Testing the Equality of Normal Distributed and Independent Groups' Means Under Unequal Variances by doex Package

by Mustafa Cavus and Berna Yazıcı

Abstract In this paper, we present the **doex** package contains the tests for equality of normal distributed and independent group means under unequal variances such as Cochran F, Welch-Aspin, Welch, Box, Scott-Smith, Brown-Forsythe, Johansen F, Approximate F, Alexander-Govern, Generalized F, Modified Brown-Forsythe, Permutation F, Adjusted Welch, B2, Parametric Bootstrap, Fiducial Approach, and Alvandi Generalized F-test. Most of these tests are not available in any package. Thus, **doex** is easy to use for researchers in multidisciplinary studies. In this study, an extensive Monte-Carlo simulation study is conducted to investigate the performance of the the tests for equality of normal distributed group means under unequal variances in terms of Type I error probability and penalized power. In the case of Type I error probability of the compared tests are different, the penalized power is used which allows fair power comparisons. In this way, we conclude the performance of the tests by taking into account two possible errors in hypothesis testing.

Introduction

Testing equality of normal distributed and independent groups' means is a basic analysis in statistics and related fields. The Fisher's F-test is a powerful test to do this analysis with the assumptions of variance homogeneity, normality, and statistical independency. Violation of the variance homogeneity assumption is a commonly encountered statistical problem in a variety of application areas such as agriculture, pharmacy, and biostatistics. There is number of methods improved because of the negative effect of the violation of variance homogeneity assumption on the performance of Classical F-test in terms of Type I error probability and power. These tests are, Cochran F (CF), Welch-Aspin (WA), Welch (WE), Box (BX), Scott-Smith (SS), Brown-Forsythe (BF), Johansen (JF), Approximate F (AF), Alexander-Govern (AG), Generalized F (GF), Modified Brown-Forsythe (MBF), Permutation F (PF), Adjusted Welch (AW), B2, Parametric Bootstrap (PB), Fiducial Approach (FA) and Alvandi et al. Generalized F (AGF) test, chronologically. The fact that the high number of methods in the literature raises the problem of choosing the most appropriate method for researchers.

There are many articles to investigate the performance of the tests for equality of normal distributed and independent group means under unequal variances in the literature. However, only some of the tests are included in these studies. The results of these studies help researchers to solve the problem of choosing the appropriate method for their work. Gamage and Weerahandi (1998) compared the size performance of the GF test and four widely used procedures: CF, BF, and Welch test in case of deviation from normality. The highly skewed Gamma distributions and Gamma distributions with shapes close to being normal are considered. While the GF was found to have size not exceeding the intended level, as heteroscedasticity becomes severe the others were found to have poor size performance. Hartung et al. (2002) compared the CF, C, W, BF, MBF, AF, and AW tests under normal populations, balanced-unbalanced sample sizes and an increasing number of populations. None of the tests considered is uniformly dominating the others. The BF and the W test perform well over a wide range of parameter configurations, the MBF test by Mehrotra keeps generally the level, but other tests may also perform well, depending on the constellation of the parameters under study. The W test becomes liberal when the sample sizes are small and the number of populations is large. They propose a modified version of Welch's test that keeps the nominal level in these cases. With the understanding that methods are unacceptable if they have Type I error rates that are too high, only the testing procedure associated with the MBF test can be recommended, the modified Welch test can also be recommended. Argac (2004) constructed a systematic pattern in simulations of the tests for equality of normal distributed and independent group means under unequal variances. Classical F, Cochran, Welch, modified Welch, Brown-Forsythe, modified Brown-Forsythe, and approximate F test considered are divided into two groups, Cochran-Welch type tests and the Brown-Forsythe type tests. There seems to be considerably higher variability in the power of C-W type tests in the balanced case. In the unbalanced case, there does not appear to be a huge difference between the power of the different tests. Sadooghi-Alvandi et al. (2012) proposed a new GF test and compared it with GF, PB, Welch, and Cochran test in an extensive Monte-Carlo simulation study. According to results, it

controls the Type I error probability better and its power closed to the others. Gokpinar and Gokpinar (2012) compared the Type I error probability and power of CF, BF, GF, PB, and W test under different variance heterogeneities and effect sizes for three and five groups. Their results indicate that PB is the best control Type I error probability and has the highest power. In addition to these articles, the scope of the other articles are not comprehensive in the literature (Hartung et al. (2002), Lee and Ahn (2003), Li et al. (2011), Mutlu et al. (2017)). A comprehensive Monte-Carlo simulation study is conducted under normal distribution in this article in order to fill this gap. Especially, the penalized power is used which allows fair power comparisons when the Type I error probabilities are different. In this way, we conclude the performance of the tests by taking into account two possible errors in hypothesis testing.

Another problem experienced by the researchers is most of these tests are not available in any R package. However, some R packages contain the tests for equality of normal distributed and independent group means under unequal variances, **asbio** by Aho (2018), **coin** by Hothorn et al. (2008), **lawstat** by Hui et al. (2008), **onewaytests** by Dag et al. (2018), **welchADF** by Villacorta (2017), **WRS2** by Mair and Wilcox (2018). These packages contain only the Brunner-Dette-Munk, Permutation F, Kruskal-Wallis, Brown-Forsythe, Alexander-Govern, James Second Order, Welch test. In particular, the performance of the tests such as the GF, PB, FA, and AGF test by Monte-Carlo simulations prevents the easy use of these tests. Clearly, a package should contain these tests. We propose the package **doex** provides the tests for equality of normal distributed group means under unequal variances which previously have not been implemented in any R package such as AF, AGF, B2, FA, JF, MBF, MW, PB, and PF. Also, it consists of the modified Generalized F-test (MGF) which is proposed by Cavus et al. (2017) to test the equality of group means under heteroscedasticity and non-normality caused by outliers. It is a useful procedure for non-normal distributed groups and Cavus et al. (2018) showed in a real data application.

The following sections detail the tests for equality of normal distributed and independent group means under unequal variances considered in **doex**. The performance of these tests is investigated in terms of penalized power and Type I error probability. Finally, we conclude with a brief summary and future works.

Tests for Testing Equality of Normal Distributed Groups' Means under Unequal Variance

The linear model within the context of a one-way independent group design for testing the equality of groups' means is given in (1).

$$Y_{ij} = \mu_i + \epsilon_{ij} \tag{1}$$

where Y_{ij} is the dependent variable associated with the *i*th observation in the *j*th group for $i = 1, 2, ..., n_i$ and j = 1, 2, ..., k. μ_i is the group mean for the *i*th group, and ϵ_{ij} is the random error component associated with Y_{ij} . The null hypothesis $H_0 : \mu_1 = \mu_2 = ... = \mu_k$ is tested as the Classical F-test assumed that the ϵ_{ij} 's are independent, normally distributed, and have an equal variance σ^2 for each group of *k*. Type I error probability of Classical F-test inflates and its power decreases in case of the violation of variance homogeneity assumption. There are many procedures improved in the literature to solve this problem. In this section, the tests for equality of normal distributed and independent group means under unequal variances, considered in **doex** and discussed in the Monte-Carlo simulation study, are introduced. These tests are, Alexander-Govern, Alvandi et al. generalized *F*, Approximate F, Box F, Brown-Forsythe, B^2 , Cochran F, Fiducial Approach, Generalized F, Johansen, Modified Brown-Forsythe, Adjusted Welch, Parametric Bootstrap, Permutation F, Scott-Smith, Welch, Welch-Aspin test.

Alexander-Govern (AG) test

Alexander and Govern (1994) improved a test using the Hill's normality transformation to the Student's t variables. Consider $X_{i1}, X_{i2}, ..., X_{in_i} \sim N(\mu_i, \sigma_i^2)$ and the standard deviations of normal groups computed as in (2).

$$S_{\bar{X}_i} = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2}{n_i(n_i - 1)}$$
(2)

The weights are computed using the $S_{\bar{X}_i}$ as in (3).

$$wi = \frac{1/S_{\bar{X}_i}^2}{\sum_{i=1}^k 1/S_{\bar{X}_i}^2}$$
(3)

The weight mean is computed using the w_i in (4).

$$\bar{X}^* = \sum_{i=1}^k w_i \bar{X}_i \tag{4}$$

The values of $t_i = (\bar{X}_i - \bar{X}^*) / S_{\bar{X}_i} \sim t_{n_i-1}$ are transformed using the following transformation.

$$z_i = c + \frac{c^3 + 3c}{b} + \frac{4c^7 + 33c^5 + 240c^3 + 855c}{10b^2 + 8bc^4 + 1000b}$$
(5)

where $a = v_i - 0.5$, $c = \sqrt{aln(1 + \frac{t_i^2}{v_i})}$ and $b = 48a^2$. The test statistic of AG test is computed as in (6).

$$T_{AG} = \sum_{i=1}^{\kappa} z_i^2 \tag{6}$$

The H_0 is rejected when $T_{AG} > \chi^2_{(k-1);\alpha}$.

Alvandi et. al. Generalized F (AGF) test

Sadooghi-Alvandi et al. (2012) proposed the test statistic in 8 as an alternative of Weerahandi's Generalized F-test.

$$T_G(S_1^2, S_2^2, ..., S_k^2) = \sum_{i=1}^k \frac{n_i}{S_i^2} \bar{X}_i - \frac{\left[\sum_{i=1}^k n_i X_i / S_i^2\right]^2}{\sum_{i=1}^k n_i / S_i^2}$$
(7)

$$T_{AGF} = \sum_{i=1}^{k} \frac{n_i - 1}{U_i} (\bar{X}_i - q_i \tilde{X})^2$$
(8)

where $q_i = \sqrt{\frac{n_i/s_i^2}{\sum_{i=1}^k n_i/s_i^2}}$ and $\tilde{X} = \sum_{i=1}^k q_i \tilde{X}_i$. The p-value of AGF test computed using Monte-Carlo simulations with **Algorithm 1**.

