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Abstract—Open source software (OSS) has thrived since the
forming of Open Source Initiative in 1998. A prominent example
is the Linux kernel, which has been used by numerous major
software vendors and empowering billions of devices. The higher
availability and lower costs of OSS boost its adoption, while its
openness and flexibility enable quicker innovation. More impor-
tantly, the OSS development approach is believed to produce
more reliable and higher-quality software since it typically has
thousands of independent programmers testing and fixing bugs
of the software collaboratively.

In this paper, we instead investigate the insecurity of OSS from
a critical perspective—the feasibility of stealthily introducing
vulnerabilities in OSS via hypocrite commits (i.e., seemingly
beneficial commits that in fact introduce other critical issues).
The introduced vulnerabilities are critical because they may be
stealthily exploited to impact massive devices. We first identify
three fundamental reasons that allow hypocrite commits. (1)
OSS is open by nature, so anyone from anywhere, including
malicious ones, can submit patches. (2) Due to the overwhelming
patches and performance issues, it is impractical for maintainers
to accept preventive patches for “immature vulnerabilities”. (3)
OSS like the Linux kernel is extremely complex, so the patch-
review process often misses introduced vulnerabilities that involve
complicated semantics and contexts. We then systematically study
hypocrite commits, including identifying immature vulnerabilities
and potential vulnerability-introducing minor patches. We also
identify multiple factors that can increase the stealthiness of
hypocrite commits and render the patch-review process less
effective. As proof of concept, we take the Linux kernel as target
OSS and safely demonstrate that it is practical for a malicious
committer to introduce use-after-free bugs. Furthermore, we
systematically measure and characterize the capabilities and
opportunities of a malicious committer. At last, to improve
the security of OSS, we propose mitigations against hypocrite
commits, such as updating the code of conduct for OSS and
developing tools for patch testing and verification.

I. INTRODUCTION

Open source software (OSS) shares its source code publicly,
and allows users to use, modify, and even distribute under an
open-sourcing licence. Since the forming of the Open Source
Initiative in 1998, OSS has thrived and become quite popular.
For example, as of August 2020, GitHub was reported to
have over 40 million users and more than 37.6 million public
repositories [19] (increased by 10 million from June 2018 [18]).
It was also reported that everyone uses OSS [50] while 78%
of companies run OSS [60].

OSS is praised for its unique advantages. The availability
and low costs of OSS enable its quick and wide adoption.

Its openness also encourages contributors; OSS typically has
thousands of independent programmers testing and fixing bugs
of the software. Such an open and collaborative development
not only allows higher flexibility, transparency, and quicker
evolution, but is also believed to provide higher reliability and
security [21].

A prominent example of OSS is the Linux kernel, which is
one of the largest open-source projects—more than 28 million
lines of code used by billions of devices. The Linux kernel
involves more than 22K contributors. Any person or company
can contribute to its development, e.g., submitting a patch
through git commits. To make a change of the Linux kernel,
one can email the patch file (containing git diff information)
to the Linux community. Each module is assigned with a
few maintainers (the list can be obtained through the script
get_maintainer.pl). The maintainers then manually or employ
tools to check the patch and apply it if it is deemed valid. Other
popular OSS, such as FreeBSD, Firefox, and OpenSSL, also
adopts a similar patching process.

Because of the wide adoption, OSS like the Linux kernel
and OpenSSL has become attractive targets for high-profile
attacks [9, 15]. While adversaries are incentivized, it is not
always easy to find an exploitable vulnerability. Popular OSS
is often extensively tested by developers and users in both
static and dynamic ways [63]. Even a bug was found, it may
not manifest the exploitability and impacts as the adversaries
wish. Thus, finding ideal exploitable vulnerabilities requires
not only advanced analyses and significant efforts, but also a
bit of luck.

In this paper, we instead investigate the insecurity of OSS
from a critical perspective—the feasibility of a malicious
committer stealthily introducing vulnerabilities such as use-
after-free (UAF) in OSS through hypocrite commits (seemingly
beneficial minor commits that actually introduce other critical
issues). Such introduced vulnerabilities can be critical, as they
can exist in the OSS for a long period and be exploited by the
malicious committer to impact a massive number of devices and
users. Specifically, we conduct a set of studies to systematically
understand and characterize hypocrite commits, followed by
our suggestions for mitigation.

We first identify three fundamental reasons that allow the
hypocrite commits.
• OSS openness. By its nature, OSS typically allows anyone



from anywhere to submit commits to make changes, and
OSS communities tend to not validate the committer identity.
Consequently, even a malicious committer can submit
changes directly or by impersonating reputable contributors
or organizations.

• Limited maintenance resources and performance concerns.
The maintenance of OSS is mainly voluntary and has limited
resources. Due to the overwhelming patches, it is impractical
for OSS communities to accept preventive patches for “im-
mature vulnerabilities” where not all vulnerability conditions
(e.g., a UAF has three conditions: a free, a use, and the use is
after the free) are present yet. The Linux community explic-
itly states that an acceptable patch “must fix a real bug [26]”.
This is actually understandable. Immature vulnerabilities are
not real bugs, and even bug detectors would not report them.
On the other hand, applying preventive patches would incur
runtime performance overhead.

• OSS complexity. OSS can be highly complex. For example,
the Linux kernel has 30K modules developed by 22K
contributors (according to the Git log), and is full of hard-to-
analyze factors such as indirect calls, aliasing pointers, and
concurrency. As a result, when the vulnerability conditions
are introduced by patches, it can be hard to capture the
formed vulnerabilities.
We then systematically study the capabilities of a potential

malicious committer. We show how to identify immature vul-
nerabilities by analyzing common vulnerability conditions and
how their absent conditions can be introduced through minor
code changes. We also develop multiple tools that automatically
identify possible placements for hypocrite commits. Further,
we identify multiple factors that can increase the stealthiness
of hypocrite commits to evade the review process, including
involving concurrency, error paths, indirect calls, aliases, and
modules developed by other programmers. Such cases pose
significant challenges to even automated analyses. As a proof-
of-concept, we safely demonstrated that introducing UAF bugs
in the Linux kernel by submitting hypocrite commits is practical.
Note that the experiment was performed in a safe way—we
ensure that our patches stay only in email exchanges and will
not be merged into the actual code, so it would not hurt any
real users (see §VI-A for details).

To understand and quantify the risks, we further conduct a
set of measurements. First, our tools identify a large number
of immature vulnerabilities and placement opportunities for
hypocrite commits. For example, we identified more than
6K immature UAF vulnerabilities in the Linux kernel that
can potentially be turned into real vulnerabilities. Then, we
qualitatively and quantitatively measure the stealthiness factors.
We statistically show that the factors indeed increase the
stealthiness. We also define and calculate the catch rate for each
factor. In particular, we find that involving concurrency has the
lowest catch rate and thus is the stealthiest—Linux maintainers
catch only about 19% introduced UAF vulnerabilities when
the patches involve concurrency.

The intentionally introduced vulnerabilities are critical
because (1) they are stealthy and can exist in the OSS for

a long time, (2) they can be readily exploited by the malicious
committer who knows how to trigger them, and (3) they impact
a large number of users and devices due to the OSS popularity.
The hypocrite commits may also be abused to get rewards
from bug bounty programs [1, 33].

Although OSS communities have known that bug-introducing
patches are not uncommon [28, 67], hypocrite commits incur
new and more critical risks. To mitigate the risks, we make
several suggestions. First, OSS projects would be suggested
to update the code of conduct by adding a code like “By
submitting the patch, I agree to not intend to introduce
bugs.” Second, we should call for more research efforts for
developing techniques and tools to test and verify patches.
Third, if possible, OSS communities could adopt means (e.g.,
OSS-contribution tracker [56]) to validate committers and
pay particular attention to patches sent from unrecognized
contributors. Forth, the communities could proactively accept
certain preventive patches for high-risk immature vulnerabilities.
Last but not least, OSS maintenance is understaffed. We should
very much appreciate and honor maintainer efforts, and increase
potential incentives if possible to encourage more people to
join the OSS communities. We also reported our findings to
the Linux community and summarized their feedback.

We make the following research contributions in this paper.

