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Abstract

Analyzing the geometric and semantic properties of 3D

point clouds through the deep networks is still challenging

due to the irregularity and sparsity of samplings of their ge-

ometric structures. This paper presents a new method to

define and compute convolution directly on 3D point clouds

by the proposed annular convolution. This new convolu-

tion operator can better capture the local neighborhood

geometry of each point by specifying the (regular and di-

lated) ring-shaped structures and directions in the compu-

tation. It can adapt to the geometric variability and scal-

ability at the signal processing level. We apply it to the

developed hierarchical neural networks for object classi-

fication, part segmentation, and semantic segmentation in

large-scale scenes. The extensive experiments and com-

parisons demonstrate that our approach outperforms the

state-of-the-art methods on a variety of standard bench-

mark datasets (e.g., ModelNet10, ModelNet40, ShapeNet-

part, S3DIS, and ScanNet).

1. Introduction

Nowadays, the ability to understand and analyze 3D

data is becoming increasingly important in computer vision

and computer graphics communities. During the past few

years, the researchers have applied deep learning methods

to analyze 3D objects inspired by the successes of these

techniques in 2D images and 1D texts. Traditional low-

level handcrafted shape descriptors suffer from not being

able to learn the discriminative and sufficient features from

3D shapes [1]. Recently, deep learning techniques have

been applied to extract hierarchical and effective informa-

tion from 3D shape features captured by low-level descrip-

tors [20, 6]. 3D deep learning methods are widely used in

shape classification, segmentation, and recognition, etc. But

all these methods are still constrained by the representation

power of the shape descriptors.

One of the main challenges to directly apply deep learn-

ing methods to 3D data is that 3D objects can be represented

in different formats, i.e., regular / structured representation
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Figure 1: The proposed annularly convolutional neural networks

(A-CNN) model on point clouds to perform classification, part

segmentation, and semantic segmentation tasks.

(e.g., multi-view images and volumes), and irregular / un-

structured representation (e.g., point clouds and meshes).

There are extensive approaches based on regular / structured

representation, such as multi-view convolutional neural net-

works (CNNs) [32, 26, 10] and 3D volumetric / grid CNN

methods and its variants [38, 26, 28, 35, 36, 16, 9]. These

methods can be conveniently developed and implemented

in 3D data structure, but they easily suffer from the heavy

computation and large memory expense. So it is better to

define the deep learning computations based on 3D shapes

directly, i.e., irregular / unstructured representation, such as

point cloud based methods [25, 27, 13, 30, 3, 18, 19, 33, 17,

42, 34, 8, 40]. However, defining the convolution on the ir-

regular / unstructured representation of 3D objects is not an

easy task. Very few methods on point clouds have defined

an effective and efficient convolution on each point. Mean-

while, several approaches have been proposed to develop

convolutional networks on 2D manifolds [21, 4, 23, 39].

Their representations (e.g., 3D surface meshes) have point

positions as well as connectivities, which makes it relatively

easier to define the convolution operator on them.

In this work, we present a new method to define and

compute convolutions directly on 3D point clouds effec-

tively and efficiently by the proposed annular convolu-

tions. This new convolution operator can better capture lo-

cal neighborhood geometry of each point by specifying the

(regular and dilated) ring-shaped structures and directions

in the computation. It can adapt to the geometric variabil-
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ity and scalability at the signal processing level. Then, we

apply it along with the developed hierarchical neural net-

works to object classification, part segmentation, and se-

mantic segmentation in large-scale scene as shown in Fig. 1.

The key contributions of our work are as follows:

• We propose a new approach to define convolutions on

point cloud. The proposed annular convolutions can

define arbitrary kernel sizes on each local ring-shaped

region, and help to capture better geometric represen-

tations of 3D shapes;

• We propose a new multi-level hierarchical method

based on dilated rings, which leads to better captur-

ing and abstracting shape geometric details. The new

dilated strategy on point clouds benefits our proposed

closed-loop convolutions and poolings;

• Our proposed network models present new state-of-

the-art performance on object classification, part seg-

mentation, and semantic segmentation of large-scale

scenes using a variety of standard benchmark datasets.

2. Related Work

Due to the scope of our work, we focus only on recently

related deep learning methods, which are proposed on dif-

ferent 3D shape representations.

