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Abstract

Bazhin has analyzed ATP coupling in terms of quasiequilibrium states
where fast reactions have reached an approximate steady state while slow
reactions have not yet reached equilibrium. After an expository introduc-
tion to the relevant aspects of reaction network theory, we review his work
and explain the role of “emergent conservation laws” in coupling. These
are quantities, left unchanged by fast reactions, whose conservation forces
exergonic processes such as ATP hydrolysis to drive desired endergonic
processes.

1 Introduction

In the cell, chemical reactions are often “coupled” so that reactions that release
energy drive reactions that are biologically useful but involve an increase in
energy. But how, exactly, does coupling work?

Much is known about this question, but the literature is also full of vague
explanations and oversimplifications. Coupling cannot occur in equilibrium;
it arises in open systems, where the concentrations of certain chemicals are
held out of equilibrium due to flows in and out [1, 3, 6]. One might thus
suspect that the simplest mathematical treatment of this phenomenon would
involve non-equilibrium steady states of open systems. However, Bazhin [2] has
shown that some crucial aspects of coupling arise in an even simpler framework.
He considers “quasi-equilibrium” states, where fast reactions have come into
equilibrium and slow ones are neglected. He shows that coupling occurs already
in this simple approximation.

Our goal here is two-fold. First, we review Bazhin’s work in a way that
readers with no training in biology or chemistry can follow. Second, we explain
a fact that seems to have received little attention: in many cases, coupling relies
on emergent conservation laws.

Conservation laws are important throughout science. Besides those that are
built into the fabric of physics, such as conservation of energy and momentum,
there are also many “emergent” conservation laws that hold approximately in
certain circumstances. Often these arise when processes that change a given
quantity happen very slowly. For example, the most common isotope of uranium
decays into lead with a half-life of about 4 billion years—but for the purposes
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of chemical experiments in the laboratory, it is useful to treat the amount of
uranium as a conserved quantity.

The emergent conservation laws involved in biochemical coupling are of a
different nature. Instead of making the processes that violate these laws happen
more slowly, the cell uses enzymes to make other processes happen more quickly.
At the time scales relevant to cellular metabolism, the fast processes dominate,
while slowly changing quantities are effectively conserved. By a suitable choice
of these emergent conserved quantities, the cell ensures that certain reactions
that release energy can only occur when other “desired” reactions occur. To be
sure, this is only approximately true, on sufficiently short time scales. But this
approximation is enlightening.

Following Bazhin, our main example involves coupling to ATP hydrolysis.
We consider the following schema, which abstractly describes a whole family of
reactions:

X + ATP −−⇀↽−− ADP + XPi (1)

XPi + Y −−⇀↽−− XY + Pi (2)

Some concrete examples of this schema include:

• The synthesis of glutamine (XY) from glutamate (X) and ammonium (Y).
This is part of the important glutamate-glutamine cycle in the central
nervous system.

• The synthesis of sucrose (XY) from glucose (X) and fructose (Y). This
is one of many processes whereby plants synthesize more complex sugars
and starches from simpler building-blocks.

In these and other examples, reactions (1) and (2), taken together, have the
effect of synthesizing a larger molecule XY out of two parts X and Y, while
ATP is broken down to ADP and Pi. Thus, they have the same net effect as
this other pair of reactions:

X + Y −−⇀↽−− XY (3)

ATP −−⇀↽−− ADP + Pi (4)

where the desired reaction (3) involves an energy increase, while (4), a delib-
erately simplified version of ATP hydrolysis, releases energy. But in reactions
(1) and (2), these reactions are “coupled” so that ATP can only break down to
ADP + Pi if X + Y also turns into XY.

As we shall see, this coupling crucially relies on a conserved quantity: the
total number of Y molecules plus the total number of Pi’s is left unchanged by
both reactions above. This fact is not a fundamental law of physics, nor even
an approximate law considered fundamental in chemistry, such as conservation
of phosphorus. It is an emergent conservation law that holds approximately in
special situations. Its approximate validity relies on the fact that the cell has
enzymes that make the two reactions in the above schema occur more rapidly
than reactions that violate this law, such as these:

In what follows, Section 2 provides the background in chemistry needed to
follow the paper. Section 3 poses the question “what is coupling?” Section 4
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introduces the new reactions required for coupling ATP hydrolysis to the syn-
thesis of XY from components X and Y, and it explains why these reactions
are not yet enough for coupling. Section 5 shows that coupling occurs in a
“quasiequilibrium” state where these new reactions, assumed much faster than
the rest, have reached equilibrium, while the rest are neglected. Section 6 ex-
plains the importance of emergent conservation laws. Finally, Section 7 shows
that the same pattern is at work in a very different example of coupling: the
urea cycle.