• A new vulnerability-introducing method. We discover that
a malicious committer can stealthily introduce vulnerabilities
in OSS via seemingly valid hypocrite commits. We identify
three fundamental causes of the problem. This is critical
due to the natures of OSS, and the method is unfortunately
practical. We hope that the finding could raise the awareness
of that attackers may construct stealthy new vulnerabilities
at their will, without having to find existing vulnerabilities.

• A study of malicious-committer capabilities. We system-
atically study the capabilities of a malicious committer. We
identify common conditions of vulnerabilities and show how
they can be introduced through minor patches, which may
be abused to turn immature vulnerabilities into real ones. We
also develop tools that automatically identify possibilities
of such minor patches.

• Identification of factors increasing stealthiness. Through
an empirical study of existing maintainer-evading patches,
we identify factors that increase the stealthiness of introduced
vulnerabilities. Such factors pose significant challenges to
the manual review and even automated analysis techniques.

• Proof-of-concept, measurements, and suggestions. We
safely confirm the practicality of the problem with a proof-
of-concept. We also measure the opportunities of a malicious
committer and the stealthiness of each factor. We finally
provide suggestions to mitigating the risks.

The rest of this paper is organized as follows. We present
the overview of the vulnerability-introducing method in §II, the
cause study in §III, the details of the method in §IV, the stealthy
methods in §V, the proof-of-concept in §VI, measurements in
§VII, and suggested mitigations in §VIII. We present related
work in §IX, conclusions in §X, and acknowledgment in §XI.
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II. APPROACH OVERVIEW

In this section, we provide the threat model of hypocrite
commits, and then introduce the vulnerability-introducing
method, new studies and analysis techniques.

A. Threat Model
The adversaries can be anyone from anywhere. Their goal is

to stealthily introduce vulnerabilities in a target OSS program
like the Linux kernel, so that they can exploit the vulnerabilities
to compromise the program or use them for other purposes
like getting rewards from bounty programs. In this model, we
have the following assumptions.
• The OSS. We assume the OSS management allows the

submission of patches from any contributors who may not
have submitted any patch before; however, the submitted
patches have to go through the patch-review process before
being merged. This assumption is valid for most popular
OSS we are aware of, such as Google Open Source and
the Linux projects. Also, the OSS is relatively complex,
which has multiple modules and is developed in unsafe
programming languages such as C/C++.

• Patch-review process of the OSS. Maintainers are benign
and would not intentionally accept bad commits. Further, the
OSS has limited computing and human resources. We assume
that the review process may employ both manual analysis
and automated tools. Our interactions with maintainers for
OSS like Linux, FreeBSD, Firefox, and OpenSSL indicate
that they may use some tools like Smatch [7], Coccinelle [10]
to check and test patches.

• Adversaries. We assume that adversaries are not the
developers or maintainers, so cannot directly insert functional
or large changes into the OSS. They can only submit small
changes (e.g., several lines of code) that fix minor issues,
such as improving the error handling and coding styles, to
introduce vulnerabilities. Adversaries have the source code
of the OSS and may use analysis tools to identify minor
issues, immature vulnerabilities, and placement opportunities
for small patches.

B. Definition of Hypocrite Commits and Minor Patches
We define a hypocrite commit as one that submits a small

patch to fix a minor issue, such as improving error handling or
fixing trivial bugs, so it seemingly improves the code. However,
it actually introduces the remaining conditions of an immature
vulnerability, resulting in a much more critical issue (e.g., UAF)
than the fixed one. The introduced vulnerability can be stealthy
and thus be persistently exploited by the malicious committer.
Compared with the larger commits which change hundreds of
lines-of-code (LOC) and alter the functionality of programs,
minor patches involve small changes to fix bugs or minor
issues. The statistical results of previous works [35, 64] show
that more than 70% of bug-fixing patches change only less
than 30 LOC, and as the number of LOC grows, the covered
proportion increases much slower. Therefore, in this project,
we regard a patch as a minor patch if it changes less than 30
LOC and does not introduce new features or functionalities.

C. The Vulnerability-Introducing Method

We discover that, under the threat model, an adversary
can stealthily introduce vulnerabilities in an OSS program
through hypocrite commits. The idea is based on the fact
that a vulnerability is formed by multiple conditions that
are located in different code pieces in the program, and the
program may have many immature vulnerabilities in which
some vulnerability conditions (not all) are already present. By
introducing the remaining conditions via hypocrite commits,
adversaries can successfully form the vulnerability. Because the
complexity of the OSS may cover up the introduced conditions
and existing conditions, the introduced vulnerability can be
stealthy (although the patch code is simple). For example,
Figure 1 shows a simple patch that balances the refcount
upon an error, which is a common error-handling strategy and
seemingly valid because it avoids a potential refcount leak.
The inserted put_device() gives up the last reference to the
device and will trigger the refcount mechanism to implicitly
free bus when the refcount reaches zero [11]. However, for this
particular case, a dedicated function mdiobus_free() is also
called when mdiobus_register() fails, which uses bus and
frees it again, leading to a UAF. This introduced vulnerability
is stealthy because the patch looks reasonable, and involves
hardly tested error paths and an implicit free. As a result, the
vulnerability existed in the Linux kernel for five years.

1 /*Introducing: CVE-2019-12819*/
2 int __mdiobus_register(...) {
3 ...
4 err = device_register(&bus->dev);
5 if (err) {
6 pr_err("mii_bus %s failed to register\n",
7 bus->id);
8 + put_device(&bus->dev);
9 return -EINVAL;

10 }
11 }

Fig. 1: A stealthy use-after-free vulnerability introduced by a patch
that seems to fix a refcount bug. Its latent period is five years.

Figure 2 shows an overview of the vulnerability-introducing
method. Given the source code of an OSS program, the method
first identifies immature vulnerabilities and their corresponding
absent conditions. In §IV-A, we will provide a set of conditions
for common vulnerabilities such as UAF and uninitialized uses,
and show how to identify them. The method then tries to
construct a set of minor patches that can introduce the absent
conditions. In §IV-B, we will show different kinds of such
minor patches. After that, the method analyzes the program
to identify stealthy opportunities for placing the hypocrite
commits. By empirically studying maintainer-evading patches,
we identify multiple factors that increase the stealthiness of
hypocrite commits, as will be presented in §V. We also develop
analysis tools to identify the stealthy placement opportunities
from the code. At last, the adversaries decide the hypocrite
commits and submit them to the OSS community with a
random account. In addition to the method, we further safely
provide a proof-of-concept in the Linux kernel, and conduct a
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Fig. 2: An overview of the vulnerability-introducing method.

set of studies and measurements to understand the criticality,
commonness, and practicality of hypocrite commits.

III. ISSUES WITH THE OSS PATCHING PROCESS

We have extensive interaction experience with OSS
communities—reporting bugs, submitting patches, and analyz-
ing patches. We found that vulnerability-introducing patches
are not uncommon; even experienced maintainers may (un-
intentionally) submit vulnerability-introducing patches. We
believe that when the committers are malicious, the issue
would aggravate. To understand the causes of the problem, we
first conduct a study on vulnerability-introducing patches that
evaded maintainers. Note that in these cases, the committers
did not intentionally introduce the vulnerabilities.
A dataset of vulnerability-introducing patches. We choose
the Linux kernel as an example of the OSS program because
it is foundational and widely used—billions of Android and
Internet of things (IoT) devices are also based on the Linux
kernel. We use script code to analyze all the CVE-assigned
vulnerabilities in the Linux kernel whose introducing and fixing
commits are available. As defined in §II-B, we regard the
patches with less than 30 LOC as minor patches. We found that
9.8% of vulnerabilities were caused by minor patches, which
are used to fix non-functional issues of the program, such as
memory-leak fixes. In total, we collected 138 CVE-assigned
vulnerabilities of different types, which are introduced by minor
patches. We also collected their corresponding introducing and
fixing patches.
Immature vulnerabilities. In general, the forming of vulnera-
bilities requires multiple conditions. When not all vulnerability
conditions are present, the vulnerability is not formed yet. We
call such a potential vulnerability as an immature vulnerability.
Our study (see §VII-A) shows that OSS tends to have a
large number of immature vulnerabilities, which poses hidden
insecurity to OSS. First, immature vulnerabilities are not real
vulnerabilities, so bug detectors (both static and dynamic ones)

may not report them at all. Second, as will be shown in
§III-A, OSS communities typically refuse to accept preventive
patches for immature vulnerabilities. The Linux community
explicitly state that they will not accept preventive patches [26].
Third, when the remaining conditions are introduced, due to
the complexity of code (see §III-B) and other reasons, the
newly introduced vulnerabilities often slip through the patch
review, such as the example in Figure 1. In the following, we
discuss three factors that allow a malicious committer to turn
an immature vulnerability into a real one.