Algorithm 1. Computation of Monte-Carlo estimate of the AGF test

- 1. Compute the vectors of $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_k)$ and $(s_1^2, s_2^2, ..., s_k^2)$ for *k* groups
- 2. Compute the T_G using the vectors in **Step 1**
- 3. for *j* in {1,..., *r*} do Generate U_i ~ χ²_{ni-1} random samples Compute the T_{AGF} using generated random samples Set the counter Q_j = 1 when T_{AGF} > T_G end for
- 4. Compute the Monte-Carlo estimate of p-value as $\sum_{i=1}^{k} Q_j / r$

Approximate F (AF) test

Asiribo and Gurland (1990) proposed a modification to the F-test as in (9).

$$T_{AF} = N \frac{\sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_{..})^2}{\sum_{i=1}^{k} (N - n_i) S_i^2}$$
(9)

where $\bar{X}_{..} = \sum_{i=1}^{k} \bar{X}_i$ and $N = \sum_{i=1}^{k} n_i$. The H_0 is rejected when $T_{AF} > F_{v1,v2;\alpha}$. The degrees of freedom of the AF test statistic is computed in (10).

$$v_1 = \frac{[\sum_{i=1}^k (1 - n_i/N)S_i^2]^2}{\sum_{i=1}^k S_i^4 + [\sum_{i=1}^k n_i S_i^2/N]^2 - 2\sum_{i=1}^k n_i S_i^4/N}, \quad v_2 = \frac{[\sum_{i=1}^k (1 - n_i/N)^2 S_i^2]^2}{\sum_{i=1}^k (n_i - 1)S_i^4}$$
(10)

Box (BX) test

Box (1954) proposed the test statistic in (11).

$$T_{BO} = \frac{N_k}{N(k-1)\sum_{i=1}^k \frac{(N-n_i)S_i^2}{(n_i-1)S_i^2}}$$
(11)

The H_0 is rejected when $T_{BO} > F_{v_1,v_2;\alpha}$ where

$$v_1 = \frac{[\sum_{i=1}^k (N - n_i)S_i^2]^2}{[\sum_{i=1}^k n_i S_i^2]^2 + N\sum_{i=1}^k (N - 2n_i)S_i^2}, \quad v_2 = \frac{[\sum_{i=1}^k (n_i - 1S_i^2)]^2}{\sum_{i=1}^k (n_i - 1)S_i^+}$$
(12)

Brown-Forsythe (BF) test

Brown and Forsythe (1974) proposes the following test statistic.

$$T_{BF} = \frac{\sum_{i=1}^{k} n_i (\bar{X}_i - X_..)^2}{\sum_{i=1}^{k} (1 - n_i / N) S_i^2}$$
(13)

where $X_{..} = \sum_{i=1}^{k} \bar{X}_i$ and $N = \sum_{i=1}^{k} n_i$. The H_0 is rejected when $T_{BF} > F_{(k-1),v;\alpha}$. The degrees of fredom of the test statistic computed as in (14).

$$v = \frac{\left[\sum_{i=1}^{k} n_i(\bar{X}_i - X_{..})\right]^2}{\sum_{i=1}^{k} \frac{(1 - n_i/N)^2 S_i^4}{(n_i - 1)}}$$
(14)

The B^2 test

Ozdemir and Kurt (2006) proposed the following procedure using the Bailey's normality transformation to the Student's t variables. Consider $X_{i1}, X_{i2}, ..., X_{in_i} \sim N(\mu_i, \sigma_i^2)$ and the standard deviations of normal groups computed as in (15).

$$S_{\bar{X}_i} = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2}{n_i(n_i - 1)}$$
(15)

The weights computed using the $S_{\bar{X}_i}$ as in (16).

$$w_i = \frac{1/S_{\bar{X}_i}^2}{\sum_{i=1}^k 1/S_{\bar{X}_i}^2} \tag{16}$$

The weighed mean computed using the w_i 's as in (17).

$$\bar{X}^* = \sum_{i=1}^k w_i \bar{X}_i.$$
(17)

The values of $t_i = (\bar{X}_i - \bar{X}^*) / S_{\bar{X}_i} \sim t_{n_i-1}$ are transformed using Bailey's (1980) normality transformation.

$$z_{i} = \frac{4v_{i}^{2} + \frac{5(2z_{i}^{2}+3)}{24}}{4v_{i}^{2} + v_{i} + \frac{4z_{i}^{2}+9}{12}} \sqrt{v_{i}ln(1 + \frac{t_{i}^{2}}{v_{i}})} \sim N(0, 1)$$
(18)

where $z_c = Z_{\alpha/2} \sim N(0, 1)$ and the test statistic of B^2 test computed as in (19).

$$T_{BK} = \sum_{i=1}^{k} z_i^2 = \sum_{i=1}^{k} \left(\frac{4v_i^2 + \frac{5(2z_i^2 + 3)}{24}}{4v_i^2 + v_i + \frac{4z_i^2 + 9}{12}} \right)^2.$$
(19)

The H_0 is rejected when $T_{BK} > \chi^2_{(k-1);\alpha}$.

Cochran (CF) test

Cochran (1937) proposes the test statistic in (20).

$$T_C = \sum_{i=1}^k w_i (\bar{X}_i - \sum_{j=1}^k h_j \bar{X}_j)^2$$
(20)

where $w_i = n_i/s_i^2$ and $h_i = w_i/\sum_{i=1}^k w_i$. The H_0 is rejected when $T_C > \chi^2_{(k-1);\alpha}$.

Fiducial Approach (FA) test

Li et al. (2011) proposed the test statistic in (21).

$$T_{FA} = \sum_{i=1}^{k} t_i^2 - \frac{(\sum_{i=1}^{k} \frac{\sqrt{n_i}}{S_i} t_i)^2}{\sum_{i=1}^{k} \frac{n_i}{S_i^2}}.$$
(21)

The p-value of the FA test can be computed using Monte-Carlo simulations with Algorithm 2.

Alg	gorithm 2. Computation of Monte-Carlo estimate of the FA test
1.	Compute the vectors of $(\bar{x}_1, \bar{x}_2,, \bar{x}_k)$ and $(s_1^2, s_2^2,, s_k^2)$ for <i>k</i> groups
2.	Compute the T_G using the vectors in Step 1
3.	for <i>j</i> in $\{1,, r\}$ do
	Generate $Z_i \sim N(0,1)$ and $U_i \sim \chi^2_{n_i-1}$ random samples
	Compute the T_{FA} using generated random samples
	Set the counter $Q_i = 1$ when $T_{FA} > T_G$
	end for
4.	Compute the Monte-Carlo estimate of p-value as $\sum_{i=1}^{k} Q_i / r$

Generalized F (GF) test

Weerahandi (1995) proposed the test statistic in (22) using the generalized p-value approach.

$$T_{GF} = \sum_{i=1}^{k} (n_i U_i / v_i^2) \bar{x}_i^2 - \frac{[\sum_{i=1}^{k} (n_i U_i / v_i^2) \bar{x}_i]^2}{\sum_{i=1}^{k} n_i U_i / v_i^2}$$
(22)

where $v_i^2 = (n_i - 1)S_i^2$. The p-value of GF test can be computed using Monte-Carlo simulations with **Algorithm 3**.

Algorithm 3. Computation of Monte-Carlo estimate of the GF test

1. Compute the vectors of $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_k)$ and $(s_1^2, s_2^2, ..., s_k^2)$ for k groups

2. Compute the T_G using the vectors in **Step 1**

3. **for** *j* in $\{1, ..., r\}$ **do** Generate $U_i \sim \chi^2_{n_i-1}$ random samples Compute the T_{GF} using generated random samples Set the counter $Q_j = 1$ when $T_{GF} > T_G$ **end for**

4. Compute the Monte-Carlo estimate of p-value as $\sum_{i=1}^{k} Q_i / r$

Johansen (JF) test

Johansen (1980) proposed an approximate solution to the W test as in (23).

$$T_{J} = \frac{\sum_{i=1}^{k} \frac{\bar{X}_{i}^{2}}{S_{i}^{2}} - \frac{[\sum_{i=1}^{k} \bar{X}_{i}/S_{i}^{2}]^{2}}{\sum_{i=1}^{k} 1/S_{i}^{2}}}{c}$$
(23)

where c = (k-1) + 2A - 6A/(k+1), v = (k-1)(k+1)/3A and $A = \sum_{i=1}^{k} (1 - w_i/w)^2/(n_i - 1)$ The H_0 is rejected when $T_J > F_{k-1,v;\alpha}$.

Modified Brown-Forsythe (MBF) test

Mehrotra (1997) proposed the test statistic in (24), which is a modification of BF, to well-performing in case of small sample size.

$$T_{MBF} = \frac{\sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_..)^2}{\sum_{i=1}^{k} (1 - n_i / N) S_i^2}.$$
(24)

where $\bar{X}_{..} = \sum_{i=1}^{k} \bar{X}_i$ and $N = \sum_{i=1}^{k} n_i$. The H_0 is rejected when $T_{MBF > F_{v_1,v_2,\alpha}}$. The degrees of freedom of the MBF test statistics is computed as in (25).

$$v_{1} = \frac{\left[\sum_{i=1}^{k} (1 - n_{i}/N)S_{i}^{2}\right]^{2}}{\sum_{i=1}^{k} S_{i}^{4} + (\sum_{i=1}^{k} n_{i}S_{i}^{2}/N)^{2} - 2\sum_{i=1}^{k} n_{i}S_{i}^{4}/N'}, \quad v_{2} = \frac{\left[\sum_{i=1}^{k} (1 - n_{i}/N)^{2}S_{i}^{2}\right]^{2}}{\sum_{i=1}^{k} \frac{(1 - n_{i}/N)^{2}S_{i}^{4}}{n_{i}-1}}.$$
 (25)

Adjusted Welch (AW) test

Hartung et al. (2002) proposed an adjustment to the Welch test. The test statistic of adjusted Welch test is computed as in (26).

$$T_W = \frac{\sum_{i=1}^k w_i^* (\bar{x}_i - \sum_{j=1}^k h_j^* \bar{x}_j)^2}{(k-1) + 2\frac{k-2}{k+1} \sum_{i=1}^k \frac{1}{n_i - 1} (1 - h_i^*)^2}.$$
(26)

where $w_i^* = \left[\frac{n_i}{(n_i-1/n_i-3)s_i^2}\right]$ and $h_i^* = \frac{w_i^*}{\sum_{i=1}^{k-1}w_i^*}$. The H_0 is rejected when $T_W > F_{(k-1),v;\alpha}$. The degrees of freedom of the test statistic computed in (27).

$$v = \frac{\frac{k^2 - 1}{3}}{\sum_{i=1}^{k} \frac{(1 - h_i^*)^2}{n_i - 1}}.$$
(27)

Parametric Bootstrap (PB) test

Krishnamoorthy et al. (2007) proposed a procedure to test the equality of group means under heteroscedasticity.

$$T_G(S_1^2, S_2^2, ..., S_k^2) = \sum_{i=1}^k \frac{n_i}{S_i^2} \bar{X}_i - \frac{\left[\sum_{i=1}^k n_i \bar{X}_i / S_i^2\right]^2}{\sum_{i=1}^k n_i / S_i^2}$$
(28)

Assume $Z_i \sim N(0, 1)$ and $U_i \sim \chi^2_{n_i-1}$ random samples, the test statistic of the PB test is computed as in (29).

$$T_{PB}(S_1^2, S_2^2, ..., S_k^2) = \sum_{i=1}^k \frac{Z_i^2(n_i - 1)}{U_i} - \frac{\left[\sum_{i=1}^k \sqrt{n_i} Z_i(n_i - 1) / S_i U_i\right]^2}{\sum_{i=1}^k n_i(n_i - 1) / S_i^2 U_i}$$
(29)

The H_0 is rejected when $T_{PB} > T_G$. The p-value of PB test is computed using Monte-Carlo simulations with **Algorithm 4**.