Volumetric Methods. One traditional way to analyze a

3D shape is to convert it into the regular volumetric occu-

pancy grid and then apply 3D CNNs [38, 26]. The major

limitation of these approaches is that 3D convolutions are

more expensive in computations than 2D cases. In order

to make the computation affordable, the volume grid size

is usually in a low resolution. However, lower resolution

means loosing some shape geometric information, espe-

cially in analyzing large-scale 3D shapes / scenes. To over-

come these problems, octree-based methods [28, 35, 36]

have been proposed to allow applying 3D CNNs on higher

/ adaptive resolution grids. PointGrid [16] is a 3D CNN

that incorporates a constant number of points within each

grid cell and allows it to learn better local geometric de-

tails. Similarly, Hua et al. [9] presented a 3D convolution

operator based on a uniform grid kernel for semantic seg-

mentation and object recognition on point clouds.

Point Cloud based Methods. PointNet [25] is the first

attempt of applying deep learning directly on point clouds.

PointNet model is invariant to the order of points, but it

considers each point independently without including lo-

cal region information. PointNet++ [27] is a hierarchical

extension of PointNet model and learns local structures of

point clouds at different scales. But [27] still considers ev-

ery point in its local region independently. In our work, we

address the aforementioned issues by defining the convolu-

tion operator that learns the relationship between neighbor-

ing points in a local region, which helps to better capture

the local geometric properties of the 3D object.

Klokov et al. [13] proposed a new deep learning archi-

tecture called Kd-networks, which uses kd-tree structure

to construct a computational graph on point clouds. KC-

Net [30] improves PointNet model by considering the lo-

cal neighborhood information. It defines a set of learn-

able point-set kernels for local neighboring points and

presents a pooling method based on a nearest-neighbor

graph. PCNN [3] is another method to apply convolu-

tional neural networks to point clouds by defining extension

and restriction operators, and mapping point cloud func-

tions to volumetric functions. SO-Net [17] is a permutation

invariant network that utilizes spatial distribution of point

clouds by building a self-organizing map. There are also

some spectral convolution methods on point clouds, such

as SyncSpecCNN [42] and spectral graph convolution [34].

Point2Sequence [19] learns the correlation of different areas

in a local region by using attention mechanism, but it does

not propose a convolution on point clouds. PointCNN [18]

is a different method that proposes to transform neighboring

points to the canonical order and then apply convolution.

Recently, there are several approaches proposed to pro-

cess and analyze large-scale point clouds from indoor and

outdoor environments. Engelmann et al. [8] extended Point-

Net model to exploit the large-scale spatial context. Ye et

al. [40] proposed a pointwise pyramid pooling to aggregate

features at local neighborhoods as well as two-directional

hierarchical recurrent neural networks (RNNs) to learn spa-

tial contexts. However, these methods do not define convo-

lutions on large-scale point clouds to learn geometric fea-

tures in the local neighborhoods. TangentConv [33] is an-

other method that defines the convolution on point clouds by

projecting the neighboring points on tangent planes and ap-

plying 2D convolutions on them. The orientation of the tan-

gent image is estimated according to the local point / shape

curvature, but as we know the curvature computation on the

local region of the point clouds is not stable and not robust

(see the discussion in Sec. 3.4), which makes it orientation-

dependent. Instead, our method proposes an annular convo-

lution, which is invariant to the orientations of local patches.

Also, ours does not require additional input features while

theirs needs such features (e.g., depth, height, etc.).

Mesh based Methods. Besides point cloud based meth-

ods, several approaches have been proposed to develop

convolutional networks on 3D meshes for shape analy-

sis. Geodesic CNN [21] is an extension of the Euclidean

CNNs to non-Euclidean domains and is based on a lo-

cal geodesic system of polar coordinates to extract local

patches. Anisotropic CNN [4] is another generalization of

Euclidean CNNs to non-Euclidean domains, where classi-

cal convolutions are replaced by projections over a set of

oriented anisotropic diffusion kernels. Mixture Model Net-

works (MoNet) [23] generalizes deep learning methods to

non-Euclidean domains (graphs and manifolds) by com-
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bining previous methods, e.g., classical Euclidean CNN,

Geodesic CNN, and Anisotropic CNN. MoNet proposes a

new type of kernel in parametric construction. Direction-

ally Convolutional Networks (DCN) [39] applies convolu-

tion operation on the triangular mesh of 3D shapes to ad-

dress part segmentation problem by combining local and

global features. Lastly, Surface Networks [14] propose up-

grades to Graph Neural Networks to leverage extrinsic dif-

ferential geometry properties of 3D surfaces for increasing

their modeling power.