A. OSS Maintenance Philosophy—No Preventive Patches
Maintenance strategies vary for different open-source

projects. These strategies are important as they decide how
patches would be accepted or rejected.
Rejecting preventive patches. Widely used OSS projects,
especially large ones that are implemented in unsafe pro-
gramming languages, e.g., the Linux kernel and Firefox, are
receiving overwhelming bug reports and patches. For example,
on average the Linux community receive more than 400 email
bug reports [27] per day. However, OSS projects have limited
maintainers and resources to review the patches. On the other
hand, such projects put especial care on performance, and
thus try to make their code as concise as possible. As a
result, preventive patches that stop immature vulnerabilities
(i.e., potential future vulnerabilities) are not welcome and would
likely be rejected.
Rejecting patches for bugs without PoC. Some OSS projects
may even refuse to accept patches without a PoC (i.e., the
exploitability is not confirmed with a test case), although the
bug is manually or statically confirmed. For example, although
the Android Open Source Project does not explicitly state
so, it generally requires a PoC. We reported multiple patches
without a PoC for real bugs, and none of them was accepted.
We believe such a case is common for OSS projects running
bug bounty programs, i.e., the rewards typically require a PoC.
The Linux patch guidance. The Linux documentation
explicitly lists their rules for accepting patches into stable
versions. We summarize the important ones in Table I. In
particular, Linux will not accept preventive patches, large
patches with more than 100 lines, trivial patches fixing issues
like white-space, and patches for theoretical race conditions.

Rules for patches accepted into “-stable” tree

Must be obviously correct and tested
Cannot be bigger than 100 lines
Must fix only one thing
Must fix a real bug
No “theoretical race condition” issues
Cannot contain “trivial” fixes (e.g., white-space cleanup)

TABLE I: Common rules for patches to be accepted into the stable
tree, provided by the Linux kernel documentation [26].

B. Complexity and Customization of Code
By analyzing the vulnerability-introducing patches, we

summarize general reasons for the review process failing to
catch the introduced vulnerabilities.
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Complexity and carelessness. The OSS code can be highly
complicated, so maintainers may fail to understand all of
the semantics, and most of these vulnerabilities are caused
by complexity such as pointer alias, indirect calls, callback
functions, etc. Also, according to our statistical result, 8% of
vulnerabilities in the Linux kernel are caused by concurrent
issues, which are hard to analyze. On the other hand, we believe
that some vulnerabilities (9.4%) are caused by carelessness
because they are actually quite obvious to catch.
Customization and diversity. Both the committers and
maintainers may not clearly understand or be familiar with
the usage of customized or special functions. For example,
the most well known and broadly used release function in
the Linux kernel is kfree(). However, other functions such
as customized release functions or the refcount mechanism
(an object is automatically released when the refcount reaches
zero) can also release objects implicitly, and committers and
even maintainers may not know that.

C. Openness of OSS

By its nature, an OSS project typically allows anyone to
contribute, which also raises security concerns. Patches from
third parties may accidentally or even maliciously introduce
bugs and vulnerabilities. Some previous works [4, 6] also show
that third-party contributors tend to make more bugs because
they have less experience with the OSS program. Although OSS
projects might have different policies regarding bug patches
and reports, we found that most OSS projects, especially widely
used ones, accept bug patches and reports from third parties.
Accepting bug patches. Large OSS projects we are aware of
accept bug patches from third parties but will enforce the patch
review. Prominent examples include the Linux kernel, Android,
FreeBSD, Firefox, Chromium, OpenSSL, etc. Communities
of such OSS projects typically receive many bug reports; to
efficiently fix the reported bugs, they encourage reporters to
also submit patches.
Accepting bug reports only. Smaller OSS projects may only
accept bug reports but not patches from third parties. Examples
include libjpeg and readelf. Maintainers of such projects
would typically receive a small number of bug reports, and
they can patch the bugs by themselves.

IV. INTRODUCING VULNERABILITIES VIA HYPOCRITE
COMMITS

In this section, we present how hypocrite commits can
introduce the remaining conditions to turn an immature
vulnerability to a real one. We study the same vulnerability
set described in §III to understand vulnerability conditions,
condition-introducing commits and their placements.
Characterizing contributors of minor patches. Before
we present vulnerability conditions, we first characterize the
contributors of general patches and vulnerability-introducing
patches, which we believe is of interest to readers. We analyzed
the email domains of the contributors for recent 500 minor
patches in the Linux kernel. As shown in Table II, 47.8% of

minor patches are from maintainers, 38.0% from for-profit
organizations such as CodeAurora, 1% from researchers in
academia, 3.8% from non-profit organizations, and 9.4% from
individuals. In comparison, we also checked the contributors
for minor patches introducing CVE-assigned vulnerabilities.
Different from the general minor patches, only 37.3% of
vulnerability-introducing patches are from kernel maintainers,
and the remaining cases are all from third-party contributors.
This result indicates that third-party contributors tend to
introduce more vulnerabilities.

Type of contributors General patches Vulnerable patches

Academia 1.0% 1.5%
Company 38.0% 47.0%
Maintainer 47.8% 37.3%
Personal 9.4% 11.1%
Organization 3.8% 3.0%

TABLE II: A study of contributors.

A. Vulnerability Conditions

We manually study the collected CVE-assigned vulner-
abilities introduced by minor patches to identify common
vulnerability conditions. By differentially checking the code
before and after the minor patch and referencing to the commit
messages, we are able to understand why the vulnerability was
formed, i.e., which vulnerability conditions were introduced.
For example, a common case is that a minor patch introduces
a use of a freed pointer, from which we can conclude that a
use is a condition of UAF.

Vuln. conditions (%) Common vulnerability types (state)

With a state 36.4% NULL dereference (nullified)
Use-after-free (freed)

Without a state 36.4%

Uninitialized use (initialized)
NULL dereference (initialized)
Out-of-bound access (bounded)
Access-control error (privileged)
Integer overflow (bounded)

A use 21.6%

Use-after-free
Uninitialized use
Access-control error
NULL dereference
Out-of-bound access

A temporal order 5.7% Use-after-free
NULL dereference

TABLE III: A study of conditions for different types of vulnerabilities
introduced by minor patches.

Table III summarizes the results of our study. We find that
vulnerability conditions can be generally classified into four
categories. The first condition category is an object (variable
or code) with a specific state. Common cases include the
nullified state for NULL-pointer dereferences and the freed
state for UAF vulnerabilities. The second condition category
is an object without a specific state. In particular, common
cases include uninitialized use, NULL-pointer dereference, out-
of-bound access, access-control error, and integer overflow.
Their absent states are initialized, initialized, bounded,
privileged, and bounded, respectively. The third condition
category is a use of an object, such as the use of an uninitialized
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variable (i.e., uninitialized use). The last condition category is
a specific temporal order, which describes the execution order
of specific operations. For example, UAF occurs only when
the use of a pointer is after the free. The commonness of each
category is also listed in Table III.

B. Introducing Vulnerability Conditions

To introduce vulnerabilities, the idea is to introduce the
absent conditions of immature vulnerabilities through hyp-
ocrite commits. To this end, adversaries need to construct
minor patches that fix some minor (less-critical) issues while
introducing vulnerability conditions. In this section, we show
how each category of the vulnerability conditions listed in
Table III can be introduced.
Introducing a specific state for an object. A common
condition of a vulnerability is for an object to have a specific
state, e.g., the freed state for UAF. Such states can be
introduced by inserting specific function calls or operations.
For the common cases listed in Table III, an adversary can
call resource-release functions against the objects or nullify
the pointers. In complex OSS programs, many functions can
explicitly or implicitly introduce a freed or nullified state for
an object. For example, using the patterns of release functions
defined in [8], we find 457 memory-release functions in the
Linux kernel, and more than half of them do not even have
keywords like dealloc or release in the names, thus can
stealthily introduce the freed state. Also, refcount put functions
can implicitly cause an object to be freed when the refcount
reaches zero, as shown in Figure 1. Introducing the nullified
state is straightforward. Figure 3 (CVE-2019-15922) shows
an example. The patch is seemingly valid because it nullifies
pf->disk->queue after the pointer is released. However, some
functions such as pf_detect() and pf_exit() are called after
this nullification, and they would further dereference this pointer
without checking its state, leading to NULL-pointer dereference
(i.e., crashing).