Algorithm 4. Computation of Monte-Carlo estimate of the PB test

- 1. Compute the vectors of $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_k)$ and $(s_1^2, s_2^2, ..., s_k^2)$ for *k* groups
- 2. Compute the T_G using the vectors in **Step 1**
- 3. **for** *j* in {1,...,*r*} **do** Generate $Z_i \sim N(0,1)$ and $U_i \sim \chi^2_{n_i-1}$ random samples Compute the T_{PB} using generated random samples Set the counter $Q_j = 1$ when $T_{PB} > T_G$ **end for**
- 4. Compute the Monte-Carlo estimate of p-value as $\sum_{i=1}^{k} Q_j / r$

Permutation F (PF) test

Berry and Mielke (2002) proposed the test statistic in (30) as the permutational alternative of F-test.

$$T_{PF} = \frac{(T - N\bar{X}^*)/(k-1)}{(V - T)/(N - k)}$$
(30)

where $T = \sum_{i=1}^{k} n_i \sum x_i^2$, $\bar{X}^* = 1/N \sum n_i \bar{x}_i$ and $V = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2$. The H_0 is rejected when $T_{PF} > F_{k-1,N-k;\alpha}$.

Scott-Smith (SS) test

Scott and Smith (1971) proposed the test statistic in (31).

$$T_{SC} = \sum_{i=1}^{k} \frac{n_i (\bar{X}_i - \bar{X}_.)^2}{S_i^{*2}}$$
(31)

where $S_i^{*2} = \frac{n_i - 1}{n_i - 3} S_i^2$. The H_0 is rejected when $T_{SC} > \chi^2_{k;\alpha}$.

Welch (WE) test

Welch (1951) improved the test statistic in 32 based on the weighted group variance as an alternative to the F-test under heteroscedasticity.

$$T_W = \frac{\sum_{i=1}^k w_i (\bar{x}_i - \sum_{i=1}^k h_j \bar{x}_j)^2}{(k-1) + 2\frac{k-2}{k+1} \sum_{i=1}^k \frac{1}{n_i - 1} (1-h_i)^2}$$
(32)

where $w_i = n_i/s_i^2$ and $h_i = w_i/\sum_{i=1}^k w_i$. The H_0 is rejected when $T_W > F_{(k-1),v;\alpha}$. The degrees of freedom of the Welch test computed as in 33.

$$v = \frac{(k^2 - 1)/3}{\sum_{i=1}^{k} \frac{(1 - h_i)^2}{n_i - 1}}$$
(33)

Welch-Aspin (WA) test

Aspin (1948) proposed the test statistic in (34) with a modification to the degrees of freedom of Welch test.

$$T_{WA} = \frac{\sum_{i=1}^{k} (\bar{X}_i - \bar{X})^2 / S_i^2}{(k-1)[1 + \frac{2k-2}{k^2-1}\lambda]}$$
(34)

where $\lambda = \sum_{i=1}^{k} [(1 - w_i)^2 / w_i], v_1 = k - 1 \text{ and } v_2 = (k^2 - 1) / 3\lambda$. The H_0 is rejected when $T_{WA} > F_{v_1;v_2;\alpha}$.

Using doex package

The **doex** package provides to perform several tests for equality of normal distributed and independent distributed group means under unequal variances. These tests are called a function with the initials of their name which are given in the previous sections. In particular, the following tests are not included in any R package or statistical package program: AF, AGF, B2, FA, JF, MBF, MW, PB, and PF. In this section, the examples are given how to use these tests by using doex. After the explanatory data analysis, the variance homogeneity assumption must be checked to move on to the next stage (Noguchi and Gel, 2010; Erps and Noguchi, 2019). The Levene Test is used to this, and we did not include it in the package is because it is included in many R package such as **car** by Fox and Weisberg (2019), **rstatix** by Kassambara (2020), **lawstat** by Gastwirth et al. (2020), **inferr** by Hebbali (2018). We want to stick with the idea of creating a package that includes tests not included in the CRAN.

Example 1: The data are inputted to the functions with two parts: observations and the group labels. As an example hybrid data from Weerahandi (1995) is given in the package. It consists of two parts: data are observations and species are the labels of species of the corn hybrids.

Call the doex package

```
> library(doex)
# print hybrid data of Weerahandi (1995)
> hybrid
   data species
 1
   7.4 A
 2 6.6
           Α
 3 6.7
           Α
 4 6.1
           Α
 5 6.5
           Α
 6
   7.2
            Α
 7
   7.1
           В
 8
           В
   7.3
 9 6.8
           В
 10 6.9
           В
 11 7.0
            В
 12 6.8
            С
 13 6.3
            С
 14 6.4
             С
 15 6.7
             С
 16 6.5
             С
 17 6.8
            С
 18 6.4
            D
 19 6.9
            D
 20 7.6
            D
 21 6.8
           D
 22 7.3
           D
# observations of the hybrid data
> hybrid$data
 [1] 7.4 6.6 6.7 6.1 6.5 7.2 7.1 7.3 6.8 6.9 7.0 6.8 6.3 6.4 6.7 6.5 6.8 6.4 6.9 7.6 6.8 7.3
 # group labels of the hybrid data
> hybrid$species
 [1] A A A A A B B B B B C C C C C D D D D D
 Levels: A B C D
# The ggplot2 package can be used to plot the box plot of the data in Figure 1.
> ggplot(hybrid, aes(x = species, y = data)) +
> geom_boxplot() +
>
  ylab("Yield") +
> xlab("Corn Species")
# Look at the summary statistics of the data before using the tests.
# Use psych package to obtain the descriptive statistics of the hybrid data
> library(psych)
# Describe the hybrid data by species using describe.by(.) function
> describe.by(hybrid$data, hybrid$species)
#The output of the describe.by function as follows:
Descriptive statistics by group
group: A
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 6 6.75 0.48 6.65 6.75 0.52 6.1 7.4 1.3 0.11 -1.7 0.19
_____
group: B
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 5 7.02 0.19 7 7.02 0.15 6.8 7.3 0.5 0.28 -1.72 0.09
                          _____
         _____
group: C
  vars n mean sd median trimmed mad min max range skew kurtosis se
```


Figure 1: Boxplot of the data in Example 1.

```
6.58 0.3 6.3 6.8 0.5 -0.13
                                                              -2.02 0.09
X1
     1 6 6.58 0.21
                      6.6
group: D
  vars n mean sd median trimmed mad min max range skew kurtosis
                                                                      se
                               7 0.59 6.4 7.6 1.2 0.04
     15
            7 0.46
                      6.9
                                                             -1.84 0.21
X1
# It is seen that the variances of the species are unequal
# Thus we need to use the tests for equality of the group means under unequal variances
#
# Examples of the use of the AF and GF tests on the hybrid data are given in the follows.
# The following code performs the Approximate F-test on the hybrid data.
> library(doex)
> AF(hybrid$data,hybrid$species)
# This function returns a result matrix consists of a test statistic, degrees of freedom,
and p-value of Approximate F-test as follows:
              Test Statistic df1 df2 p-value
                   1.8538 2 12 0.1943
Approximate F
# Following code performs the Generalized F-test.
> library(doex)
> GF(hybrid$data,hybrid$species)
# The p-value of the GF test is computed Monte-Carlo estimates and its size is
# controlled with the rept parameter in the function. It is implemented as
# default rept=10000
# This function returns the p-value of the Generalized F-test as follows:
             p-value
Generalized F 0.0492
# The results of the AF and GF tests are different at the nominal level 0.05.
# It is needed to investigate the performance of these tests in
# a Monte-Carlo simulation study.
```

Example 2: This example is provided an external data involves litter weights of mice born from mothers assigned to three different dosage groups and a control. For the low dose group the dose metameter is 5, for the medium dose group it is 50, and for the high dose group it is 500. In here, the problem is testing the equality of mean of litter weights of mice born according to the used dose. The dataset is available in the following repository: https://github.com/mcavs/doex_TheRJournal.

Figure 2: Boxplot of the data in Example 2.

Print born weight data using the data is given in GitHub repository.

	weight_data	dose
1	22.69	0
2	26.59	0
3	28.85	0
4	28.03	0
5	29.05	0
6	23.61	0
7	22.21	0
8	26.81	0
9	26.01	0
10	25.98	0
•		•
•	•	•
•	•	•
70	26.31	500
71	30.61	500
72	26.48	500
73	24.31	500
74	27.98	500

The ggplot2 package can be used to plot the box plot of the data in Figure 2.
> ggplot(born_weight_data, aes(x = dose, y = weight_data)) +
> geom_boxplot() +
> ylab("Born Weight (gr)") +
> xlab("Dose Treatment")

Describe the born weight data by species using describe.by(.) function
> describe.by(born_weight_data\$weight_data, born_weight_data\$dose)

#The output of the describe.by function as follows:

```
_____
group: 50
  vars n mean sd median trimmed mad min max range skew kurtosis
                                                                          se
X1 1 18 23.79 2.83 24.11 23.84 1.92 17.54 29.21 11.67 -0.28
                                                                   0.03 0.67
 _____
group: 500
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 17 23.72 4.08 24.31 23.76 3.84 16.13 30.61 14.48 -0.4
                                                                 -0.91 0.99
# It is seen that the variances of the dose groups may be unequal
# To conclude whether the variance homogenity assumption is valid,
# Levene test is used.
> library(car)
> car::LeveneTest(weight_data ~ dose)
# LeveneTest(.) function returns the test statistic and
# p-value of Levene variance homogeneity test as follows:
Levene's Test for Homogeneity of Variance (center = median)
     Df F value Pr(>F)
group 3 3.3819 0.0229 *
Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
# The p-value of Levene test is lower than the nominal level 0.05,
# so it is concluded that the variance homogeneity assumption is violated.
# Thus we need to use the tests for equality of the group means under
# unequal variances in doex.
# The GF, AF, and PB are used to conclude there is a significance difference between
# the mean born weight of mice according to used dose group.
> doex::GF(weight_data, dose)
             p-value
Generalized F 0.0331
> doex::AF(weight_data, dose)
             Test Statistic df1 df2 p-value
                   1.9408 3 57 0.1484
Approximate F
> doex::PB(weight_data, dose)
                    p-value
Parametric Bootstrap 0.0366
# The results of the GF and PB tests indicate that there is a significant difference.
# while the result of the AF indicates that there is no significant difference between
# the mean born weight of mice according to used dose group.
# It is also needed to investigate the performance of these tests in
# a Monte-Carlo simulation study.
```