3. Method

In this work, we propose a new end-to-end frame-

work named as annularly convolutional neural networks (A-

CNN) that leverages the neighborhood information to bet-

ter capture local geometric features of 3D point clouds. In

this section, we introduce main technique components of

the A-CNN model on point clouds that include: regular and

dilated rings, constraint-based k-nearest neighbors (k-NN)

search, ordering neighbors, annular convolution, and pool-

ing on rings.

3.1. Regular and Dilated Rings on Point Clouds

To extract local spatial context of the 3D shape, Point-

Net++ [27] proposes multi-scale architecture. The major

limitation of this approach is that multiple scaled regions

may have overlaps (i.e., same neighboring points could be

duplicately included in different scaled regions), which re-

duces the performance of the computational architecture.

Overlapped points at different scales lead to redundant in-

formation at the local region, which limits a network to

learn more discriminative features.

In order to address the above issue, our proposed frame-

work is aimed to leverage a neighborhood at different scales

more wisely. We propose two ring-based schemes, i.e., reg-

ular rings and dilated rings. Comparing to multi-scale strat-

egy, the ring-based structure does not have overlaps (no du-

plicated neighboring points) at the query point’s neighbor-

hood, so that each ring contains its own unique points, as

illustrated in Sec. 1 of Supplementary Material.

The difference between regular rings and dilated rings is

that dilated rings have empty space between rings. The idea

of proposed dilated rings is inspired by dilated convolutions

on image processing [43], which benefits from aggregat-

ing multi-scale contextual information. Although each ring

may define the same number of computation / operation pa-

rameters (e.g., number of neighboring points), the coverage

area of each ring is different (i.e., dilated rings will have

larger coverage than the regular rings) as depicted in Fig. 2.

Regular rings can be considered as dilated rings with the

dilation factor equal to 0.

The proposed regular rings and dilated rings will con-

tribute to neighboring point search, convolution, and pool-

(a) Regular Rings (b) Dilated Rings

Rinner

Router

Router

Rinner

Figure 2: The comparison of the regular and dilated ring-shaped

structures (such as with two rings). We can see that comparing two

sectors (e.g., black solid points) in the regular and dilated rings,

the dilated rings cover larger space by using the same number of

neighbors as in regular rings. Moreover, each ring contains unique

neighboring points comparing to the other ring.

ing in the follow-up processes. First, for k-NN algorithm,

we constrain search areas in the local ring-shaped neigh-

borhood to ensure no overlap. Second, the convolutions de-

fined on rings cover larger areas with the same kernel sizes

without increasing the number of convolution parameters.

Third, the regular / dilated ring architectures will help to

aggregate more discriminative features after applying max-

pooling at each ring of the local region. We will discuss

them in more detail in the following subsections.

To justify the aforementioned statements, we will com-

pare multi-scale approach with our proposed multi-ring

scheme on object classification task in the ablation study

(Sec. 5.4). The results show that ring-based structure cap-

tures better local geometric features than previous multi-

scale method, since it achieves higher accuracy.

3.2. Constraint­based K­NN Search

In the original PointNet++ model, the ball query algo-

rithm returns the first K neighbors found inside a search ball

specified by a radius R and query point qi, so that it can-

not guarantee that the closest points will always be found.

However, our proposed k-NN search algorithm guarantees

returning closest points inside the searching area by using

the Euclidean metric. Each ring is defined by two parame-

ters: the inner radius Rinner and the outer radius Router (in

Fig. 2); therefore, the constraint-based k-NN search ensures

that the closest and unique points will be found in each ring.