1 static int pf_detect(void) {
2 ...
3 for (pf = units, unit = 0;
4 unit < PF_UNITS; pf++, unit++) {
5 + blk_cleanup_queue(pf->disk->queue);
6 + pf->disk->queue = NULL;
7 + blk_mq_free_tag_set(&pf->tag_set);
8 put_disk(pf->disk);
9 }

10 }

Fig. 3: A minor patch introducing the nullified state to form a
NULL-pointer dereference vulnerability (CVE-2019-15922).

Removing a state for a variable. Another common vulner-
ability condition is that an object should not have a specific
state, e.g., an uninitialized use requires that an object does
not have the initialized state when being used. We found
three methods for introducing such a condition. (1) Removing
an operation against an object. An adversary can remove the
corresponding operations (e.g., initialization and bound check)
to directly remove the states. (2) Invalidating an operation
related to a state. For example, inserting the second fetch

following a check would invalidate the check and cause double-
fetch [65]. (3) Creating a new variable without the required
state. An adversary can introduce new variables without the
states. Note that introducing a new variable may not necessarily
introduce new functionalities if it does not introduce new
semantics against the variable, so this is still in the threat model.
Figure 4 (CVE-2013-2148) is an example of a minor patch
that introduces a new variable (metadata.reserved) without
an initialized state. Because this uninitialized variable was sent
to the userspace through copy_to_user(), the patch caused
information leak.

1 struct fanotify_event_metadata {
2 ...
3 + __u8 reserved;
4 }
5 static ssize_t copy_event_to_user(...) {
6 ...
7 if (copy_to_user(buf, &metadata, FAN_EVENT_METADATA_LEN))
8 goto out_close_fd;
9 }

Fig. 4: A minor patch introducing an uninitialized use in the Linux
kernel by adding a new variable without an initialized state (CVE-
2013-2148).

Introducing a use of an object. Introducing a use condition
is straightforward and has many choices. It can be realized
through a function call or an operation. Common cases include
dereferencing a pointer, using a variable in memory access
(e.g., indexing), using a variable in checks (if statements), used
as a parameter of a function call, etc. In particular, we find
that the prevalent error-handling paths offer many opportunities
for introducing uses because it is typically plausible to call an
error-message function that could stealthily use freed objects,
such as the hypocrite commit shown in Figure 11.
Introducing a specific temporal order. Temporal vulner-
abilities such as use-after-free, use-after-nullification, and
uninitialized uses require operations to happen in a specific
temporal order. We found two methods for introducing the
condition. (1) Leveraging the non-determinism of concurrency.
The execution order of concurrent functions is non-deterministic
and decided by the scheduler, interrupts, etc. For example,
if a free of a pointer and a dereference of a pointer are in
concurrent code, the order—use after the free—will have a
possibility to occur. (2) Removing synchronization operations.
By removing the synchronization, such as lock/unlock and
refcount inc/dec, the execution order of the code also becomes
non-deterministic. Figure 5 shows a patch that removed the
“superfluous” get/put_device() calls which counts references
as well as serves as synchronization. However, these get/put
functions are useful in maintaining the lifecycle of device
variables; removing them will cause the free of ir to happen
at an early time before its uses (lines 4-5), which causes UAF.

C. Placements of Minor Changes

We also find that the acceptance rate of vulnerability-
introducing patches is related to where the code changes are
placed. Based on our study of existing vulnerability-introducing
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1 static void lirc_release(struct device *ld) {
2 struct irctl *ir = container_of(ld, struct irctl, dev);
3 - put_device(ir->dev.parent);
4 if (ir->buf_internal) {
5 lirc_buffer_free(ir->buf);
6 }
7 }
8 int lirc_register_driver(struct lirc_driver *d) {
9 - get_device(ir->dev.parent);

10 }

Fig. 5: Removing the get/put functions causes the free of ir to occur
before its uses in lines 4-5.

commits, we summarize three factors increasing the acceptance
rate. (1) Being minor. The changes should be minor and focus
on less-critical issues. Large or critical changes would delay
the patch review or alert communities to pay extra attention. In
particular, the Linux communities explicitly require the changes
to have less than 100 lines [26]. (2) Fixing real issues. When
the patches indeed fix real issues, although they are minor,
maintainers are more willing to accept the patches. The fixes
can be improving readability, fixing error handling and memory
leak, etc. (3) Being stealthy. The introduced conditions should
form the vulnerabilities in a stealthy way. For example, error-
handling paths are often complicated and less tested, making the
review process less likely to capture the introduced vulnerable
conditions. In the next section, we will present in detail factors
that improve the stealthiness of hypocrite commits.

In particular, error paths often offer ideal placement oppor-
tunities for minor changes. First, it is plausible to print out
an error message using a format function in which we can
introduce a use of freed objects, and to clean up resources (e.g.,
freeing objects and decrementing refcounts), which introduces
specific states. Second, error paths are hard to test and draw
less attention from the review process. In §VI, we will further
show how we develop LLVM pass to find such placement
opportunities in the Linux kernel.

V. INCREASING THE STEALTHINESS

Hypocrite commits fix minor issues but at the same time in-
troduce more critical vulnerabilities. To induce the maintainers
to accept the hypocrite commits, the introduced vulnerabilities
should be stealthy. In this section, we present multiple factors
that increase the stealthiness of hypocrite commits.

To discover the stealthy factors, we conduct a study on
the previously introduced vulnerabilities, which evaded the
patch-review process. In this study, we again use the same
dataset as we used in §III, which includes 138 CVE-assigned
vulnerabilities in the Linux kernel. In particular, given a CVE-
assigned vulnerability, we collect the patch introducing it and
the patch fixing it. By understanding the patches, we identify
the introduced conditions, the original conditions, as well as the
corresponding code contexts and features. We then empirically
summarize the reasons why maintainers failed to capture the
introduced vulnerabilities, which include concurrency, error
paths, implicit operations, pointer alias, indirect calls, and other
issues that involve complex code semantics. Note that these
factors do not guarantee the stealthiness but increase it. In

§VII, we will evaluate their stealthiness. In the next sections,
we will present the details of each factor.
Concurrency. Concurrency is inherently hard to reason about.
As shown in many research works [2, 13, 16, 17], concurrency
issues are prevalent but hard to detect. On the one hand, it
is hard to know which functions or code can be executed
concurrently due to the non-determinisms from the scheduling,
interrupts, etc. On the other hand, most concurrency issues
like data races are considered harmless [16, 17] or even
intended [12], and fixing the concurrency issues itself is error-
prone and requires significant maintainer efforts [67]. As a
result, many bugs stem from concurrency issues, and developers
are willing to live with them and tend to not fix them unless
they are proven to be harmful.

1 static int iowarrior_release(...) {
2 mutex_lock(&dev->mutex);
3 if (!dev->present) {
4 mutex_unlock(&dev->mutex);
5 iowarrior_delete(dev);
6 }
7 }
8 static void iowarrior_disconnect(...) {
9 + dev->present = 0;

10 mutex_lock(&dev->mutex);
11 - dev->present = 0;
12 if (dev->opened)
13 ...
14 mutex_unlock(&dev->mutex);
15 }

Fig. 6: A patch introducing concurrent UAF; CVE-2019-19528
introduced by Linux commit c468a8aa790e.