Monte-Carlo simulation study

In this section, the performance of the tests for equality of normal distributed and independent groups' means under unequal variances are investigated in terms of Type I error probability and penalized power of the test. We used the penalized power instead of the classical power of the test, because any comparison of the powers is invalid when Type I error probabilities are different in Monte-Carlo simulation studies. Zhang and Boos (1994) and Lloyd (2005) proposed alternatives for the power of the tests have some deficiencies. To overcome this problem, Cavus et al. (2019) proposed the penalized

Figure 3: Type I error probability of the tests for k = 3.

power of the test in (35) to compare the power of the test even if Type I error probabilities are different.

$$\gamma = \frac{1 - \beta}{\sqrt{1 + \left|1 - \frac{\alpha_i}{\alpha_0}\right|}} \tag{35}$$

where β is Type II error rate, α_i is Type I error of the test, and α_0 is the nominal level. Penalized power adjusts the power function with the square root of the percentile deviation between type I error probability and the nominal level. Thus, penalized power is used to compare the power of the tests in the simulation studies. An extensive Monte-Carlo simulation study is conducted to investigate the performance of the tests in terms of Type I error probability and penalized power. Firstly, the ability of the tests to control the Type I error probability is examined. Then, the penalized power of the test which controls the Type I error probability in the Bradley (1978)'s robustness limits are compared. In this way, we conclude the performance of the tests by taking into account two possible errors in hypothesis testing. The sample size, design type, variance heterogeneity, and effect sizes are used as configuration factors beyond this part of the study. The R code used in this simulation study is available in the following repository: https://github.com/mcavs/doex_TheRJournal.

The properties of the tests to control the Type I error probability

Type I error probabilities of the tests are investigated in an extensive Monte-Carlo simulation study under balanced and unbalanced design with small, moderate, and large sample sizes in this section. Also, the number of the groups is fixed as k = 3, 5, 7, and different heteroscedasticity setups are also used. Hereby, the properties of the tests to control the Type I error probability are revealed under various scenarios.

The boxplots in Figs. 3,4,5 are constructed for several heteroscedasticity scenarios. In this way, the ability of the tests to control the Type I error probability are obtained. According to the Fig.3, AF, AG, B2, GF, JF, MBF, PB, WA and WE test controls the Type I error probability in the Bradley (1978) limits which are shown with dashed red lines. However, the AGF, CF, PF, and SS test could not control the Type I error probability for k = 3. The GF test controls the Type I error probability unlike in the case of k = 3 in Fig.4. The AF, AG, B2, MBF, PB, and WA test control Type I error probability for k = 7. When the results are summarized, it is concluded that the AGF, BF, BX, CF, MW, PF, and SS test could not

Figure 4: Type I error probability of the tests for k = 5.

Figure 5: Type I error probability of the tests for k = 7.

control the Type I error probability for each of the k's. Thus, the tests only which control Type I error probability in the limits are considered in the next section for power comparisons to avoid making a wrong decision.

The results of the penalized powers

In this section, the penalized power results are given under four configuration factors are sample size, design type, effect size, heteroscedasticity level for k = 3, 5, 7. The samples follows normal distribution with the parameters (μ_i, σ_i^2) as given in Tables 1, 2, 3. The mean parameter of the samples are shown as the effect size Δ_i in each line. This means that the mean parameter of the samples are zero except the last sample is Δ_i .

When the effect of the configuration factors on the power are examined, it is observed that the larger sample size increase, the higher level of heteroscedasticity decrease, and the higher effect sizes increase the power of all tests as expected. Also, some interesting results are obtained such as the penalized power of all tests are higher in the unbalanced designs. The performances of the AF and MBF, the AG and B2, the JF and WE tests are very close to each other in terms of penalized power. Thus, these tests may be used interchangeably.

The AF and MBF test are superior than others in most of the scenarios. In the lower level of heteroscedasticity for all sample sizes, the penalized power of the tests are higher than 0.90 for k = 3. It is the same situation for k = 5 except for a small sample-unbalanced design. In this case, the penalized power of the AF and MGF is close to the 0.90, and the performance of the others is unacceptable. For k = 7, the penalized power of the tests is higher than 0.90 except for small sample-lower heteroscedasticity scenarios. In this case, the AF and MBF tests show acceptable performance in terms of penalized power in only small sample-lower level heteroscedasticity. As a result, it is clearly seen that the penalized power of the tests decreases dramatically in the higher level of heteroscedasticity for k = 5, 7.

Discussion

In this paper, an extensive Monte-Carlo simulation study is conducted to investigate the performance of the tests for equality of normal distributed and independent groups' means under unequal variances under several scenarios. It is rather rare to encounter normally distributed data and Bono et al. (2017) showed that the data obtained from health, educational, and social sciences research are often not normally distributed. Blanca et al. (2013) discussed the negative effect of non-normality on the power and Type I error probability of the parametric tests. It is reality that the normality assumption is crucial for the considered tests in this study. Here, it is focused on the performance of the considered tests under normality to fill the gap mentioned the introduction part. Firstly, the ability of the test to control the Type I error probability is examined and the boxplots in Figs.3, 4 and 5 are used to summarize the results. The tests which can control the Type I error probability are obtained as robust tests with respect to the Bradley (1978)'s limits. Then, the penalized power of the robust tests is calculated. The reason for using this method was to consider two possible types of error.

According to the results of the Monte-Carlo simulation study, the AF, AG, B2, MBF, PB, WA test control the Type I error probability for k = 3, 5, 7 in the interval [0.0495, 0.0505]. The GF can control only for k = 3 and the WE test can control only for k = 3, 5. Besides the controlling of the Type I error probability of these tests, the penalized power properties are also investigated under similar scenarios. The results are indicated that the AF and MBF tests are superior than others in the higher heteroscedasticity levels. Also, it is concluded that the penalized power of the other tests is quite close to the intended level.

As a result of this study, the robust tests are obtained and can be used in most of the situations except for a higher level of heteroscedasticity and small sample sizes. Using the results of the simulation study, researchers can use appropriate tests for their studies.

Summary and Future works

The **doex** package contains the several tests for testing equality of normally distributed groups' means under unequal variances. Most of these tests are not available in any R package. Thus, we fill this gap by implementing the package in the statistical software literature. The fact that the package contains tests such as the GF, PB, and FA with complex calculation steps provides a significant benefit to multidisciplinary researchers. Furthermore, the performance of the considered tests is investigated under normal distributions in detail in an extensive Monte-Carlo simulation study. Considering the number of methods discussed, this article is the most comprehensive performance investigation study in the literature. Recommendations were made to the researchers by using the interesting outputs from the simulation study.

It is always optimistic idea to encountered normal distribution in real life. The performance of the considered tests can be also investigated under the various distributions or to focus the tests are proposed for non-normal distributions. Thus, it is planned to expand the package by adding methods used to test the equality of the log-normal (Tian and Wu, 2007) and inverse-Gaussian (Tian, 2006; Ma and Tian, 2009) distributed and independent groups' means in further studies.

Acknowledgement

This study is supported by the Eskisehir Technical University Scientific Research Projects Commission under grant No. 20DRP047.

Bibliography

- K. Aho. asbio: A Collection of Statistical Tools for Biologists, 2018. URL https://CRAN.R-project.org/ package=asbio. R package version 1.5-3. [p190]
- R. A. Alexander and D. M. Govern. A new and simplier approximation for anova under variance heterogeneity. *Journal of Educational Statistics*, 19(2):91–101, 1994. URL https://www.jstor.org/ stable/1165140. [p190]
- D. Argac. Testing for homogeneity in a general one-way classification with fixed effects: power simulations and comparative study. *Computational Statistics & Data Analysis*, 44:603–612, 2004. URL https://doi.org/10.1016/S0167-9473(02)00264-5. [p189]
- O. Asiribo and J. Gurland. Coping with variance heterogeneity. *Communications in Statistics-Theory and Methods*, 19(11):4029–4048, 1990. URL https://www.tandfonline.com/doi/abs/10.1080/03610929008830427. [p191]
- A. A. Aspin. Interval estimates for linear combinations of means. *Biometrika*, 35(1):276–285, 1948. URL https://www.jstor.org/stable/2332631. [p195]
- K. J. Berry and P. W. Mielke. The fisher-pitman permutation test: an attractive alternative to the f test. *Psychological Reports*, 90(2):495–502, 2002. URL https://www.ncbi.nlm.nih.gov/pubmed/12061589. [p195]
- M. Blanca, J. Arnau, D. Lopez-Montiel, R. Bono, and R. Bendayan. Skewness and kurtosis in real data samples. *Methodology*, 9:78–84, 2013. [p202]
- R. Bono, M. Blanca, J. Arnau, and J. Gomez-Benito. Non-normal distributions commonly used in health, education, and social sciences: A systematic review. *Frontiers in Psychology*, 8, 2017. [p202]
- G. E. P. Box. Some theorems on quadratic forms applied in the study of analysis of variance problems. *Technometrics*, 25(2):290–302, 1954. URL https://www.jstor.org/stable/pdf/2236731.pdf. [p192]
- J. V. Bradley. Robustness. *British Journal of Mathematical and Statistical Psychology*, 31:144–152, 1978. [p200, 202]
- M. B. Brown and A. B. Forsythe. The small sample behavior of some statistics which test the equality of several means. *Technometrics*, 16(1):81–90, 1974. URL https://www.jstor.org/stable/pdf/ 1267501.pdf. [p192]
- M. Cavus, B. Yazici, and A. Sezer. Modified tests for comparison of group means under heteroskedasticity and non-normality caused by outliers. *Hacettepe Journal of Mathematics and Statistics*, 46 (3):493–510, 2017. URL http://www.hjms.hacettepe.edu.tr/uploads/f0746d40-4b55-41fb-9917-12f8f2f0a2e4.pdf. [p190]
- M. Cavus, B. Yazici, and A. Sezer. Analysing regional export data by the modified generalized ftest. *International Journal of Economic and Administrative Studies*, pages 541–551, 2018. URL https: //dergipark.org.tr/download/article-file/408447. [p190]
- M. Cavus, B. Yazici, and A. Sezer. Penalized power approach to compare the power of the tests when type i error probabilities are different. *Communication in Statistics-Simulation and Computation*, 2019. URL https://doi.org/10.1080/03610918.2019.1588310. [p199]