2 Some background

In what follows, we will be working with reaction networks. A reaction network
consists of a set of reactions, for example

X + Y −→ XY.

Here X, Y and XY are the species involved, and we interpret this reaction as
species X and Y combining to form species XY. We call X and Y the reactants
and XY the product. Additive combinations of species, such as X+Y, are called
complexes.

The law of mass action states that the rate at which a reaction occurs is
proportional to the product of the concentrations of the reactants. The pro-
portionality constant is called the rate constant; it is a positive real number
associated to a reaction that depends on chemical properties of the reaction
along with the temperature, the pH of the solution, the nature of any catalysts
that may be present, and so on. Every reaction has a reverse reaction; that
is, if X and Y combine to form XY, then XY can also split into X and Y. The
reverse reaction has its own rate constant.

We summarize this information by writing

X + Y
α→−−−⇀↽−−−
α←

XY

where α→ is the rate constant for X and Y to combine and form XY, while α←
is the rate constant for the reverse reaction.

As time passes and reactions occur, the concentration of each species will
likely change. We can record this information in a collection of functions
[X] : R→ [0,∞), one for each species X, where [X](t) gives the concentration of
the species X at time t. This naturally leads one to consider the rate equation
of a given reaction, which specifies the time evolution of these concentrations.
The rate equation can be read off from the reaction network, and in the above
example it is:

˙[X] = −α→[X][Y] + α←[XY]

˙[Y] = −α→[X][Y] + α←[XY]

˙[XY] = α→[X][Y]− α←[XY]

Here α→[X][Y] is the rate at which the forward reaction is occurring. Similarly,
α←[XY] is the rate at which the reverse reaction is occurring.

We say that a system is in detailed balanced equilibrium, or simply equi-
librium, when every reaction occurs at the same rate as its reverse reaction.
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This implies that the concentration of each species is constant in time. In our
example, the condition for equilibrium is

α→
α←

=
[XY]

[X][Y]

and the rate equation then implies that ˙[X] = ˙[Y] = ˙[XY] = 0.
The laws of thermodynamics determine the ratio of the forward and reverse

rate constants. For any reaction whatsoever, this ratio is

α→
α←

= e−∆G◦/RT (5)

where T is the temperature, R is the ideal gas constant, and ∆G◦ is the free
energy change under standard conditions.

Note that if ∆G◦ < 0, then α→ > α←: the rate constant of the forward
reaction is larger than the rate constant of the reverse reaction. In this case one
may loosely say that the forward reaction “wants” to happen “spontaneously”.
Such a reaction is called exergonic. If on the other hand ∆G◦ > 0, then the
forward reaction is “non-spontaneous” and it is called endergonic.

The most important thing for us is that ∆G◦ takes a very simple form. Each
species has a free energy. The free energy of a complex A1 + · · · + Am is the
sum of the free energies of the species Ai. Given a reaction

A1 + · · ·+ Am −→ B1 + · · ·+ Bn,

the free energy change ∆G◦ for this reaction is the free energy of B1 + · · ·+ Bn
minus the free energy of A1 + · · ·+ Am.

As a consequence, ∆G◦ is additive with respect to combining multiple re-
actions in either series or parallel. In particular, then, the law (5) imposes
relations between ratios of rate constants: for example, if we have the following
more complicated set of reactions

A
α→−−⇀↽−−
α←

B

B
β→−−⇀↽−−
β←

C

A
γ→−−⇀↽−−
γ←

C

then we must have
γ→
γ←

=
α→
α←

β→
β←

.

So, not only are the rate constant ratios of reactions determined by differences
in free energy, but also nontrivial relations between these ratios can arise, de-
pending on the structure of the system of reactions in question.

3 What is coupling?

Suppose that we are in a setting in which the reaction

X + Y
α→−−−⇀↽−−−
α←

XY
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takes place. Let’s also assume we are interested in the production of species XY
from species X and Y, but that in our system, the reverse reaction is favored to
happen. This means that

α← � α→

and so in equilibrium, the concentrations of the species will satisfy

[XY]

[X][Y]
� 1

which we assume undesirable. How can we influence this ratio to get a more
desired outcome?

