

Mellanox In-Network Computing For Al and The Development With NVIDIA (SHARP - NCCL)

Qingchun Song, Mellanox

July 2, 2019

Data Processing Revolution – Data Centric

Compute-Centric

Von Neumann Machine

Data-Centric

DataFlow Machine

CPU-Centric HPC/AI Center

CPU

Network

Storage

Data-Centric HPC/Al Center

Workload

Workload

Workload

CPU Functions

Communication Framework (MPI)

Network

Functions

Storage Functions

In-CPU Computing

In-Network Computing

In-Storage Computing

In-Network Computing Architecture

CPU-Centric (Onload)

Data-Centric (Offload)

Communications Latencies of 30-40us

Communications Latencies of 3-4us

Mellanox TECHNOLOGIES

In-Network Computing to Enable Data-Centric Data Centers

Mellanox TEGHNOLOGIES

In-Network Computing Connects the World's Fastest HPC and Al Supercomputer

- Summit CORAL System, World's Fastest HPC / Al System
- Nvidia V100 GPU + InfiniBand HCA + In-Network
 Computing Fabric

GPUDirect RDMA Technology and Advantages

Scalable Hierarchical Aggregation And Reduction Protocol (SHARP)

Accelerating HPC and AI Applications

Accelerating HPC Applications

- Significantly reduce MPI collective runtime
- Increase CPU availability and efficiency
- Enable communication and computation overlap

Enabling Artificial Intelligence Solutions to Perform Critical and Timely Decision Making

Accelerating distributed machine learning

AllReduce Example – Trees

- Many2One and One2Many traffic patterns possible network congestion
- Probably not a good solution for large data
- Large scale requires higher tree / larger radix
- Result distribution over the tree / MC

AllReduce (Example) - Recursive Doubling

- The data is recursively divided, processed by CPUs and distributed
- The rank's CPUs are occupied performing the reduce algorithm
- The data is sent at least 2x times, consumes at least twice the BW

Scalable Hierarchical Aggregation Protocol

Reliable Scalable General Purpose Primitive, Applicable to Multiple Use-cases

- In-network Tree based aggregation mechanism
- Large number of groups
- Multiple simultaneous outstanding operations
- Streaming aggregation

Accelerating HPC applications

- Scalable High Performance Collective Offload
 - Barrier, Reduce, All-Reduce, Broadcast
 - Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND
 - Integer and Floating-Point, 16 / 32 / 64 bit
 - Up to 1KB payload size (in Quantum)
- Significantly reduce MPI collective runtime
- Increase CPU availability and efficiency
- Enable communication and computation overlap

Accelerating Machine Learning applications

- Proven the many-to-one Traffic Pattern
- CUDA , GPUDirect RDMA

Scalable Hierarchical Aggregation Protocol

- SHARP Tree is a Logical Construct
 - Nodes in the SHArP Tree are IB Endnodes
 - Logical tree defined on top of the physical underlying fabric
 - SHArP Tree Links are implemented on top of the IB transport (Reliable Connection)
 - Expected to follow the physical topology for performance but not required
- SHARP Operations are Executed by a SHARP Tree
 - Multiple SHArP Trees are Supported
 - Each SHArP Tree can handle Multiple Outstanding SHArP Operations
 - Within a SHArP Tree, each Operation is Uniquely Identified by a SHArP-Tuple
 - GroupID
 - SequenceNumber

SHARP Principles of Operation - Request

SHARP Principles of Operation – Response

NCCL Ring

Mellanox TECHNOLOGIES

- Simple
- Linear Latency
- Support in NCCL-2.3 & previous version
- Multiple rings

NCCL Tree

Mellanox

- Support added in NCCL-2.4
- Keep Intra-node chain
- Node leaders participate in tree
- Binary double tree
- Multiple rings -> Multiple trees

NCCL SHARP

NCCL SHARP

- Collective network Plugin
- Replace Inter-node tree with SHARP Tree
- Keeps Intra-node ring
- Aggregation in network switch
- Streaming from GPU memory with GPU Direct RDMA
- 2x BW compared to NCCL-TREE

SHARP Enables 2X Higher Data Throughput for NCCL

SHARP AllReduce Performance Advantages (128 Nodes)

Scalable Hierarchical
Aggregation and
Reduction Protocol

SHARP enables 75% Reduction in Latency Providing Scalable Flat Latency

Mellanox

SHARP AllReduce Performance Advantages 1500 Nodes, 60K MPI Ranks, Dragonfly+ Topology

SHARP Enables Highest Performance

SHARP Performance – Application (OSU)

Mesh Refinement Time of MiniAMR

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project http://mvapich.cse.ohio-state.edu/

Source: Prof. DK Panda, Ohio State University

SHARP Performance Advantage for Al

- SHARP provides 16% Performance Increase for deep learning, initial results
- TensorFlow with Horovod running ResNet50 benchmark, HDR InfiniBand (ConnectX-6, Quantum)

P100 NVIDIA GPUs, RH 7.5, Mellanox OFED 4.4, HPC-X v2.3, TensorFlow v1.11, Horovod 0.15.0

NCCL-SHARP Performance – DL Training

Accelerating All Levels of HPC / Al Frameworks

Application

- Data Analysis
- Real Time
- Deep Learning

Communication

- Mellanox SHARP In-Network Computing
- MPI Tag Matching
- MPI Rendezvous
- Software Defined Virtual Devices

Network

- Network Transport Offload
- RDMA and GPU-Direct RDMA
- SHIELD (Self-Healing Network)
- Enhanced Adaptive Routing and Congestion Control

Connectivity

- Multi-Host Technology
- Socket-Direct Technology
- Enhanced Topologies

Thank You