- W. G. Cochran. Problems arising in the analysis of a series of similar experiments. *Technometrics*, 4(1): 290–302, 1937. URL https://www.jstor.org/stable/pdf/2984123.pdf. [p193]
- O. Dag, A. Dolgun, and N. M. Konar. onewaytests: an r package for one-way tests in independent groups designs. *R Journal*, 10(1):175–199, 2018. URL https://journal.r-project.org/archive/ 2018/RJ-2018-022/RJ-2018-022.pdf. [p190]
- R. C. Erps and K. Noguchi. A robust test for checking the homogeneity of variability measures and its application to the analysis of implicit attitudes. *Journal of Educational and Behavioral Statistics*, 45(4): 403–425, 2019. [p195]
- J. Fox and S. Weisberg. An R companion to applied regression. Sage, Thousand Oaks CA., third edition edition, 2019. [p195]
- J. Gamage and S. Weerahandi. Size performance of some tests in one-way anova. *Communications in Statistics-Computation and Simulation*, 27(3):165–173, 1998. URL http://dx.doi.org/10.1080/03610919808813500. [p189]
- J. L. Gastwirth, Y. R. Gel, W. L. W. Hui, V. Lyubchich, W. Miao, and K. Noguchi. *lawstat: Tools for Biostatistics, Public Policy, and Law,* 2020. URL https://CRAN.R-project.org/package=lawstat. R package version 3.4. [p195]
- E. Gokpinar and F. Gokpinar. A test based on the computational approach for equality of means under the unequal variance assumption. *Hacettepe Journal of Mathematics and Statistics*, 41(4): 605–613, 2012. URL http://www.hjms.hacettepe.edu.tr/uploads/0871d39b-039b-45fb-9b31-483cdde56ef7.pdf. [p190]
- J. Hartung, D. Argac, and K. H. Makambi. Small sample properties of tests on homogeneity in one-way anova and meta-analysis. *Statistical Papers*, 43(2):1139–1145, 2002. URL https://link.springer. com/article/10.1007/s00362-002-0097-8. [p189, 190, 194]
- A. Hebbali. *inferr: Inferential Statistics*, 2018. URL https://CRAN.R-project.org/package=inferr. R package version 0.3.0. [p195]
- T. Hothorn, K. Hornik, M. A. van de Wiel, and A. Zeileis. lawstat: an r package for law, public policy and biostatistics. *Journal of Statistical Software*, 28(8):1–23, 2008. URL https://doi.org/10.18637/ jss.v028.i08. [p190]
- W. Hui, Y. R. Gel, and G. G. Gastwirth. Implementing a class of permutation tests: The coin package. *Journal of Statistical Software*, 28(3):1–26, 2008. URL https://doi.org/10.18637/jss.v028.i03. [p190]
- S. Johansen. The welch-james approximation to the distribution of the residual sum of squares in a weighted linear regression. *Biometrika*, 67(1):58–92, 1980. URL https://www.jstor.org/stable/ 2335320. [p193]
- A. Kassambara. *rstatix: Pipe-Friendly Framework for Basic Statistical Tests*, 2020. URL https://CRAN.R-project.org/package=rstatix. R package version 0.6.0. [p195]
- K. Krishnamoorthy, F. Lu, and T. Mathew. A parametric bootstrap approach for anova with unequal variances: fixed and random models. *Computational Statistics and Data Analysis*, 51(12):5731–5742, 2007. URL https://www.sciencedirect.com/science/article/pii/S016794730600363X. [p194]
- S. Lee and C. H. Ahn. Modified anova for unequal variances. Communication in Statistics-Simulation and Computation, 32(4):987–1004, 2003. [p190]
- X. Li, J. Wang, and H. Liang. Comparison of several means: a fiducial based approach. *Computational Statistics and Data Analysis*, 55(5):1993–2002, 2011. URL https://www.sciencedirect.com/science/article/pii/S0167947310004779. [p190, 193]
- C. J. Lloyd. Estimating test power adjusted for size. *Journal of Statistical Computation and Simulation*, 75 (11):921–933, 2005. URL https://www.tandfonline.com/doi/abs/10.1080/00949650412331321160. [p199]
- C. X. Ma and L. Tian. A parametric bootstrap approach for testing equality of inverse gaussian means under heterogeneity. *Communications in Statistics-Simulation and Computation*, 38:1153–1160, 2009. [p203]
- P. Mair and R. Wilcox. WRS2: Wilcox robust estimation and testing, 2018. 0.10-0. [p190]

- D. V. Mehrotra. Improving the brown-forsythe solution to the generalized behrens-fisher problem. *Communication in Statistics-Simulation and Computation*, 26(3):1139–1145, 1997. URL https://www.tandfonline.com/doi/abs/10.1080/03610919708813431. [p194]
- H. T. Mutlu, F. Gokpinar, E. Gokpinar, H. H. Gul, and G. Guven. A new computational approach test for one-way anova under heteroscedasticity. *Communications in Statistics Theory and Methods*, 46 (16):8236–8256, 2017. [p190]
- K. Noguchi and Y. R. Gel. Combination of levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. *Journal of Nonparametric Statistics*, 22(7):897–913, 2010. [p195]
- A. F. Ozdemir and S. Kurt. One-way fixed effect analysis of variance under variance heterogeneity and a solution proposal. *Selcuk Journal of Applied Mathematics*, 7(2):81–90, 2006. URL http://sjam.selcuk.edu.tr/sjam/article/view/174. [p192]
- S. M. Sadooghi-Alvandi, A. A. Jafari, and H. A. Mardani-Fard. One-way anova with unequal variances. *Communications in Statistics-Theory and Methods*, 41(22):4200–4221, 2012. URL https://www.tandfonline.com/doi/full/10.1080/03610926.2011.573160. [p189, 191]
- A. J. Scott and T. M. Smith. Interval estimates for linear combinations of means. *Journal of the Royal Statistical Society*, 20(3):276–285, 1971. URL https://www.jstor.org/stable/2346757. [p195]
- L. Tian. Testing equality of inverse gaussian means under heterogeneity based on generalized test variable. *Computational Statistics Data Analysis*, 51:1156:1162, 2006. [p203]
- L. Tian and J. Wu. Inferences on the common mean of several log-normal populations: the generalized variable approach. *Biometrical Journal*, 49:944:951, 2007. [p203]
- P. J. Villacorta. The welchadf package for robust hypothesis testing in unbalanced multivariate mixed models with heteroscedastic an non-normal data. *The R Journal*, 9(2):309–328, 2017. URL https://journal.r-project.org/archive/2017/RJ-2017-049/RJ-2017-049.pdf. [p190]
- S. Weerahandi. Anova under unequal error variances. *Biometrics*, 51(2):589–599, 1995. URL http: //www.jstor.org/stable/2532947. [p193]
- B. L. Welch. On the comparison of several mean values. *Biometrika*, 38(1):330–336, 1951. URL https://www.jstor.org/stable/2332631. [p195]
- J. Zhang and D. D. Boos. Adjusted power estimates in monte-carlo experiments. *Communications in Statistics-Computation and Simulation*, 23(1):165–173, 1994. URL https://www.tandfonline.com/ doi/abs/10.1080/00949650412331321160. [p199]

Mustafa Cavus Eskisehir Technical University Department of Statistics Eskisehir, Turkey https://orcid.org/0000-0002-6172-5449 mustafacavus@eskisehir.edu.tr

Berna Yazıcı Eskisehir Technical University Department of Statistics Eskisehir, Turkey https://orcid.org/0000-0001-9843-7355 bbaloglu@eskisehir.edu.tr