In the scenario of patches related to concurrency, maintainers
often fail to precisely understand how threads can actually
interleave, thus could not catch introduced vulnerabilities when
they involve concurrency. Therefore, involving concurrency in-
creases the stealthiness of hypocrite commits. Figure 6 shows a
UAF caused by a patch that introduced concurrency issues. The
functions iowarrior_release() and iowarrior_disconnet()
can run concurrently. The temporal order was originally pro-
tected by the Mutex lock. However, the patch incorrectly moved
the operation dev->present = 0 out of the protected critical
section. Consequently, iowarrior_releae() may free dev
through iowarrior_delete(dev), and iowarrior_disconnet()
still uses it, leading to UAF.
Error paths. We also found that introducing vulnerability
conditions in error paths can be a reliable way for increasing the
stealthiness. First, error paths are hard to test (thus less tested)
and can be complex. Testing the error paths in driver code is
particularly hard because it requires the hardware devices and
the errors to trigger the execution [24]. Second, people tend to
pay less attention to error paths, as they will not be triggered
at all during the normal execution. More importantly, calling
cleanup functions (e.g., free) or error-printing functions is a
common error-handling strategy [37, 49]; such functions often
free and use objects, so introducing vulnerability conditions in
error paths may not arise suspicions. For example, in our case
studies (§VI), we place three minor patches in error paths to
(safely) demonstrate that introducing UAF vulnerabilities can
be practical and stealthily.
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Implicit operations. Functions may have implicit effects
that introduce vulnerability conditions, and the effects are
not explicitly reflected in the function names. Common
cases include functions triggering the release of objects and
nullification of pointers. We use object release as an example
to explain implicit operations. There are two common implicit
object-release cases. First, some functions, whose names do not
indicate a release, may actually release objects. For example,
jbd2_journal_stop() (CVE-2015-8961) implicitly releases a
passed-in parameter, which is still used afterwards, leading to a
UAF. We also found some functions that take a pointer (which
is a field of a struct) as a parameter, and use container_of()
to get the pointer of the parent struct and aggressively release
it. Such release operations are out of the user expectation, and
thus people may not be aware of them. Second, the refcount
mechanism may implicitly trigger the release of an object,
which we believe is a very interesting case and has actually
caused many UAF vulnerabilities. Once the refcount field
reaches zero, the object containing the refcount field will be
automatically released, and people are often unaware of it. As
shown in Figure 1, put_device() causes the refcount of bus
to reach zero early, which triggers the implicit release of bus.
However, bus is still used after the function returns, leading
to UAF.

Pointer aliases. The pointer aliases are prevalent and have
posed significant challenges to static analysis [62] and manual
review. Alias analysis remains an open problem, and analysis
techniques used in practice are often imprecise and intra-
procedural. Therefore, complex pointer aliases, especially inter-
procedural ones, can also impede the review process from
revealing introduced vulnerabilities. For example, in our case
study (Figure 9), we leverage the stealthiness inter-procedural
aliases (pointerA is an alias of pointerC from the caller) to
introduce a UAF.

Indirect calls. Large programs commonly use indirect
calls to improve the scalability and flexibility. Statically
identifying the target functions of an indirect call is a hard
problem [36, 38, 48]. Existing techniques either completely
stop tracking indirect calls [65] or use imprecise matching [48].
In particular, most of the tools used by Linux communities
do not support indirect calls. Therefore, when vulnerability
conditions span over indirect calls, it is hard to connect them
together and to reveal the introduced vulnerabilities. Figure 7
shows an example of introduced double-free vulnerability
involving an indirect call. sgmii->close() is an indirect call to
emac_sgmii_close() which internally frees adpt->phy–>irq.
However, adpt->phy–>irq can be already freed before the
call of emac_shutdown(), leading to double-free. In this case,
during the patch-review process, it is hard to know which exact
close function is called and if it frees adpt->phy–>irq.

Other possible issues. Beyond the aforementioned stealthy
ways, in general, other factors that involve complicated code
semantics and contexts can also potentially evade the patch-
review process, such as involving modules developed by
different programmers, using specialized functions or functions

1 static void emac_shutdown(struct platform_device *pdev)
2 {
3 struct net_device *netdev = dev_get_drvdata(&pdev->dev);
4 struct emac_adapter *adpt = netdev_priv(netdev);
5 ⋆ if (netdev->flags & IFF_UP)
6 + sgmii->close(adpt);
7 }

Fig. 7: Introduced double-free involving indirect-call (Linux commit
03eb3eb4d4d5).

that do not follow coding conventions.

VI. PROOF-OF-CONCEPT: UAF IN LINUX

As a proof-of-concept, in this section, we use UAF as an
example to show how adversaries can introduce vulnerabilities
into the Linux kernel. The Linux kernel is one of the most
widely used OSS; it is used by a large number of devices
including smartphones and IoT devices. On the other hand,
UAF is one of the most severe and common memory-corruption
vulnerabilities.
Experiment overview. In this experiment, we leverage
program-analysis techniques to prepare three minor hypocrite
commits that introduce UAF bugs in the Linux kernel. The
three cases represent three different kinds of hypocrite commits:
(1) a coding-improvement change that simply prints an error
message, (2) a patch for fixing a memory-leak bug, and (3) a
patch for fixing a refcount bug. We submit the three patches
using a random Gmail account to the Linux community and
seek their feedback—whether the patches look good to them.
The experiment is to demonstrate the practicality of hypocrite
commits, and it will not introduce or intend to introduce actual
UAF or any other bug in the Linux kernel.

A. Ethical Considerations

Ensuring the safety of the experiment. In the experiment,
we aim to demonstrate the practicality of stealthily introducing
vulnerabilities through hypocrite commits. Our goal is not to
introduce vulnerabilities to harm OSS. Therefore, we safely
conduct the experiment to make sure that the introduced UAF
bugs will not be merged into the actual Linux code. In addition
to the minor patches that introduce UAF conditions, we also
prepare the correct patches for fixing the minor issues. We
send the minor patches to the Linux community through email
to seek their feedback. Fortunately, there is a time window
between the confirmation of a patch and the merging of the
patch. Once a maintainer confirmed our patches, e.g., an email
reply indicating “looks good”, we immediately notify the
maintainers of the introduced UAF and request them to not
go ahead to apply the patch. At the same time, we point out
the correct fixing of the bug and provide our correct patch.
In all the three cases, maintainers explicitly acknowledged
and confirmed to not move forward with the incorrect patches.
All the UAF-introducing patches stayed only in the email
exchanges, without even becoming a Git commit in Linux
branches. Therefore, we ensured that none of our introduced
UAF bugs was ever merged into any branch of the Linux kernel,
and none of the Linux users would be affected.
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Regarding potential human research concerns. This ex-
periment studies issues with the patching process instead of
individual behaviors, and we do not collect any personal
information. We send the emails to the Linux community
and seek their feedback. The experiment is not to blame
any maintainers but to reveal issues in the process. The IRB
of University of Minnesota reviewed the procedures of the
experiment and determined that this is not human research. We
obtained a formal IRB-exempt letter.

The experiment will not collect any personal data, individual
behaviors, or personal opinions. It is limited to studying the
patching process OSS communities follow, instead of individ-
uals. All of these emails are sent to the communities instead
of individuals. We also prevent the linkage to maintainers.
In particular, to protect the maintainers from being searched,
we use a random email account, and three cases presented in
§VI-C are redacted.

Bug-introducing patch is a known problem in the Linux
community [28, 67]. We also informed the community that
malicious committers could intentionally introduce bugs, and
they acknowledged that they knew patches could introduce
further bugs, and they will do their best to review them. Before
the paper submission, we also reported our findings to the
Linux community and obtained their feedback (see §VIII-D).
Honoring maintainer efforts. The OSS communities are
understaffed, and maintainers are mainly volunteers. We respect
OSS volunteers and honor their efforts. Unfortunately, this
experiment will take certain time of maintainers in reviewing
the patches. To minimize the efforts, (1) we make the minor
patches as simple as possible (all of the three patches are less
than 5 lines of code changes); (2) we find three real minor
issues (i.e., missing an error message, a memory leak, and a
refcount bug), and our patches will ultimately contribute to
fixing them.

B. LLVM-Based Tools for Hypocrite Commits

To facilitate the construction of hypocrite commits, we
develop multiple LLVM-based tools. First, we write an LLVM
pass to identify dereferenced pointers that we can potentially
introduce free operations before the dereferences. To reduce
false positives, the LLVM pass applies two selective rules to
report the candidate cases: (1) the memory object may have a
potential memory leak or refcount leak, and (2) there are error
paths between the allocation and the dereference. In the current
implementation, we only consider commonly used functions
for allocation, deallocation, and refcount operations. To identify
if a path is an error path, we check if it returns a standard
error code or calls a standard error handling function (e.g.,
pr_err()) [37]. Our data-flow analysis is flow-, context-, and
field-sensitive. As a result, our LLVM pass reports in total 921
candidate cases.

