Skip to main content
Log in

Numerical simulation of the realizations and spectra of a quasi-multifractal diffusion process

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A discrete model has been developed for a quasi-multifractal diffusion process and a new method for calculating the quasi-multifractal spectrum has been proposed with the use of the statistical processing of the realizations of the process. This method makes it possible to obtain an almost continuous process spectrum, which is impossible by means of traditional analytical methods. The numerical experiments indicate three significantly different regions of the parameters: regions of “monofractality,” “tempered” multifractality, and “strong” multifractality. The model allows deeper insight into the mechanisms of multifractal phenomena in strong turbulence and in the stochastic behavior of financial markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Richardson, Weather Prediction by Numerical Process (Cambridge Univ., Cambridge, 1922).

    MATH  Google Scholar 

  2. A. N. Kolmogorov, Dokl. Akad. Nauk 31, 99 (1941).

    Google Scholar 

  3. U. Frish, Turbulence, The Legacy of A.N. Kolmogorov (Cambridge Univ., Cambridge, 1995).

    Google Scholar 

  4. R. Friedrich and J. Peinke, Phys. Rev. Lett. 78, 863 (1997).

    Article  ADS  Google Scholar 

  5. M. Alber, S. Lueck, C. Renner, et al., nlin/0007014 (1998).

  6. V. Yakhota and K. R. Sreenivasan, Physica A 343, 147 (2004).

    ADS  MathSciNet  Google Scholar 

  7. L. Biferale, G. Boffetta, A. Celani, et al., Phys. Rev. Lett. 93, 064502 (2004).

  8. U. Frisch, M. M. Afonso, A. Mazzino, et al., J. Fluid Mech. 542, 97 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. L. Chevillard, B. Castaing, E. Leveque, et al., Physica D 218, 77 (2006).

    Article  MATH  ADS  Google Scholar 

  10. B. Pochart and J.-P. Bouchaud, Quantitative Finance 2, 303 (2002).

    Article  MathSciNet  Google Scholar 

  11. L. Borland, J.-P. Bouchaud, J.-F. Muzy, and G. Zumbach, cond-mat/0501292 (2005).

  12. E. A. Novikov, Phys. Fluids A 2, 814 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Castaing, Y. Gagne, and E. Hopfinger, Physica D 46, 177 (1990).

    Article  MATH  ADS  Google Scholar 

  14. E. Bacry, J. Delour, and J.-F. Muzy, Phys. Rev. E 64, 026103 (2001).

    Google Scholar 

  15. E. Bacry, J. Delour, and J.-F. Muzy, cond-mat/0009260 (2000).

  16. A. Saichev and D. Sornette, Phys. Rev. E 74, 011111-1 (2006).

  17. A. I. Saichev and V. A. Filimonov, Zh. Eksp. Teor. Fiz. 132, 1235 (2007) [JETP 105, 1085 (2007)].

    Google Scholar 

  18. M. Matsumoto and T. Nishimura, ACM Trans. Modell. Comp. Simul. 8, 3 (1998).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Saichev.

Additional information

Original Russian Text © A.I. Saichev, V.A. Filimonov, 2008, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 87, No. 9, pp. 592–596.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saichev, A.I., Filimonov, V.A. Numerical simulation of the realizations and spectra of a quasi-multifractal diffusion process. Jetp Lett. 87, 506–510 (2008). https://doi.org/10.1134/S0021364008090129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364008090129

PACS numbers

Navigation