n _i	σ_i^2	Δ_i	AG	AF	B2	GF	JF	MBF	PB	WE	WA
(10, 10, 10)	(0.1, 0.2, 0.3)	0.3	0.2232	0.2630	0.2236	0.2133	0.2314	0.2628	0.2306	0.2314	0.2128
10, 10, 10)	(0.1, 0.2, 0.3)	0.8	0.9045	0.9391	0.9047	0.8915	0.9197	0.9390	0.9201	0.9197	0.8833
		1.5	0.9910	0.9815	0.9911	0.9768	0.9921	0.9815	0.9941	0.9921	0.9614
	(0.1, 0.4, 0.7)	0.3	0.1265	0.1491	0.1269	0.1277	0.1326	0.1490	0.1296	0.1326	0.1193
	(0.1, 0.4, 0.7)	0.8	0.5962	0.6858	0.5978	0.6004	0.6129	0.6855	0.6089	0.6129	0.5829
		1.5	0.9853	0.9880	0.9881	0.9893	0.9812	0.9879	0.9777	0.9812	0.9583
	(1, 2, 3)	0.3	0.0682	0.0656	0.0684	0.0649	0.0708	0.0655	0.0702	0.0708	0.0644
	(1, 2, 3)	0.8	0.1700	0.2006	0.1701	0.1653	0.1760	0.2004	0.1752	0.1760	0.1615
		1.5	0.4832	0.5536	0.4833	0.4716	0.4998	0.5534	0.4968	0.4998	0.4693
	(1, 4, 7)	0.3	0.0614	0.0566	0.0616	0.0622	0.0627	0.0565	0.0622	0.0627	0.40563
	(1, 4, 7)	0.3	0.1023	0.0300	0.1026	0.1050	0.1075	0.0303	0.1068	0.1075	0.0958
		0.8 1.5	0.1023			0.1050		0.1200	0.1008	0.1075	0.0936
(20, 20, 20)	(0 1 0 2 0 2)			0.3022	0.2550		0.2655				
(30, 30, 30)	(0.1, 0.2, 0.3)	0.3	0.6299	0.7004	0.6293	0.6281	0.6327	0.7002	0.6342	0.6327	0.6375
		0.8	0.9882	0.9980	0.9872	0.9872	0.9815	0.9979	0.9853	0.9815	0.997(
	$(0,1,0,1,0,\overline{n})$	1.5	1	1	1	1	1	1	1	1	1
	(0.1, 0.4, 0.7)	0.3	0.3210	0.3791	0.3212	0.3210	0.3243	0.3789	0.3224	0.3243	0.3233
		0.8	0.9772	0.9924	0.9775	0.9779	0.9740	0.9922	0.9726	0.9740	0.9898
		1.5	0.9831	0.9960	0.9834	0.9834	0.9796	0.9960	0.9787	0.9796	0.9960
	(1, 2, 3)	0.3	0.0923	0.1072	0.0922	0.0934	0.0938	0.1070	0.0930	0.0938	0.0925
		0.8	0.4785	0.5411	0.4780	0.4733	0.4823	0.5410	0.4789	0.4823	0.4820
	<i></i>	1.5	0.9566	0.9798	0.9557	0.9545	0.9517	0.9797	0.9566	0.9517	0.9653
	(1, 4, 7)	0.3	0.0661	0.0715	0.0663	0.0663	0.0672	0.0714	0.0648	0.0672	0.0652
		0.8	0.2282	0.2809	0.2285	0.2284	0.2318	0.2808	0.2298	0.2318	0.230
		1.5	0.6982	0.7659	0.6990	0.7012	0.7032	0.7655	0.7009	0.7032	0.710
(50, 50, 50)	(0.1, 0.2, 0.3)	0.3	0.8573	0.9046	0.8577	0.8546	0.8547	0.9045	0.8604	0.8547	0.8593
		0.8	0.9811	0.9980	0.9815	0.9825	0.9759	0.9979	0.9853	0.9759	0.9834
		1.5	1	1	1	1	1	1	1	1	1
	(0.1, 0.4, 0.7)	0.3	0.5427	0.6028	0.5425	0.5443	0.5418	0.6026	0.5400	0.5418	0.5442
		0.8	0.9832	0.9980	0.9834	0.9880	0.9759	0.9980	0.9740	0.9759	0.9872
		1.5	1	1	1	1	0.9979	1	0.9940	0.9981	1
	(1, 2, 3)	0.3	0.1421	0.1671	0.1431	0.1432	0.1435	0.1671	0.1474	0.1435	0.1434
		0.8	0.7210	0.7900	0.7214	0.7203	0.7204	0.7900	0.7262	0.7204	0.7232
		1.5	0.9803	0.9974	0.9807	0.9817	0.9751	0.9974	0.9843	0.9751	0.9826
	(1, 4, 7)	0.3	0.0912	0.1040	0.0917	0.0907	0.0917	0.1040	0.0918	0.0917	0.0904
		0.8	0.4020	0.4659	0.4018	0.4066	0.4017	0.4659	0.4021	0.4017	0.4032
		1.5	0.9031	0.9405	0.9032	0.9070	0.8990	0.9405	0.8932	0.8990	0.9077
(5, 10, 15)	(0.1, 0.2, 0.3)	0.3	0.2790	0.3346	0.2791	0.2535	0.2573	0.2974	0.2605	0.2573	0.2371
., .,,	(, ,)	0.8	0.9598	0.9388	0.9570	0.9217	0.9432	0.9342	0.9484	0.9432	0.9406
		1.5	0.9844	0.9483	0.9815	0.9475	0.9731	0.9500	0.9787	0.9731	0.9759
	(0.1, 0.4, 0.7)	0.3	0.1522	0.1955	0.1526	0.1346	0.1494	0.1743	0.1490	0.1494	0.1339
	(011) 011) 011)	0.8	0.7601	0.8070	0.7609	0.7018	0.7535	0.7860	0.7532	0.7535	0.7063
		1.5	0.9910	0.9612	0.9913	0.9340	0.9962	0.9748	0.9992	0.9962	0.9562
	(1, 2, 3)	0.3	0.0702	0.0835	0.0709	0.0604	0.0650	0.0669	0.0652	0.0650	0.0602
	(1, 2, 3)	0.8	0.2018	0.2644	0.2014	0.1817	0.1900	0.2236	0.1912	0.1900	0.0007
		1.5	0.5940	0.6651	0.5928	0.5571	0.5611	0.6205	0.5649	0.5611	0.5412
	$(1 \ 4 \ 7)$		0.0562	0.0690	0.0567	0.0460	0.0568		0.0580	0.0568	0.0490
	(1, 4, 7)	0.3	0.0362	0.0690	0.0567 0.1210	0.0460	0.0568	0.0610 0.1353	0.0580	0.0568	0.049
		0.8 1.5						0.1353		0.1190	
(20, 20, 40)	(0, 1, 0, 2, 0, 2)		0.3310	0.3986	0.3312	0.3016	0.3252		0.3250		0.297
(20, 30, 40)	(0.1, 0.2, 0.3)	0.3	0.7142	0.7419	0.7143	0.7108	0.7071	0.7609	0.7093	0.7071	0.706
		0.8	0.9955	0.9509	0.9960	0.9980	0.9872	0.9970	0.9921	0.9872	0.996
	(0.1.0.1.0.5	1.5	1	1	1	1	1	1	1	1	1
	(0.1, 0.4, 0.7)	0.3	0.3951	0.4407	0.3953	0.3944	0.3994	0.4314	0.3953	0.3994	0.387
		0.8	0.9892	0.9612	0.9895	0.9936	0.9984	0.9869	0.9899	0.9984	0.985
		1.5	0.9910	0.9614	0.9911	0.9950	1	0.9872	0.9911	1	0.987
	(1, 2, 3)	0.3	0.1062	0.1227	0.1066	0.1022	0.1060	0.1196	0.1058	0.1060	0.104
		0.8	0.5572	0.5975	0.5576	0.5541	0.5521	0.6064	0.5540	0.5521	0.553
		1.5	0.9843	0.9452	0.9847	0.9860	0.9758	0.9892	0.9806	0.9758	0.984
	(1, 4, 7)	0.3	0.0743	0.0821	0.0747	0.0732	0.0756	0.0772	0.0747	0.0756	0.073
		0.8	0.2872	0.3234	0.2874	0.2876	0.2904	0.3157	0.2908	0.2904	0.284
		1.5	0.8011	0.8166	0.8020	0.8044	0.8100	0.8240	0.8004	0.8100	0.795
(25, 50, 75)	(0.1, 0.2, 0.3)	0.3	0.9182	0.8505	0.9184	0.9294	0.9129	0.9361	0.9153	0.9129	0.922
	,	0.8	0.9744	0.8811	0.9750	0.9872	0.9704	0.9796	0.9750	0.9704	0.982
		1.5	1	1	1	1	1	1	1	1	1
	(0.1, 0.4, 0.7)	0.3	0.6392	0.6680	0.6398	0.6375	0.6365	0.6702	0.6384	0.6365	0.638
	(,,,)	0.8	0.9682	0.9054	0.9685	0.9704	0.9649	0.9631	0.9750	0.9649	0.972
		1.5	1	0.9654	1	1	1	1	1	1	1
	(1, 2, 3)	0.3	0.1631	0.2054	0.1636	0.1649	0.1630	0.1932	0.1652	0.1630	0.162
	(1, 2, 0)	0.3	0.8022	0.2038	0.1030	0.1049	0.7976	0.1932	0.7991	0.7976	0.102
							0.7976	0.8452	0.7991		
		1.5	$0.9745 \\ 0.0970$	0.8811 0.1217	0.9750 0.0972	0.9872 0.0959				0.9704 0.0969	0.982
	(1 1 7)		11 HQ ² /H	0.1217	0.0972	0.0959	0.0969	0.1094	0.0989	0.0969	0.096
	(1, 4, 7)	0.3									
	(1, 4, 7)	0.3 0.8 1.5	0.4922 0.9466	0.5291 0.8923	0.4924 0.9470	0.4896 0.9486	0.4902 0.9433	0.5205 0.9435	0.4941 0.9531	0.4902 0.9433	0.490 0.950