Second, we write another LLVM pass to identify freed (but
non-nullified) pointers that we may potentially introduce further
uses. To reduce false positives, the pass also applies multiple
selective rules: (1) the pointer is inter-procedural (passed in
from parameters) and involves aliases, and (2) there are error

paths after the free but within the liveness scope of the pointer.
These cases may allow to stealthily insert uses of the freed
pointers in the error paths. Finally, the LLVM pass reports
4,657 cases.

C. The Selected Immature UAF Vulnerabilities

We then try to select both types of immature UAF vulnerabil-
ities from the results reported by our LLVM passes described
in §VI-B. To also demonstrate how we use three different
stealthy methods to introduce UAF vulnerability conditions (see
§VI-D), we choose to select three immature UAF vulnerabilities.
In particular, we manually looked into 100 reported cases
for each type and selected three cases that we believe are
relatively complicated and would allow for stealthy hypocrite
commits. All these experiments including the manual analysis
were finished within one week by one researcher. Note that
to prevent the cases from being re-identified in the code, we
simplify the code, and redact names of functions and variables.
UAF case 1 (error message). In this case (Figure 8), devA is
a pointer that refers to a shared memory object among multiple
concurrent functions, and it is released in line 5. However, it
may be further dereferenced because it involves concurrency,
and it is not nullified after being released. Therefore, we identify
it as an ideal immature UAF and will try to introduce a use
in one error path of its concurrent functions—using devA in
error-message printing.

1 B_device *devB = get_data_from_devA(devA);
2 ...
3 // devA will be freed below
4 ⋆ kfree(devB);
5 ⋆ release_device(devA);

Fig. 8: Immature UAF case 1. "*": immature UAF point. The code
is simplified and redacted.

UAF case 2 (memory leak). In this case (Figure 9),
pointerA is a pointer allocated in line 1. It is reported by
Syzkaller+KMemleak as a leaked pointer in the error path—
line 6 (note that line 5 is inserted by our hypocrite commit).
However, pointerA is an alias of pointer pointerC, which
comes from the caller and will be further used, and thus if
we freed pointerA improperly in an earlier location, a UAF
would occur. Therefore, we identify it as an ideal immature
UAF and will try to introduce a release early in the error path.

1 pointerA = pointerC = malloc(...);
2 ...
3 pointerB = malloc(...);
4 ⋆ if (!pointerB) {
5 + kfree(pointerA);
6 ⋆ return -ENOMEM;
7 ⋆ }

Fig. 9: Immature UAF case 2, as well as our hypocrite commit,
which stealthily introduces a UAF by fixing a memory leak in an
error path. "*": immature UAF case, "+": the code added by our
hypocrite commit, which introduces the vulnerability condition. The
code is simplified and redacted.

UAF case 3 (refcount bug). This case is a refcount-leak bug
shown in Figure 10. devA is an object managed by the refcount
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mechanism. The code in line 1 increments its refcount, so the
error path (lines 5-6) should decrement the refcount. Since the
original code failed to do so (note that line 4 is inserted by
our hypocrite commit), it is a refcount bug. On the other hand,
line 5 uses devA, and the caller may also use it. For this case,
we will trigger an implicit free of devA through the refcount
mechanism to cause a UAF—decrementing the refcount on the
error path before a use of the object.

1 get_device(devA);
2 ...
3 if (ret < 0) {
4 + put_device(devA);
5 ⋆ dev_err(&devA->dev, "error message.");
6 ⋆ ...
7 }

Fig. 10: Immature UAF case 3, as well as our hypocrite commit,
which improperly fixes a refcount bug by inserting line 4. It introduces
a UAF through the implicit free operation of the refcount mechanism.
"*": immature UAF case, "+": added code by our hypocrite commit.
The code is simplified and redacted.

D. Stealthy Conditions and Our Hypocrite Commits

We now present how to use stealthy methods to introduce
the remaining conditions for the selected immature UAF
vulnerabilities described in §VI-C. The general idea is to make
sure that the introduced conditions and the existing conditions
involve some hard-to-analyze factors such as concurrency.
UAF case 1. To introduce a UAF in the first case, we can
introduce a use (dereference) of the freed pointer devA. As
mentioned in §VI-C, devA involves concurrency as well as error
paths in its concurrent functions. Therefore, we will adopt two
stealthy methods: concurrency and error paths. Specifically,
we first find its concurrent functions that have error paths, and
then try to print an error message, which uses the freed devA.

1 err = dev_request(devA);
2 if (err) {
3 disable_device(devA);
4 + dev_err(&devA->dev, "Fail to request devA!\n");
5 return err;
6 }

Fig. 11: The first hypocrite commit which just adds an error message
that uses a potentially freed object. The code is simplified and redacted.

Figure 11 shows the hypocrite commit. This code piece can
be executed concurrently with the code shown in Figure 8
because they are handler functions of asynchronous events.
Such concurrency may be hard to notice during review process.
If devA is already freed in Figure 8, the error-printing code
has a UAF. Also, because the added code is in the error path,
it is hard to be covered by dynamic testing.
UAF case 2. This case is a memory-leak bug, and thus the
hypocrite commit pretends to improve the code by fixing the
memory leak. In this case, we call kfree(pointerA) when the
allocation of pointerB failed. This is seemingly logical—we
clean up the resources upon an error. However, due to pointerA
points to shared memory, this release would be effective to
the caller function, and thus a UAF will occur when the caller

tries to use or release the object pointed by pointerA. Due
to this bug is in the error path, the general dynamic analysis
is hard to trigger it; also, this leak is reported by Syzkaller,
maintainers would likely trust this report. Moreover, using
the alias, pointerC, of the released pointer inter-procedurally
further makes it harder to be discovered. The concrete code is
listed in Figure 9. A correct fix should instead add the release
in a later stage in the caller.
UAF case 3. The third immature UAF vulnerability in-
volves a refcount-managed object, devA. The use is already
present, so we can stealthily introduce a free before the use.
Specifically, we adopt the implicit operation and concurrency
stealthy methods to introduce a free. Figure 10 shows the
hypocrite commit which calls put_device() to fix the potential
refcount leak bug in the error path. After the refcount reaches
zero, object devA will be automatically released through a
callback function inside kobject_put(), which is called by
put_device(). However, devA is further used in line 5 and
the caller, which leads to a UAF. A correct fix should place
put_device() after the dereference is done. In fact, according
to our study, previous patches have already caused multiple
such cases, even when the committers are not malicious.
For example, commit 52e8c38001d8, which intended to fix
a memory leak, also introduced a UAF because of the implicit
free of the refcount mechanism.

E. Increasing the Impacts of Introduced Vulnerabilities

This section will discuss several factors that will influence
the potential impacts of the introduced vulnerabilities in the
Linux kernel. First, stable release versions are widely used
by end users. The Linux kernel includes the release candidate
(rc) versions, release versions, and the stable-release versions.
The rc versions would not affect most users, which are mainly
aimed for kernel developers. Most of the software and hardware
is based on the stable-release versions. If adversaries target
these versions, most of the related software and hardware would
be influenced directly. Second, to have a higher exploitability,
adversaries may use fuzzers or symbolic execution to confirm
the triggerability. The three introduced UAF vulnerabilities in
our experiment may not be exploitable. The purpose of the
experiment is to demonstrate the practicality instead of the
exploitability, so exploitation of them is out of the scope.

VII. MEASUREMENTS AND QUANTIFICATION

In this section we again use UAF and the Linux kernel as
the experimental targets. We will first measure the immature
UAF vulnerabilities and the potential placement opportunities
for hypocrite commits. Further, we will measure and quantify
the stealthiness of each method described in §V.

A. Immature Vulnerabilities and Condition-Introducing Oppor-
tunities

Given an OSS program, the first step is to identify immature
UAF vulnerabilities by analyzing the present and absent
UAF conditions. In §VI, we developed LLVM passes to find
immature UAF using selective rules. In this section, we will
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provide a more systematic measurement. A UAF has three
conditions, a free of a pointer (without nullification), a use of
the pointer, and a specific temporal order—the use is after the
free. We first statistically count immature UAF vulnerabilities,
in which one condition is absent. Then, corresponding to the
different types of absent vulnerable conditions, we measure
the opportunities for introducing the conditions.

