentcage of Queries
Stable Unstable

Advertisements 15.36 26.4
Web analytics 10.72 20.0
Information technology 21.16 16.0
Business and economy 6.09 8.0
Uncategorized 2.32 5.6
Gambling 23.48 4.8
Streaming media 0.29 4.8
Search engines and portals 4.64 3.2
Social web - Facebook 0.87 2.4
Social web - Twitter 2.61 1.6
Social web - Youtube 0.58 1.6
Travel 1.45 1.6
Web infrastructure 2.03 1.6
Games 2.32 0.8
Text and media messaging 0.00 0.8
Web hosting 0.58 0.8
Illegal or questionable 0.29 0.0
Parked domain 0.58 0.0
Hosted business applications 0.58 0.0
Application & sw download 0.29 0.0
Sports 0.58 0.0
Gambling; potentially unwanted sw. 0.58 0.0
Content delivery networks 1.45 0.0
Web and email marketing 0.29 0.0
Web collaboration 0.87 0.0

After collecting the data, we performed one basic test: classifi-
cation for individual pages in the gambling category. We excluded
features that were tuned specifically for DoT traffic: time to receive
first N bytes, and features involving the number of DNS messages
per TLS record. Figure 7 shows the FNR and FPR. These results are
comparable to those for DoT, suggesting that the analysis proposed
in this paper would perform well on DoH traffic. The performance
for classification of DoH traffic instances may also be improved
through tuning specifically for DoH.

B QUERY CATEGORIZATION
As described in Section 5.2.3, we define an unstable query as one
that appears in 90% of DoT traces for a page in one dataset, but
less than 90% of the traces for that page in a second dataset. A
stable query is one that appears in at least 90% of the traces for a
page in both datasets. We did not find stability for queries related
to Firefox services and the EC2 network, as well as three sets of
queries where a different alphanumeric string is appended to a
single second-level domain in all or almost all instances. Queries in
this last group appear as unstable queries, even though they repre-
sent consistent query patterns. We used Virus Total to categorize
the second-level domains of the queries. The distribution of queries
over different categories is shown in Table 5. The biggest difference
in the distributions between stable and unstable queries is in the
advertisements category. Advertisements comprise a substantially
larger percentage of unstable queries than that of stable queries
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Table 6: Top 10 features over all classifiers built to identify individual pages.

DNS Padded DNS Unpadded
Rank Feature Mean Median Feature Mean Median
0 RQ interval max 0.0321 0.03 qry length min 0.0666 0.05
1 RQ interval decile 0.9 0.0371 0.03 qry length mean 0.0527 0.04
2 QQ interval max 0.0297 0.03 resp length min 0.0494 0.03
3 RQ interval decile 0.8 0.0301 0.03 qry length decile 0.1 0.0459 0.03
4 time for target response 0.0280 0.03 qry length decile 0.4 0.0227 0.02
5 RQ interval decile 0.7 0.0299 0.03 bytes sent decile 0.8 0.0081 0.01
6 r in window 1 sec max 0.0267 0.02 resp length decile 0.3 0.0138 0.01
7 bytes sent median 0.0229 0.02 RQ interval decile 0.9 0.0078 0.01
8 qry burst order mean 0.0248 0.02 bytes received median 0.0104 0.01
9 transmission time 0.0273 0.02 bytes received max 0.0143 0.01

Table 7: Top 10 features for classifiers built to identify groups of pages.

DNS Padded DNS Unpadded
Rank Feature Mean Median Feature Mean Median
0 bytes received mean 0.0302 0.0299 resp length min 0.0310 0.0296
1 bytes received decile 0.8 0.0268 0.0273 ratio bytes received/bytes sent median 0.0276 0.0295
2 bytes sent mean 0.0274 0.0270 qry length mean 0.0245 0.0265
3 bytes received decile 0.9 0.0249 0.0245 qry length min 0.0245 0.0241
4 bytes received median 0.0241 0.0236 qry length decile 0.1 0.0282 0.0234
5 bytes sent median 0.0234 0.0234 time for target response 0.0212 0.0233
6 RQ interval max 0.0215 0.0233 qry length decile 0.9 0.0210 0.0202
7 bytes sent decile 0.8 0.0233 0.0233 bytes sent max 0.0200 0.0200
8 bytes sent decile 0.9 0.0210 0.0229 ratio bytes received/bytes sent mean 0.0195 0.0185
9 bytes received decile 0.7 0.0225 0.0226 bytes received max 0.0189 0.0184

Figure 8: Comparison of the number of queries sent to load
pages with a headless or normal browser.

(26% vs. 15%). Streaming media is also noticeably higher for un-
stable queries than for stable queries. We found that all unstable
queries in the streaming media category came from instances for
a single domain, and were all related to the same video sharing
service.

C TOP FEATURES
Random Forest and AdaBoost provide estimates of feature impor-
tance based on the Gini impurity. Random Forest gives the average
of the importance scores provided by the estimators, while Ad-
aBoost returns a weighted average. Tables 6 and 7 show the top 10
features for the tests described in sections 5.2.1 and 5.2.2. Query

and response lengths make up most of the top features when DNS
messages are not padded. Further, the highest scores assigned to
features related to length are greater than the top scores of features
when padding is used. This suggests that when messages are not
padded, the classifiers rely heavily on individual message lengths,
but when messages are padded, the classifiers rely more on a wider
set of features.

D HEADLESS VS. NORMAL BROWSER
In our tests, we use one browser (Firefox) in headless mode. We
consider the degree to which the results obtained using a headless
browser are representative of the ability to fingerprint the DNS
traffic of a real user. Although the general operation between a
headless browser and one that uses a GUI is the same, we expect
some differences in timing and possibly content of DNS traffic. To
understand the impact of such browser settings, we did a simple test
to compare DNS queries generated by a headless browser to those
of a browser with a GUI. To evaluate the difference between the
DoT traffic generated by a headless browser versus a browser with
a GUI, we conducted an experiment where we fetched pages using
both configurations. We conducted this experiment using a VM
running Ubuntu 16.04.5 on a local machine and used the same basic
test setup as described in Section 4. We used pages in the target
group and loaded each page twice: once in headless mode, and once
with the GUI enabled. We then compared how many queries were
sent in each mode. After filtering for failed loads, we had 82 pairs of
DoT traffic. For each pair, we found the number of queries sent from
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the browser in headless mode (NQheadless ) and that of when using
a GUI (NQдui ). We then found the ratio (NQдui/NQheadless ). As
Figure 8 shows, for all but 9 of the pairs, NQдui/NQheadless was
between 0.9 and 1.1.

For the one page with a ratio over 2, the difference in queries
appears to be related to advertisements. We already expected that

for some pages, at least, aspects of the browser, user history, or
location could affect the DNS traffic. Future work will explore these
aspects further. For the current study, the fact that the number of
queries in different browser modes is similar overall is sufficient to
justify the use of the headless browser for our tests.
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