This is where the notion of coupling comes into play. Informally, we think of
the coupling of two reactions as a process in which an endergonic reaction—one
which does not “want” to happen—is combined with an exergonic reaction—one
that does “want” to happen—in a way that improves the products-to-reactants
concentrations ratio of the first reaction.

An important example of coupling, and one we will focus on, involves ATP
hydrolysis

ATP + H2O
β→−−−⇀↽−−−
β←

ADP + Pi + H+

where ATP (adenosine triphosphate) reacts with a water molecule. Typically,
this reaction results in ADP (adenosine diphosphate), a phosphate ion Pi and a
hydrogen ion H+. To simplify calculations, we will replace the above equation
with

ATP
β→−−⇀↽−−
β←

ADP + Pi

since suppressing the bookkeeping of hydrogen and oxygen atoms in this manner
will not affect our main points.

One reason ATP hydrolysis is good for coupling is that this reaction is
strongly exergonic:

β→ � β←

and in fact so much that
β→
β←
� α←

α→
(6)

Yet this fact alone is insufficient to explain coupling. To see why, suppose our
system consists merely of the two reactions

X + Y
α→−−−⇀↽−−−
α←

XY (7)

ATP
β→−−−⇀↽−−−
β←

ADP + Pi (8)

happening in parallel. We can study the concentrations in equilibrium to see
that one reaction has no influence on the other. Indeed, the rate equation for
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this reaction network is

˙[X] = −α→[X][Y] + α←[XY]

˙[Y] = −α→[X][Y] + α←[XY]

˙[XY] = α→[X][Y]− α←[XY]

˙[ATP] = −β→[ATP] + β←[ADP][Pi]

˙[ADP] = β→[ATP]− β←[ADP][Pi]

˙[Pi] = β→[ATP]− β←[ADP][Pi]

When concentrations are constant, these are equivalent to the relations

[XY]

[X][Y]
=
α→
α←

and
[ADP][Pi]

[ATP]
=
β→
β←

We thus see that ATP hydrolysis is in no way affecting the ratio of [XY] to [X][Y].
Intuitively, there is no coupling because the two reactions proceed independently.
This “independence” is clearly visible if we draw the reaction network as a so-
called Petri net [1]:

α

ATP

β

ADP

YX XY

Pi

So what really happens when we are in the presence of coupling?

4 Interactions

For coupling to occur, the reactant species in both reactions must interact in
some way. Indeed, in real-world examples that follow the above schema and
involve coupling, it is observed that, aside from the reactions represented in
equations (7) and (8), two other reactions (and their reverses) take place:

X + ATP
γ→−−−⇀↽−−−
γ←

ADP + XPi (9)

XPi + Y
δ→−−−⇀↽−−−
δ←

XY + Pi (10)
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We can picture all four reactions (7)–(10) in a single Petri net as follows:

α

γ

XPi

ATP

δ

β

ADP

YX XY

Pi

Taking into account this more complicated set of reactions, which are in-
teracting with each other, is still not enough to explain the phenomenon of
coupling. To see this, consider the rate equation for the system comprised of all
four reactions:

˙[X] = −α→[X][Y] + α←[XY]− γ→[X][ATP] + γ←[ADP][XPi]

˙[Y] = −α→[X][Y] + α←[XY]− δ→[XPi][Y] + δ←[XY][Pi]

˙[XY] = α→[X][Y]− α←[XY] + δ→[XPi][Y]− δ←[XY][Pi]

˙[ATP] = −β→[ATP] + β←[ADP][Pi]− γ→[X][ATP] + γ←[ADP][XPi]

˙[ADP] = β→[ATP]− β←[ADP][Pi] + γ→[X][ATP]− γ←[ADP][XPi]

˙[Pi] = β→[ATP]− β←[ADP][Pi] + δ→[XPi][Y]− δ←[XY][Pi]

˙[XPi] = γ→[X][ATP]− γ←[ADP][XPi]− δ→[XPi][Y] + δ←[XY][Pi]

Introducing the reaction velocities

Jα = α→[X][Y]− α←[XY]

Jβ = β→[ATP]− β←[ADP][Pi]