Dereferenced pointers without release operations. In this
case, a pointer is dereferenced, but the release operations before
the dereferences are absent. Pointer uses are widespread in
programs written in low-level languages, and thus nearly every
function in the Linux kernel would dereference local or global
pointers. Therefore, this type of immature vulnerabilities is
highly prevalent. Adversaries can introduce the release through
memory-release functions or refcount-decrementing operations.

In fact, refcount leak is a fairly common problem. By
searching the Git history in the past two years (from August
2018 to August 2020), we in total found 353 patches for fixing
refcount-leak bugs. As such, we believe that adversaries have
many opportunities to invoke refcount-decrementing functions
to trigger implicit releases. Similarly, we also measure the
opportunities for introducing memory release. The Git history
in the past two years shows 1,228 memory-leak bugs were fixed,
indicating that memory leak is also very common. Adversaries
can readily employ existing tools like Syzkaller [57] and
Hector [53] to find memory leaks. For example, we ran
Syzkaller on the latest version of the Linux kernel with a
regular desktop for only one week, and it successfully found
12 memory leaks. These results confirm that it is not hard for
adversaries to find opportunities to introduce object releases.

Freed pointers without nullification and redefinition. In
this case, the present vulnerable condition is a released pointer
that is not nullified or redefined (i.e., assigned with another
valid pointer), and the absent conditions are uses following
the release. This case is prevalent in the Linux kernel. By
developing an LLVM pass, we collect freed pointers that are
not nullified or redefined. In this analysis, we only consider
kfree() as the release function. The analysis reports more
than 30K cases. Therefore, adversaries have a large number of
potential opportunities to introduce a use to form a UAF. As
shown in §VI, if we refine the results by only counting cases
that can be further used in error paths, we still have 4,657
candidate cases.

The use-after-free temporal order. In this situation, a pointer
is both used and freed. However, their order is uncertain or
can be changed. To measure the commonness of such cases,
we attempt to count the objects that can be used and freed in
concurrent functions. Identifying concurrent functions itself is a
challenging problem. Fortunately, we contacted the authors of a
recent work for concurrent UAF detection [2] and were able to
obtain the list of concurrent functions. The list contains 43.9K
concurrent function pairs. Note that this list is not exhaustive
because the work only considers common lock/unlock functions
but not customized ones. We found that 1,085 objects are
referenced in concurrent functions, i.e., they can be used and

freed concurrently. Since these objects are likely protected
with locks (otherwise, they are already UAF), adversaries can
attempt to remove the locks or move the uses out of the critical
sections to introduce the use-after-free temporal order (e.g.,
the example shown in Figure 6).

B. Measurement of Stealthiness

In §V, we have empirically discussed several methods for
increasing the stealthiness of hypocrite commits. To measure
the stealthiness of the methods, we conduct two experiments
using two datasets: (1) the first set contains introduced
UAF vulnerabilities that have been merged into the Linux
kernel branches; (2) the second set contains blocked UAF
vulnerabilities, which were identified by maintainers during
review and not committed into the Linux kernel branches. All
of these cases are in the recent six years (from January 2015
to August 2020)
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Fig. 12: Distribution of UAF vulnerabilities involving stealthy
methods, based on their latent period in days (from introducing date
to fixing date).

Qualitative analysis based on latent period. Precisely
quantifying the stealthiness is hard because we lack metrics.
Therefore, we first qualitatively compare the stealthiness of the
methods against the baseline. The idea is that if a UAF was
introduced by a patch involving a stealthier method, the UAF
tends to exist in the code for a longer time—a longer latent
period. The latent period is calculated by counting the days
between the fixing date and the introducing date. The date
information is available in the commits. Also, according to our
study, during the patch-review process, the Linux community
typically verify the patches manually or by using some simple
code analysis tools. Therefore, to imitate the typical patch-
review process, the baseline is the UAF vulnerabilities in first
dataset that are identified through manual approach or static
analysis. That is, UAF vulnerabilities found by fuzzing are
excluded. We further classify the selected UAF vulnerabilities
based on which stealthy method they involve. Note that, in this
measurement, we exclude the indirect-call stealthy method
because we failed to collect enough cases involving indirect
calls (we collected only 9 cases), and manually tracing the call
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chain to identify indirect calls from the free to the use is a
challenging and time-consuming task—it requires to look into
numerous functions and structs in an inter-procedural way.

Figure 12 shows the cumulative distribution function (CDF)
for latent periods of the baseline and the UAF vulnerabilities
involving each stealthy method. In this figure, we use the
solid (purple) line to indicate the baseline. The lines below
the baseline mean the vulnerabilities tend to have a longer
latent period, which indicates that the corresponding method
has a higher stealthiness. From this figure, we can find that
all these stealthy methods (concurrent, implicit release, error
paths) indeed increase the stealthiness. More specifically, the
stealthiness of these four methods can be ranked as:

Concurrency > error paths > implicit release > alias.

Quantifying catch rate. To further quantify the stealthiness
of these methods, we introduce the concept of catch rate, which
is defined as follows.

Catch rate =
NC

NC + NE
(1)

NC denotes the number of vulnerabilities caught by maintainers
(i.e., the blocked ones) during a time period, and NE denotes the
number of evading vulnerabilities (i.e., the merged ones) during
the same time period. This equation is used to estimate the
possibility of a hypocrite commit to be caught by maintainers.
Since it is impossible to collect all evading UAF vulnerabilities,
and many are not found yet, we conservatively assume that
the found ones are all of the UAF. As such, the calculated
catch rate is an upper bound; that is, the actual rate would
be lower. Table IV shows the catch rate for patches involving
each stealthy method. It is worth noting that, due to there are
not enough cases for the indirect-call case, we list the concrete
numbers instead of calculating its catch rate. From the results,
we find that hypocrite commits with concurrent issues are the
hardest to catch, and all of these cases have a relatively low
catch rate. Note that even when an introduced vulnerability
patch is caught and blocked, a malicious committer can just
try a different one to have a final success.

Conditions Catch rate(%)

Concurrent issue 19.4%
Implicit release 36.3%
UAF in error-paths 42.0%
Alias 38.4 %
Indirect call 5/9
Baseline 56.6%

TABLE IV: Comparison of the catch rate of each stealthy method.

VIII. MITIGATION AGAINST THE INSECURITY

In this section, we discuss how OSS communities could
mitigate the risks from hypocrite commits. We discuss the
mitigations from three main perspectives: committers, assisting
tools, and maintainers.

A. Committer Liability and Accountability

By its nature, OSS openly encourages contributors. Com-
mitters can freely submit patches without liability. We believe
that an effective and immediate action would be to update
the code of conduct of OSS, such as adding a term like “by
submitting the patch, I agree to not intend to introduce bugs.”
Only committers who agreed to it would be allowed to go
ahead to submit the patches. By introducing the liability, the
OSS would not only discourage malicious committers but also
raise the awareness of potential introduced bugs for benign
committers.

Verifying the identities of committers, i.e., introducing the
accountability, is also an effective mitigation against hypocrite
commits. This would not only reduce malicious committers but
also help with the attribution of introduced vulnerabilities. In
particular, OSS projects may only allow reputable organizations
or individuals to contribute to the changes, or require certificates
from the committers. However, previous works [14, 42] show
that checking the identity over online social networks is a
challenging problem.

B. Tools for Patch Analysis and Testing

Advanced static-analysis techniques. OSS code can be
highly complex; however, patch review is largely manual. As
confirmed by our study and the Linux community, the man-
ual review inevitably misses some introduced vulnerabilities.
Although communities also use source-code analysis tools
to test patches, they are very limited, e.g., using patterns to
match simple bugs in source code. Therefore, we believe that
an effective mitigation is to employ advanced static-analysis
tools. For example, incremental symbolic execution [20, 66]
specifically analyzes the code changes and audits patches.
Such tools should also support alias analysis [62], concurrency
analysis [2, 16], indirect call analysis [36, 48], and common
bug detection such as double-free. Also, static analysis is
particularly useful for analyzing drivers when the hardware
devices are not available. Although static analysis tends to
suffer from false positives, it can serve as a preliminary check
and provides results for maintainers to confirm.
High-coverage, directed dynamic testing. We also suggest
to use high-coverage or directed dynamic testing (e.g., fuzzers)
to test changed code. In particular, fuzzing, together with
sanitizers, can precisely identify bugs. In fact, Linux commu-
nities have been using Syzbot to test the kernel code, which
is an automated system that runs the Syzkaller fuzzer on the
kernel and reports the resulting crashes. Directed dynamic
testing techniques [5, 61] would be particularly useful in
testing the patches. However, we still need to overcome two
significant challenges in kernel fuzzing: testing drivers without
the hardware devices and testing the error-handling code. In
the latest version of the Linux kernel (v5.8), 62% of the code
is driver code, counted with tool cloc. Existing fuzzers could
employ emulators [3, 39], which however only support a limited
number of drivers because the emulation is still a manual
work. According to [24], existing fuzzers have a very low
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coverage rate for error paths; fortunately, we can employ fault
injection [24, 47] to effectively improve the coverage. One
downside is that the bugs triggered by injected faults can be
false positives.