3.3. Ordering Neighbors

In order to learn relationships between neighboring

points in a local regions, we need first to order points in a

clockwise / counterclockwise manner and then apply annu-

lar convolutions. Our proposed ordering operator consists

of two main steps: projection and ordering. The importance

of the projection before ordering is that the dot product has

its restriction in ordering points. By projecting points on
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a tangent plane at a query point qi, we effectively order

neighbors in clockwise / counterclockwise direction by tak-

ing use of cross product and dot product together. The de-

tailed explanations of normal estimation, orthogonal pro-

jection, and ordering are given in the following subsections.

3.3.1 Normal Estimation on Point Clouds

Normal is an important geometric property of a 3D shape.

We use it as a tool for projecting and ordering neighboring

points at a local domain. The simplest normal estimation

method approximates the normal ni at the given point qi by

calculating the normal of the local tangent plane Ti at that

point, which becomes a least-square plane fitting estimation

problem [29]. To calculate normal ni, one needs to compute

eigenvalues and eigenvectors of the covariance matrix C as:

C =
1

K

K
∑

j=1

(xj − qi) · (xj − qi)
T ,

C · vγ = λγ · vγ , γ ∈ {0, 1, 2},

(1)

where K is the number of neighboring points xjs around

query point qi (e.g., K = 10 in our experiments), λγ and

vγ are the γth eigenvalue and eigenvector of the covari-

ance matrix C, respectively. The covariance matrix C is

symmetric and positive semi-definite. The eigenvectors vγ

form an orthogonal frame, in respect to the local tangent

plane Ti. The eigenvector v0 that corresponds to the small-

est eigenvalue λ0 is the estimated normal ni.

3.3.2 Orthogonal Projection

After extracting neighbors xj , j ∈ {1, ...,K} for a query

point qi, we calculate projections pjs of these points on a

tangent plane Ti described by a unit normal ni (estimated

in Sec. 3.3.1) as:

pj = xj − ((xj − qi) · ni) · ni, j ∈ {1, ...,K}. (2)

Fig. 3 (a) illustrates the orthogonal projection of neighbor-

ing points on a ring.

3.3.3 Counterclockwise Ordering

Firstly, we use the geometric definition of the dot product to

compute the angle between two vectors c (i.e., starts from

the query point qi and connects with a randomly starting

point, such as p1) and pj − qi (i.e., starts from the query

point qi and connects with other neighboring points pj):

cos(θpj
) =

c · (pj − qi)

||c||||pj − qi||
. (3)

We know that cos(θpj
) lies in [−1, 1], which corre-

sponds to angles between [0◦, 180◦]. In order to sort

the neighboring points around the query point between
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Figure 3: The illustration of the proposed annular convolution on

a ring. (a) Projection: qi is a query point. After applying the

constraint-based k-NN search, neighboring points X = {xj |j =
1, ...,K} are extracted on a ring. Given the normal ni at query

point qi, we project the searched points on the tangent plane Ti.

(b) Counterclockwise Ordering: After projection, we randomly

pick a starting point as our reference direction c and order points

in counterclockwise. It is worth mentioning that we order origi-

nal points [x1,x2, ...,xj , ...,xK ] based on their projections. (c)

Annular Convolution: Depending on the kernel size, we copy sev-

eral original points from the beginning position and concatenate

them to the end of the ordered points. Finally, we apply annular

convolution with the given kernel.

[0◦, 360◦), we must to decide which semicircle the consid-

ered point pj belongs to as follows:

signpj
= (c× (pj − qi)) · ni, (4)

where signpj
≥ 0 is θpj

∈ [0◦, 180◦], and signpj
< 0 is

θpj
∈ (180◦, 360◦).

Then, we can recompute the cosine value of the angle as:

∠pj
=

{

−cos(θpj
)− 2 signpj

< 0
cos(θpj

) signpj
≥ 0.

(5)

Now the values of the angles lie in (−3, 1], which maps

angles between [0◦, 360◦).
Finally, we sort neighboring points xj by descending the

value of ∠pj
to obtain the counterclockwise order. Fig. 3

(b) illustrates the process of ordering in a local neighbor-

hood. The neighboring points can be ordered in the clock-

wise manner, if we sort neighboring points xj by ascending

the value of ∠pj
.

Our experiments show in Sec. 5.4 that ordering points

in the local regions is an important step in our framework

and our model achieves better classification accuracy with

ordered points than without ordering them.