Jγ = γ→[ATP][X]− γ←[ADP][XPi]

Jδ = δ→[XPi][Y]− δ←[XY][Pi]

we can write the rate equation as

˙[X] = −Jα − Jγ
˙[Y] = −Jα − Jδ

˙[XY] = Jα + Jδ

˙[ATP] = −Jβ − Jγ
˙[ADP] = Jβ + Jγ

˙[Pi] = Jβ + Jδ

˙[XPi] = Jγ − Jδ
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In a steady state, all these time derivatives are zero, so

Jα = Jβ = −Jγ = −Jδ

Furthermore, in a detailed balanced equilibrium every reaction occurs at the
same rate as its reverse reaction, so all four reaction velocities vanish. This
implies the relations

[XY]

[X][Y]
=
α→
α←

,
[ADP][Pi]

[ATP]
=
β→
β←

,
[ADP][XPi]

[ATP][X]
=
γ→
γ←

,
[XY][Pi]

[XPi][Y ]
=
δ→
δ←

.

Thus, even when the reactants interact to form the new species XPi, there
can be no coupling if the whole system is in equilibrium, since then the ratio
[XY]/[X][Y] is forced to be α→/α←. Coupling can only arise out of equilibrium.
But how, precisely, does coupling occur?

5 Quasiequilibria

Coupling is achieved through the action of enzymes. An enzyme can increase
the rate constant of a reaction. However, it cannot change the ratio of forward
to reverse rate constants, since that is fixed by the difference of free energies as in
Equation (5), and the presence of an enzyme does not change this. Indeed, if an
enzyme could change this ratio, there would be no need for coupling! Increasing
the ratio α→/α← in the reaction

X + Y
α→−−−⇀↽−−−
α←

XY

would favor the formation of XY, as desired. But this option is not available.
Instead, the cell uses enyzmes to greatly increase the rate constants for (9)

and (10) while leaving those for (7) and (8) essentially unchanged. In this
situation we can ignore reactions (7) and (8) and still have a good approximate
description of the dynamics, at least for sufficiently short time scales. Thus,
we shall study quasiequilibria, namely steady states of the rate equation for
reactions (9) and (10) but not (7) and (8). In this approximation, the relevant
Petri net becomes this:

γ

XPi

ATP

δ

ADP

YX XY

Pi

Now it is impossible for ATP to turn into ADP + Pi without X + Y also turning
into XY. As we shall see, this is the key to coupling. In quasiequilibrium
states, we shall find a nontrivial relation between the ratios [XY]/[X][Y] and
[ATP]/[ADP][Pi].
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Of course, this is just part of the full story. Over longer time scales, reactions
(7) and (8) become important. They would drive the system toward a true
equilibrium, and destroy coupling, if there were not an inflow of the reactants
ATP, X and Y and an outflow of the products Pi and XY. To take these
inflows and outflows into account, we need the theory of ‘open’ reaction networks
[1, 3, 6].

However, this is beyond our scope here. We only consider reactions (9) and
(10), which give the following rate equation:

˙[X] = −γ→[X][ATP] + γ←[ADP][XPi]

˙[Y] = −δ→[XPi][Y] + δ←[XY][Pi]

˙[XY] = δ→[XPi][Y]− δ←[XY][Pi]

˙[ATP] = −γ→[X][ATP] + γ←[ADP][XPi]

˙[ADP] = γ→[X][ATP]− γ←[ADP][XPi]

˙[Pi] = δ→[XPi][Y]− δ←[XY][Pi]

˙[XPi] = γ→[X][ATP]− γ←[ADP][XPi]− δ→[XPi][Y] + δ←[XY][Pi].

Quasiequilibria occur when all these time derivatives vanish. This happens when

γ→[X][ATP] = γ←[ADP][XPi]

δ→[XPi][Y] = δ←[XY][Pi].

This pair of equations is equivalent to

γ→
γ←

[X][ATP]

[ADP]
= [XPi] =

δ←
δ→

[XY][Pi]

[Y]

and it implies
[XY]

[X][Y]
=
γ→
γ←

δ→
δ←

[ATP]

[ADP][Pi]

If we forget about the species XPi (whose presence is crucial for the coupling to
happen, but whose concentration we do not care about), the quasiequilibrium
does not impose any conditions other than the above relation. We conclude that,
under these circumstances and assuming we can increase the ratio of [ATP] to
[ADP][Pi], it is possible to increase the ratio of [XY] to [X][Y].