C. The Maintainer Side

OSS maintainers are mainly volunteers. Our interaction
with the OSS communities indicate that OSS maintaining is
understaffed. We should appreciate and honor maintainer efforts,
and increase potential incentives if possible to encourage more
people to join the maintaining.
Accepting certain preventive patches. It is understandable
that communities tend to reject preventive patches—bugs are
not really present, and maintainers are already bombarded
with massive patches. However, to mitigate the risks from
vulnerability-introducing patches, we highly recommend com-
munities to accept preventive patches for high-risk immature
vulnerability if the remaining vulnerability conditions are likely
to be introduced in the future.
Raising risk awareness. It is also important to raise the
awareness of hypocrite commits. Our interactions with Linux
communities show that they would assume that all contributors
are benign and vulnerability-introducing patches are rare
mistakes. Through the findings of this paper, we hope that OSS
communities would become more aware of potential “malicious”
committers who can intentionally introduce vulnerabilities with
incentives. On the other hand, we hope our findings also raise
the awareness of the common cases of hypocrite commits
and the stealthiness factors that may prevent maintainers from
finding the introduced vulnerabilities.
Public patch auditing. A patch is typically submitted by
emailing to a limited number of maintainers. Although a patch
is carbon-copied to a public mailing-list, typically only the
key maintainers respond and accept the patch. Therefore, a
general suggestion is to invite more people to engage in the
auditing of the patches. For instance, get_maintainer.pl can
be more inclusive in deciding maintainers; anyone who has
ever contributed to the module or are subscribed to the Linux
development mailing-lists can be included.

D. Feedback of the Linux Community

We summarized our findings and suggestions, and reported
them to the Linux community. Here we briefly present their
feedback. First, the Linux community mentioned that they will
not accept preventive patches and will fix code only when it
goes wrong. They hope kernel hardening features like KASLR
can mitigate impacts from unfixed vulnerabilities. Second, they
believed that the great Linux community is built upon trust.
That is, they aim to treat everyone equally and would not
assume that some contributors might be malicious. Third, they
mentioned that bug-introducing patches is a known problem
in the community. They also admitted that the patch review is
largely manual and may make mistakes. However, they would
do their best to review the patches. Forth, they stated that Linux
and many companies are continually running bug-finding tools
to prevent security bugs from hurting the world. Last, they

mentioned that raising the awareness of the risks would be
hard because the community is too large.

IX. RELATED WORK

OSS maintenance and security. Quite a number of research
works investigate the maintenance and security of OSS. Kopo-
nen et al. [30] presented the maintenance process framework of
OSS. Midha et al. [45] discussed the participation management
and responsibility management for OSS. Thompson [58]
discussed the code trustworthiness. This work concludes
that people cannot trust code that did not totally create by
themselves, and source-level verification would not protect
people from using untrusted code. Midha et al. [46] discussed
the approaches for improving the maintenance of OSS, and
Koponen et al. [29] and Kozlov et al. [31] evaluated the OSS
maintenance framework. However, none of them discussed
the security issues caused by malicious committers. Hansen
et al. [22] found that opening the source code can increase
the trustworthiness of the program, but it is not a panacea
for security issues. Hoepman et al. [23], Schryen et al. [54],
and Witten et al. [63] show similar findings that although
opening the source code will first increase the exposure to
risks, in a long term, it can actually increase its security
because many third parties can find and fix bugs collaboratively.
However, these risk-evaluation works did not consider the
situation in which the adversaries can intentionally introduce
vulnerabilities into the OSS programs. Meneely el al. [43]
analyzed the correlations between the known vulnerabilities and
the developer activities for the open-source Red Hat Enterprise
Linux 4 (RHEL4) kernel. They concluded that files involved
in 9 or more developers were likely to have 16 times of
vulnerabilities as files changed by less than 9 developers, which
means that the changing code involving more developers can
have a detrimental effect on the security of software. Shihab el
al. [55] concluded that software developers are mostly accurate
in identifying code changes that introduce bugs. However, it
focuses on patches from benign committers.
Bug-introducing patches. Previous works [6, 44, 59] show
that non-experienced developers have a strong relationship with
the likelihood of bug-introducing patches. More specifically,
Bosu et al. [6] analyzed vulnerabilities and code commits
for different open-source projects, and showed that the code
changes sent by new developers introduce 1.8 to 24 times
vulnerabilities as the ones from experienced developers. Bird
et al. [4] also believed that the removal of low-expertise
contributions can reduce contribution-based defect-prediction
performance. Unlike this radical idea, Rahman et al. [51]
showed that the author experienced in a specific file is
more important than the general experience, which can be
asked to control the quality of code and submitted patches.
After analyzing the incorrect bug-fixing patches in the Linux,
OpenSolaris, and FreeBSD, Yin et al. [67] showed that
concurrency bugs are the most difficult to fix correctly, and
39% of concurrency bug fixes are incorrect. This result is
similar to our conclusion that the concurrency issue is one of
the stealthiest methods that can be used by attackers to hide
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their vulnerability conditions. This paper also shows that 27%
of the incorrect patches are made by fresh developers who have
never touched the source code files before. Similar to hypocrite
commits, Paul A. [25] discussed Trojan Horses in general;
an inherent difference is that hypocrite commits themselves
do not contain malicious functionalities or vulnerabilities, but
introduce vulnerability conditions. Most of these existing works
focused on the statistical analysis of the previous (unintentional)
bug-introducing patches and summarizing the introduction
reasons. However, to our knowledge, none of them studied the
risks from hypocrite commits.
Analysis and testing of patches. Many previous works
focused on analyzing and testing the correctness of patches
to eliminate bug-introducing patches. Zhou et al. [68] used
natural language processing and machine learning techniques to
identify the security issues of patches, by analyzing the commit
messages of bug reports. However, the hypocrite commits
constructed by adversaries typically would also fix some minor
issues in the program, and the commit messages would not have
differences from other general patches. Beyond simple commit
message analysis, previous works also equipped techniques
like incremental symbolic execution [32, 40] and semantic
patch analysis. Marinescu et al. [41] proposed KATCH, a
static analysis tool, which combines symbolic execution and
heuristics to test the patches of software. Le et al. [34]
present MVICFG, which can analyze the patches by comparing
the control-flow commonalities and differences for different
versions of the program. However, adversaries can leverage
the stealthy methods introduced in §V to hinder and confuse
these static analysis tools. Bosu et al. [52] concluded that peer
code review can identify and remove some vulnerabilities in
the project and increase software security.

X. CONCLUSION

This paper presented hypocrite commits, which can be
abused to stealthily introduce vulnerabilities in OSS. Three
fundamental reasons enable hypocrite commits: the openness
of OSS, which allows anyone including malicious committers
to submit patches; the limited resources of OSS maintaining;
and the complexity of OSS programs, which results in the
manual review and existing tools failing to effectively identify
introduced vulnerabilities. We then systematically characterized
immature vulnerabilities and studied how a malicious committer
can turn immature vulnerabilities into real ones. We also
identified multiple factors that increase the stealthiness of the
introduced vulnerabilities, including concurrency, error paths,
aliases, indirect calls, etc. Furthermore, we provided a proof-
of-concept to safely demonstrate the practicality of hypocrite
commits, and measured and quantified the risks. We finally
provided our suggestions on mitigating the risks of hypocrite
commits and hope that our findings could motivate future
research on improving the patching process of OSS.
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