Table 1: Penalized powers for k = 3

n _i	σ_i^2	Δ_i	AG	AF	B2	JF	MBF	РВ	WE	WA
(10, 10, 10, 10, 10)	(0.1, 0.2, 0.3, 0.4, 0.5)	0.3	0.0713	0.0867	0.0716	0.0779	0.0863	0.0729	0.0779	0.0718
		0.8	0.2172	0.3403	0.2173	0.2424	0.3400	0.2350	0.2424	0.2271
		1.5	0.6316	0.8549	0.6315	0.6984	0.8542	0.6897	0.6984	0.6722
	(0.1, 0.4, 0.7, 1.1, 1.5)	0.3	0.0562	0.0586	0.0565	0.0543	0.0536	0.0540	0.0543	0.0515
		0.8	0.0917	0.1191	0.0915	0.0848	0.1074	0.0843	0.0848	0.0791
		1.5	0.2110	0.3094	0.2109	0.1840	0.2835	0.1850	0.1840	0.1747
	(1, 2, 3, 4, 5)	0.3	0.0522	0.0541	0.0523	0.0560	0.0540	0.0525	0.0560	0.0502
		0.8	0.0658	0.0788	0.0657	0.0713	0.0785	0.0671	0.0713	0.0647
		1.5	0.1066	0.5250	0.1065	0.1165	0.1479	0.1072	0.1165	0.1046
	(1, 4, 7, 11, 15)	0.3	0.0953	0.1154	0.0951	0.0923	0.1153	0.0964	0.0923	0.0940
		0.8	0.4644	0.5647	0.4635	0.4510	0.5645	0.4635	0.4510	0.4611
		1.5	0.9652	0.9788	0.9633	0.9312	0.9785	0.9611	0.9312	0.9563
(30, 30, 30, 30, 30)	(0.1, 0.2, 0.3, 0.4, 0.5)	0.3	0.3557	0.4704	0.3556	0.3598	0.4700	0.3573	0.3598	0.3601
		0.8	0.9824	0.9871	0.9824	0.9666	0.9870	0.9716	0.9666	0.9803
	(a	1.5	0.9834	0.9872	0.9844	0.9676	0.9871	0.9731	0.9676	0.9815
	(0.1, 0.4, 0.7, 1.1, 1.5)	0.3	0.1442	0.1996	0.1443	0.1461	0.1994	0.1445	0.1461	0.1456
		0.8	0.7418	0.8700	0.7420	0.7478	0.8700	0.7439	0.7478	0.7586
		1.5	0.9843	0.9931	0.9848	0.9708	0.9930	0.9700	0.9708	0.9906
	(1, 2, 3, 4, 5)	0.3	0.0773	0.0898	0.0779	0.0791	0.0893	0.0784	0.0791	0.0768
		0.8	0.2581	0.3510	0.2590	0.2618	0.3508	0.2606	0.2618	0.2614
		1.5	0.7472	0.8595	0.7477	0.7509	0.8593	0.7537	0.7509	0.7579
	(1, 4, 7, 11, 15)	0.3	0.0621	0.0666	0.0622	0.0621	0.0664	0.0624	0.0621	0.0614
		0.8	0.1158	0.1557	0.1160	0.1167	0.1552	0.1164	0.1167	0.1159
		1.5	0.3113	0.4370	0.3112	0.3182	0.4366	0.3153	0.3182	0.3193
(50, 50, 50, 50, 50)	(0.1, 0.2, 0.3, 0.4, 0.5)	0.3	0.5882	0.6978	0.5883	0.5996	0.6975	0.5964	0.5996	0.5881
· · · · · ,		0.8	0.9955	0.9825	0.9960	1	0.9823	0.9990	1	0.9901
		1.5	1	1	1	1	1	1	1	1
	(0.1, 0.4, 0.7, 1.1, 1.5)	0.3	0.2161	0.3051	0.2163	0.2215	0.3050	0.2178	0.2215	0.2152
		0.8	0.9432	0.9636	0.9433	0.9472	0.9633	0.9440	0.9472	0.9321
		1.5	0.9890	0.9787	0.9892	0.9901	0.9785	0.9872	0.9901	0.9750
	(1, 2, 3, 4, 5)	0.3	0.0912	0.1121	0.0919	0.0929	0.1120	0.0921	0.0929	0.0909
		0.8	0.4361	0.5477	0.4363	0.4465	0.5474	0.4435	0.4465	0.4374
		1.5	0.9502	0.9665	0.9508	0.9574	0.9663	0.9558	0.9574	0.9473
	(1, 4, 7, 11, 15)	0.3	0.0621	0.0701	0.0628	0.0626	0.0700	0.0621	0.0626	0.0610
		0.8	0.1617	0.2248	0.1619	0.1657	0.2245	0.1624	0.1657	0.1602
		1.5	0.5205	0.6456	0.5206	0.5292	0.6455	0.5302	0.5292	0.5197
(4, 6, 10, 14, 16)	(0.1, 0.2, 0.3, 0.4, 0.5)	0.3	0.1680	0.2295	0.1682	0.1448	0.1922	0.1309	0.1448	0.1313
		0.8	0.8345	0.9315	0.8335	0.7925	0.8584	0.7690	0.7925	0.7730
		1.5	0.9833	0.9844	0.9814	0.9795	0.9198	0.9739	0.9795	0.9758
	(0.1, 0.4, 0.7, 1.1, 1.5)	0.3	0.0848	0.1110	0.0847	0.0790	0.0988	0.0745	0.0790	0.0736
		0.8	0.3790	0.5455	0.3790	0.3366	0.5029	0.3283	0.3366	0.3282
		1.5	0.9103	0.9756	0.9072	0.8771	0.9474	0.8920	0.8771	0.8947
	(1, 2, 3, 4, 5)	0.3	0.0633	0.0625	0.0632	0.0605	0.0501	0.0583	0.0605	0.0570
		0.8	0.1252	0.1750	0.1253	0.1103	0.1469	0.1081	0.1103	0.1069
		1.5	0.3671	0.5264	0.3674	0.3126	0.4614	0.3090	0.3126	0.3093
	(1, 4, 7, 11, 15)	0.3	0.0523	0.0537	0.0525	0.0544	0.0471	0.0479	0.0544	0.0474
		0.8	0.0727	0.0902	0.0735	0.0707	0.0791	0.0635	0.0707	0.0630
(12.10.00.42.40)		1.5	0.1466	0.2189	0.1475	0.1359	0.1930	0.1195	0.1359	0.1197
(12,18, 30, 42, 48)	(0.1, 0.2, 0.3, 0.4, 0.5)	0.3	0.5134	0.6239	0.5129	0.4915	0.6184	0.4904	0.4915	0.4905
		0.8 1.5	0.9969 1	0.9466	0.9959 1	0.9824	0.9863 1	0.9910	0.9824 1	0.9959 1
	(0.1, 0.4, 0.7, 1.1, 1.5)	1.5 0.3	1 0.1999	1 0.2816	0.2000	1 0.1936	1 0.2697	1 0.1906	0.1936	0.1904
	(0.1, 0.4, 0.7, 1.1, 1.3)	0.3 0.8	0.1999		0.2000				0.1936	0.1904 0.9183
			U.7/.00	0.9291		0.9091 0.9853	0.9556 0.9882	0.9046 0.9815	0.9091	0.9185
				0 95/2	0 0060		0.7002	0.9013	0.2000	0.7700
	(1 2 3 4 5)	1.5	0.9977	0.9543 0.1162	0.9980			0.0804	0 0817	0.0772
	(1, 2, 3, 4, 5)	1.5 0.3	0.9977 0.0812	0.1162	0.0814	0.0817	0.1028	0.0804 0.3567	0.0817 0.3630	0.0772
	(1, 2, 3, 4, 5)	1.5 0.3 0.8	0.9977 0.0812 0.3714	$0.1162 \\ 0.4900$	0.0814 0.3713	0.0817 0.3630	$0.1028 \\ 0.4614$	0.3567	0.3630	0.3459
		1.5 0.3 0.8 1.5	0.9977 0.0812 0.3714 0.9016	0.1162 0.4900 0.9321	0.0814 0.3713 0.9017	0.0817 0.3630 0.9085	0.1028 0.4614 0.9309	0.3567 0.8963	0.3630 0.9085	0.3459 0.8825
	(1, 2, 3, 4, 5) (1, 4, 7, 11, 15)	1.5 0.3 0.8 1.5 0.3	0.9977 0.0812 0.3714 0.9016 0.0611	0.1162 0.4900 0.9321 0.0718	0.0814 0.3713 0.9017 0.0618	0.0817 0.3630 0.9085 0.0615	0.1028 0.4614 0.9309 0.0670	0.3567 0.8963 0.0605	0.3630 0.9085 0.0615	0.3459 0.8825 0.0607
		$1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502	0.1162 0.4900 0.9321 0.0718 0.2101	0.0814 0.3713 0.9017 0.0618 0.1506	0.0817 0.3630 0.9085 0.0615 0.1445	0.1028 0.4614 0.9309 0.0670 0.2032	0.3567 0.8963 0.0605 0.1460	0.3630 0.9085 0.0615 0.1445	0.3459 0.8825 0.0607 0.1443
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15)	$1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788	$\begin{array}{c} 0.0814\\ 0.3713\\ 0.9017\\ 0.0618\\ 0.1506\\ 0.4561\end{array}$	$\begin{array}{c} 0.0817\\ 0.3630\\ 0.9085\\ 0.0615\\ 0.1445\\ 0.4425\end{array}$	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779	$\begin{array}{c} 0.3567 \\ 0.8963 \\ 0.0605 \\ 0.1460 \\ 0.4465 \end{array}$	0.3630 0.9085 0.0615 0.1445 0.4425	0.3459 0.8825 0.0607 0.1443 0.4472
(20, 30, 50, 70, 80)		$ \begin{array}{r} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.3\\ \end{array} $	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15)	$ \begin{array}{c} 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 $	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5)	$1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 1.5 \\ 0.10 \\ 0.8$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.9895	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9959	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15)	$1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 $	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.9895 0.7593	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9959 0.7602	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.8469	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921 0.7569	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899 0.7602	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.7499
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5)	$1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 \\ 1.5 \\ 0.3 \\ 0.8 $	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590 0.9782	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.9895 0.7593 0.9785	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9959 0.7602 0.9844	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.9822 0.8469 0.9874	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921 0.7569 0.9828	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899 0.7602 0.9844	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.7499 0.9747
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5) (0.1, 0.4, 0.7, 1.1, 1.5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ \end{array}$	$\begin{array}{c} 0.9977\\ 0.0812\\ 0.3714\\ 0.9016\\ 0.0611\\ 0.1502\\ 0.4561\\ 0.7441\\ 0.9692\\ 0.9891\\ 0.7590\\ 0.9782\\ 0.9821\\ \end{array}$	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9449	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.9895 0.7593 0.9785 0.9825	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9959 0.7602 0.9844 0.9882	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.9822 0.8469 0.9874 0.9882	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921 0.7569 0.9828 0.9872	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899 0.7602 0.9844 0.9882	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.7499 0.9747 0.9787
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ \end{array}$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590 0.9782 0.9821 0.1040	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9449 0.1441	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.7593 0.9785 0.9785 0.9825 0.1047	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9959 0.7602 0.9844 0.9882 0.1027	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9722 0.9822 0.8469 0.9874 0.9874 0.9882 0.1374	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921 0.7569 0.9828 0.9872 0.1018	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899 0.7602 0.9844 0.9882 0.1027	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.7499 0.9747 0.9787 0.1008
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5) (0.1, 0.4, 0.7, 1.1, 1.5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ \end{array}$	$\begin{array}{c} 0.9977\\ 0.0812\\ 0.3714\\ 0.9016\\ 0.0611\\ 0.1502\\ 0.4561\\ 0.7441\\ 0.9692\\ 0.9891\\ 0.7590\\ 0.9782\\ 0.9821\\ 0.1040\\ 0.5771\\ \end{array}$	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9449 0.1441 0.6735	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.7593 0.9785 0.9825 0.9825 0.1047 0.5773	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9759 0.7602 0.9844 0.9882 0.1027 0.5709	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.9822 0.9874 0.9874 0.9882 0.1374 0.7017	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.7569 0.9828 0.9872 0.1018 0.5684	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.7602 0.9844 0.9882 0.1027 0.5709	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.7499 0.9747 0.9787 0.1008 0.5719
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5) (0.1, 0.4, 0.7, 1.1, 1.5) (1, 2, 3, 4, 5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ \end{array}$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590 0.9782 0.9821 0.1040 0.5771 0.9472	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9449 0.1441 0.6735 0.9101	0.0814 0.3713 0.9017 0.0618 0.4561 0.7448 0.9695 0.7593 0.9785 0.9825 0.1047 0.5773 0.9475	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.7602 0.9844 0.9882 0.1027 0.5709 0.9473	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.8469 0.9874 0.9882 0.1374 0.7017 0.9861	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.7569 0.9828 0.9872 0.1018 0.5684 0.9499	0.3630 0.9085 0.0615 0.1445 0.7426 0.9759 0.9899 0.7602 0.9844 0.9882 0.1027 0.5709 0.9473	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.9934 0.9747 0.9787 0.1008 0.5719 0.9550
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5) (0.1, 0.4, 0.7, 1.1, 1.5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590 0.9782 0.9821 0.1040 0.5771 0.9472 0.0651	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9444 0.9444 0.9444 0.1441 0.6735 0.9101 0.0805	0.0814 0.3713 0.9017 0.0618 0.1506 0.4561 0.7448 0.9695 0.7593 0.9785 0.9825 0.1047 0.5773 0.9475 0.0657	0.0817 0.3630 0.9085 0.0615 0.1445 0.7426 0.9759 0.7602 0.9844 0.9882 0.1027 0.5709 0.9473 0.0654	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.9874 0.9874 0.9874 0.9874 0.1374 0.7017 0.9861 0.0765	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.9921 0.7569 0.9828 0.9872 0.1018 0.5684 0.9499 0.0652	0.3630 0.9085 0.0615 0.1445 0.7426 0.9759 0.9899 0.7602 0.9844 0.9842 0.1027 0.5709 0.9473 0.0654	0.3459 0.8825 0.0607 0.1443 0.4472 0.7293 0.9614 0.7293 0.9614 0.7499 0.9747 0.9787 0.1008 0.5719 0.9550 0.0643
(20, 30, 50, 70, 80)	(1, 4, 7, 11, 15) (0.1, 0.2, 0.3, 0.4, 0.5) (0.1, 0.4, 0.7, 1.1, 1.5) (1, 2, 3, 4, 5)	$\begin{array}{c} 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ 0.3\\ 0.8\\ 1.5\\ \end{array}$	0.9977 0.0812 0.3714 0.9016 0.0611 0.1502 0.4561 0.7441 0.9692 0.9891 0.7590 0.9782 0.9821 0.1040 0.5771 0.9472	0.1162 0.4900 0.9321 0.0718 0.2101 0.5788 0.8321 0.9509 0.9729 0.8306 0.9444 0.9449 0.1441 0.6735 0.9101	0.0814 0.3713 0.9017 0.0618 0.4561 0.7448 0.9695 0.7593 0.9785 0.9825 0.1047 0.5773 0.9475	0.0817 0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.7602 0.9844 0.9882 0.1027 0.5709 0.9473	0.1028 0.4614 0.9309 0.0670 0.2032 0.5779 0.8292 0.9722 0.9822 0.8469 0.9874 0.9882 0.1374 0.7017 0.9861	0.3567 0.8963 0.0605 0.1460 0.4465 0.7403 0.9731 0.7569 0.9828 0.9872 0.1018 0.5684 0.9499	0.3630 0.9085 0.0615 0.1445 0.4425 0.7426 0.9759 0.9899 0.7602 0.9844 0.9882 0.1027 0.5709 0.9473	0.345 0.882 0.060 0.144 0.447 0.729 0.961 0.993 0.749 0.974 0.978 0.100 0.571 0.955