We can say a bit more, since we can express the ratios of forward and reverse
rate constants in terms of exponentials of free energy differences using equation
(5). Reactions (7) and (8), taken together, convert X + Y + ATP to XY + ADP
+ Pi. So do reactions (9) and (10) taken together. Thus, these two pairs of
reactions involve the same total change in free energy, so

α→
α←

β→
β←

=
γ→
γ←

δ→
δ←

. (11)

Together with (6), this implies

γ→
γ←

δ→
δ←
� 1
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Thus,
[XY]

[X][Y]
� [ATP]

[ADP][Pi]
.

This is why coupling to ATP hydrolysis is so good at driving the synthesis of XY
from X and Y. Ultimately, this inequality arises from the fact that the decrease
in free energy for the reaction ATP→ ADP + Pi greatly exceeds the increase in
free energy for the reaction X+Y→ XY. But this fact can only be “put to use”
in the presence of coupling; that is, when we observe interactions as described
in section 4 that are in a quasiequilibrium as explained in this present section.

6 Emergent conservation laws

The rate equations for reactions (9–10) have the following conserved quantities;
in other words, the following quantities are constant in time.

1. [X] + [XPi] + [XY], due to the conservation of X,

2. [Y] + [XY], due to the conservation of Y,

3. 3[ATP] + [XPi] + [Pi] + 2[ADP], due to the conservation of phosphorus,

4. [ATP] + [ADP], due to the conservation of adenosine.

In fact, these conserved quantities were already present in the larger system
involving reactions (7-10). Moreover, these quantities, and their linear combi-
nations, are the only conserved quantities for the larger system.

To see this, we use some standard ideas from reaction network theory [4, 5].
Consider the 7-dimensional space with orthonormal basis ATP,ADP,Pi,XPi, X,
Y, and XY. We can think of complexes as vectors in this space. An arbitrary
choice of the concentrations of all species also defines a vector in this space.
Furthermore, any reaction involving these species defines a vector in this space,
namely the sum of the products minus the sum of the reactants. This is called
the reaction vector of this reaction. The four reactions (7-10) give these reaction
vectors:

vα = XY−X−Y

vβ = Pi + ADP−ATP

vγ = XPi + ADP−ATP−X

vδ = XY + Pi −XPi −Y

Any change in concentrations caused by these reactions must lie in the sto-
ichiometric subspace: that is, the space spanned by the reaction vectors. Since
these vectors obey one nontrivial relation, vα + vβ = vγ + vδ, the stochiometric
subspace is 3-dimensional. Therefore, the space of conserved quantities must be
4-dimensional, since these specify the constraints on allowed changes in concen-
trations.

In contrast to this situation, if we consider only reactions (9) and (10), the
stoichiometric subspace is 2-dimensional, since vγ and vδ are linearly indepen-
dent. Thus, the space of conserved quantities becomes 5-dimensional. Indeed,
we can find an additional conserved quantity:
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5. [Y] + [Pi]

that is linearly independent from the four conserved quantities we had before. It
does not derive from the conservation of a particular molecular component. In
other words, conservation of this quantity is not a fundamental law of chemistry.
Instead, it is an emergent conservation law that arises only in situations where
the rate constants of reactions (9) and (10) are so much larger than those of (7)
and (8) that we can ignore the latter two reactions.

This emergent conservation law captures the phenomenon of coupling. The
only way for ATP to form ADP + Pi without violating this law is for Y to be
consumed in the same amount as Pi is created, thus forming the product XY.

7 Another example

ATP hydrolysis is a simple example of coupling through emergent conservation
laws, but the phenomenon is more general. A slightly more complicated example
is the urea cycle. The first metabolic cycle to be discovered, it is used by land-
dwelling vertebrates to convert ammonia, which is highly toxic, to urea for
excretion.

The urea cycle consists of these reactions:

NH3 + HCO−3 + 2ATP −−⇀↽−− carbamoyl phosphate + 2ADP + Pi

A1 + carbamoyl phosphate −−⇀↽−− A2 + Pi

A2 + aspartate + ATP −−⇀↽−− A3 + AMP + PPi

A3 −−⇀↽−− A4 + fumarate

A4 + H2O −−⇀↽−− A1 + urea.

Ammonia (NH3) and carbonate (HCO−3 ) enter in the first reaction, along with
ATP. The four remaining reactions form a cycle in which various species
A1, . . . ,A4 “cycle around,” each transformed into the next1. One atom of ni-
trogen from carbamoyl phosphate and one from aspartate enter this cycle, and
they are incorporated in urea, which leaves the cycle along with fumarate.

All this is powered by two exergonic reactions: the hydrolysis of ATP to
ADP and Pi and the hydrolysis of ATP to adenosine monophosphate (AMP)
and a compound with two phosphorus atoms, pyrophosphate (PPi). Thus, we
are seeing a more elaborate example of an endergonic process coupled to ATP
hydrolysis. The most interesting new feature is the use of a cycle.

Since inflows and outflows are crucial to the purpose of the urea cycle, a
full analysis requires treating this cycle as an open chemical reaction network
[1, 3, 6]. However, we can gain some insight into coupling just by studying
the emergent conservation laws present in this network, ignoring inflows and
outflows.

There are a total of 16 species in the urea cycle. There are 5 forward re-
actions, which are easily seen to have linearly independent reaction vectors.
Thus, the stoichiometric subspace has dimension 5. There must therefore be 11
linearly independent conserved quantities.

1For the curious reader, these species are A1 = ornithine, A2 = citrulline, A3 = argini-
nosuccinate, and A4 = arginine.
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Some of these conserved quantities can be explained by fundamental laws
of chemistry. All the species involved are made of five different atoms: carbon,
hydrogen, oxygen, nitrogen and phosphorus. The conserved quantity

3[ATP] + 2[ADP] + [AMP] + 2[PPi] + [Pi] + [carbamoyl phosphate]

expresses conservation of phosphorus. The conserved quantity

[NH3]+[carbamoyl phosphate]+[aspartate]+2[urea]+2[A1]+3[A2]+4[A3]+4[A4]

expresses conservation of nitrogen. Conservation of oxygen and carbon give still
more complicated conserved quantities. Conservation of hydrogen and conserva-
tion of charge are not really valid laws in this context, because all the reactions
are occurring in water, where it is easy for protons (H+) and electrons to come
and go. So, four linearly independent “fundamental” conserved quantities are
relevant to the urea cycle.

There must therefore be seven other linearly independent conserved quanti-
ties that are “emergent”: that is, not conserved in every possible reaction, but
conserved by those in the urea cycle. A computer calculation shows that we can
use these:

1. [ATP] + [ADP] + [AMP], due to conservation of adenosine by all reactions
in the urea cycle.

2. [H2O] + [urea], since the only reaction in the urea cycle involving either
H2O or urea has H2O as a reactant and urea as a product.

3. [aspartate] + [PPi], since the only reaction involving either aspartate or
PPi has aspartate as a reactant and PPi as a product.

4. 2[NH3] + [ADP], since the only reaction involving either NH3 or ADP has
NH3 as a reactant and 2ADP as a product

5. 2[HCO−3 ]+ [ADP], since the only reaction involving either HCO−3 or ADP
has HCO−3 as a reactant and 2ADP as a product.

6. [A3] + [fumarate]− [PPi], since these species are involved only in the third
and fourth reactions of the urea cycle, and this quantity is conserved in
both those reactions.

7. [A1] + [A2] + [A3] + [A4], since these species “cycle around” the last four
reactions, and they are not involved in the first.

These emergent conservation laws prevent either form of ATP hydrolysis
from occurring on its own: the reaction

ATP + H2O −−⇀↽−− ADP + Pi

violates conservation of quantities 2, 4 and 5, while

ATP + H2O −−⇀↽−− AMP + PPi

violates conservation of quantities 2, 3 and 6. (In these reactions we are neglect-
ing H+ ions, since as mentioned these are freely available in aqueous solution.)
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Indeed, any linear combination of these two forms of ATP hydrolysis is prohib-
ited. Since this requires only two emergent conservation laws, the presence of
seven is a bit of a puzzle. Conserved quantity 3 prevents the destruction of as-
partate without the production of an equal amount of PPi, conserved quantity
4 prevents the destruction of NH3 without the production of an equal amount of
ADP, and so on. But there seems to be more coupling than is strictly “required”.
Of course, many factors besides coupling are involved in an evolutionarily ad-
vantageous reaction network.
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