Table 2: Penalized powers for k = 5

n _i	σ_i^2	Δ_i	AG	AF	B2	MBF	PB	WA
(10, 10, 10, 10, 10, 10, 10)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.0916	0.1176	0.0921	0.1175	0.0954	0.0960
(,,,,,,	(,,,,,,,	0.8	0.3745	0.6158	0.3750	0.6154	0.4288	0.4279
		1.5	0.8713	0.9725	0.8715	0.9723	0.9247	0.9068
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.3	0.0668	0.0655	0.0666	0,0651	0.0660	0.0658
		0.8	0.1501	0.2255	0.1502	0.2253	0.1578	0.1603
		1.5	0.4021	0.6756	0.4023	0.6753	0.4519	0.4519
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0565	0.0520	0.0568	0.0520	0.0597	0.0588
		0.8	0.0819	0.0944	0.0820	0.0942	0.0831	0.0834
		1.5	0.1612	0.2385	0.1609	0.2381	0.1693	0.1695
	(1, 4, 7, 11, 15, 19, 23)	0.3	0.0560	0.0485	0.0561	0.0483	0.0577	0.0570
		0.8	0.0632	0.0608	0.0635	0.0604	0.0625	0.0633
		1.5	0.0855	0.1044	0.0858	0.1042	0.0860	0.0880
(30, 30, 30, 30, 30, 30, 30)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.2204	0.3303	0.2209	0.3301	0.2301	0.2298
		0.8	0.9598	0.9703	0.9596	0.9701	0.9616	0.9640
	(01 04 07 11 15 10 22)	1.5 0.3	0.9957 0.0978	0.9778 0.1334	0.9960 0.0980	0.9768 0.1324	0.9911 0.0977	0.9941 0.0985
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.5	0.0978	0.1334	0.0980	0.1324	0.0977 0.4867	0.0985
		0.8 1.5	0.4079	0.0333	0.4000	0.0330	0.4867	0.4904
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0651	0.0712	0.0657	0.0711	0.0670	0.0636
	(1, 2, 3, 4, 3, 0, 7)	0.8	0.1652	0.2417	0.1657	0.2414	0.1725	0.0000
		1.5	0.5243	0.6901	0.5247	0.6900	0.5453	0.5461
	(1, 4, 7, 11, 15, 19, 23)	0.3	0.0552	0.0575	0.0555	0.0572	0.0550	0.0537
		0.8	0.0852	0.1060	0.0857	0.1050	0.0853	0.0860
		1.5	0.1810	0.2765	0.1813	0.2755	0.1841	0.1839
(50, 50, 50, 50, 50, 50, 50)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.3722	0.5118	0.3725	0.5111	0.3782	0.3787
		0.8	0.9969	0.9853	0.9978	0.9850	0.9988	0.9948
		1.5	1	1	1	1	1	1
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.3	0.1362	0.1907	0.1365	0.1907	0.1387	0.1380
		0.8	0.7502	0.8843	0.7507	0.8840	0.7686	0.7657
		1.5	0.9943	0.9863	0.9948	0.9852	0.9988	0.9968
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0762	0.0914	0.0764	0.0910	0.0787	0.0758
		0.8	0.2660	0.3817	0.2661	0.3812	0.2739	0.2697
		1.5	0.8052	0.9063	0.8058	0.9051	0.8202	0.8145
	(1, 4, 7, 11, 15, 19, 23)	0.3	0.0600	0.0629	0.0601	0.0612	0.0605	0.0594
		0.8	0.1093	0.1499	0.1099	0.1479	0.1123	0.1099
		1.5	0.2902	0.4275	0.2906	0.4271	0.2981	0.2971
(4, 6, 8, 10, 12, 14, 16)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.1201	0.1540	0.1208	0.1419	0.1025	0.1067
		0.8	0.6065	0.7846	0.6068	0.7525	0.5561	0.5596
	(01 04 07 11 15 10 22)	1.5	0.9622	0.9456	0.9617	0.9273	0.9852	0.9544
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.3 0.8	0.0718 0.2169	0.0814 0.3329	0.0720 0.2173	0.0750 0.3132	$0.0629 \\ 0.1798$	0.0704 0.1944
		0.8 1.5	0.2109	0.3329	0.2173	0.8132	0.1798	0.1944
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0720	0.0549	0.0734	0.0509	0.0240	0.0552
	(1, 2, 3, 4, 3, 0, 7)	0.8	0.1035	0.1204	0.1041	0.1114	0.0856	0.0900
		1.5	0.2357	0.3452	0.2356	0.3250	0.1935	0.2023
	(1, 4, 7, 11, 15, 19, 23)	0.3	0.0561	0.0497	0.0564	0.0481	0.0518	0.0563
	(1) 1) 11, 10, 10, 20,	0.8	0.0653	0.0714	0.0654	0.0677	0.0607	0.0641
		1.5	0.1078	0.1385	0.1080	0.1305	0.0939	0.0947
(12, 18, 24, 30, 36, 42, 48)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.3332	0.4900	0.3336	0.4627	0.3226	0.3149
		0.8	0.9737	0.9882	0.9740	0.9750	0.9798	0.9740
		1.5	0.9950	1	0.9940	0.9920	0.9906	0.9912
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.3	0.1277	0.1966	0.1284	0.1814	0.1228	0.1205
		0.8	0.7067	0.8465	0.7070	0.8059	0.6955	0.6979
		1.5	0.9990	0.9970	0.9995	0.9649	0.9950	0.9988
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0712	0.0870	0.0718	0.0798	0.0675	0.0678
		0.8	0.2458	0.3612	0.2452	0.3438	0.2307	0.2322
		1.5	0.7381	0.8667	0.7380	0.8494	0.7108	0.7255
	(1, 4, 7, 11, 15, 19, 23)	0.3	0.0544	0.0636	0.0541	0.0593	0.0557	0.0530
		0.8	0.0998	0.1537	0.0993	0.1388	0.0956	0.0938
		1.5	0.2679	0.4137	0.2675	0.3839	0.2616	0.2539
(20, 30, 40, 50, 60, 70, 80)	(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)	0.3	0.5722	0.7108	0.5720	0.7148	0.5596	0.5577
		0.8	0.9990	0.9614	0.9987	0.9911	0.9960	0.9980
		1.5	1	0.9614	1	1	1	1
	(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3)	0.3	0.1939	0.2736	0.1935	0.2647	0.1885	0.1875
	(011) 011) 011) 110) 110) (011)	0.8	0.9270	0.9103	0.9262	0.9315	0.9254	0.9286
	(011) 011) 011) 110) 110) 110)		0.9921	0.9261	0.9919	0.9509	0.9901	0.9941
		1.5						
	(1, 2, 3, 4, 5, 6, 7)	0.3	0.0835	0.1185	0.0832	0.1079	0.0834	0.0799
		0.3 0.8	$0.0835 \\ 0.4142$	0.1185 0.5701	$0.0832 \\ 0.4140$	0.5418	0.4040	0.4014
	(1, 2, 3, 4, 5, 6, 7)	0.3 0.8 1.5	$0.0835 \\ 0.4142 \\ 0.9426$	0.1185 0.5701 0.9747	$0.0832 \\ 0.4140 \\ 0.9423$	0.5418 0.9664	$0.4040 \\ 0.9433$	0.4014 0.9380
		0.3 0.8 1.5 0.3	0.0835 0.4142 0.9426 0.0551	0.1185 0.5701 0.9747 0.0709	0.0832 0.4140 0.9423 0.0542	0.5418 0.9664 0.0658	0.4040 0.9433 0.0563	0.4014 0.9380 0.0551
	(1, 2, 3, 4, 5, 6, 7)	0.3 0.8 1.5	$0.0835 \\ 0.4142 \\ 0.9426$	0.1185 0.5701 0.9747	$0.0832 \\ 0.4140 \\ 0.9423$	0.5418 0.9664	$0.4040 \\ 0.9433$	0.4014 0.9380

Table 3: Penalized powers for k = 7