3.4. Annular Convolution on Rings

Through the previous computation, we have the ordered

neighbors represented as an array [x1,x2, ...,xK ]. In or-
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der to develop the annular convolution, we need to loop

the array of neighbors with respect to the size of the kernel

(e.g., 1 × 3, 1 × 5, ...) on each ring. For example, if the

convolutional kernel size is 1 × 3, we need to take the first

two neighbors and concatenate them with the ending ele-

ments in the original array to construct a new circular array

[x1,x2, ...,xK ,x1,x2]. Then, we can perform the standard

convolutions on this array as shown in Fig. 3 (c).

There are some nice properties of the proposed annu-

lar convolutions as follows: (1) The annular convolution is

invariant to the orientation of the local patch. That is be-

cause the neighbors are organized and ordered in a closed

loop in each ring by concatenating the beginning with the

end of the neighboring points’ sequence. Therefore, we

can order neighbors based on any random starting position,

which does not negatively affect the convolution results.

Compared with some previous convolutions defined on 3D

shapes [4, 39, 33], they all need to compute the real princi-

pal curvature direction as the reference direction to define

the local patch operator, which is not robust and cumber-

some. In particular, 3D shapes have large areas of flat and

spherical regions, where the curvature directions are arbi-

trary. (2) As we know, in reality, the normal direction flip-

ping issues are widely existing in point clouds, especially

the large-scale scene datasets. Under the annular convolu-

tion strategy, no matter the neighboring points are ordered

in clockwise or counterclockwise manner, the results are the

same. (3) Another advantage of annular convolution is that

we can define an arbitrary kernel size, instead of just 1 × 1
kernels [25, 27]. Therefore, the annular convolution can

provide the ability to learn the relationship between ordered

points inside each ring as shown in Fig. 3 (c).

Annular convolutions can be applied on both regular and

dilated rings. By applying annular convolutions with the

same kernel size on different rings, we can cover and con-

volve larger areas by using the dilated structure, which helps

us to learn larger spatial contextual information in the local

regions. The importance of annular convolutions is shown

in the ablation study in Sec. 5.4.

3.5. Pooling on Rings

After applying a set of annular convolutions sequentially,

the resulting convolved features encode information about

its closest neighbors in each ring as well as spatial remote-

ness from a query point. Then we aggregate the convolved

features across all neighbors on each ring separately. We

apply the max-pooling strategy in our framework. Our pro-

posed ring-based scheme allows us to aggregate more dis-

criminative features. The extracted max-pooled features

contain the encoded information about neighbors and the re-

lationship between them in the local region, unlike the pool-

ing scheme in PointNet++ [27], where each neighbor is con-

sidered independently from its neighbors. In our pooling

process, the non-overlapped regions (rings) will aggregate

different types of features in each ring, which can uniquely

describe each local region (ring) around the query point.

The multi-scale approach in PointNet++ does not guaran-

tee this and might aggregate the same features at different

scales, which is redundant information for a network. The

(regular and dilated) ring-based scheme helps to avoid ex-

tracting duplicate information but rather promotes extract-

ing multi-level information from different regions (rings).

This provides a network with more diverse features to learn

from. After aggregating features at different rings, we con-

catenate and feed them to another abstract layer to further

learn hierarchical features.

4. A-CNN Architecture

Our proposed A-CNN model follows a design where the

hierarchical structure is composed of a set of abstract layers.

Each abstract layer consists of several operations performed

sequentially and produces a subset of input points with

newly learned features. Firstly, we subsample points by

using Farthest Point Sampling (FPS) algorithm [22] to ex-

tract centroids randomly distributed on the surface of each

object. Secondly, our constraint-based k-NN extracts neigh-

bors of a centroid for each local region (i.e., regular / dilated

rings) and then we order neighbors in a counterclockwise

manner using projection. Finally, we apply sequentially a

set of annular convolutions on the ordered points and max-

pool features across neighbors to produce new feature vec-

tors, which uniquely describe each local region.

Given the point clouds of 3D shapes, our proposed end-

to-end network is able to classify and segment the objects.

In the following, we discuss the classification and segmen-

tation network architectures on 3D point clouds.

4.1. Classification Network

The classification network is illustrated at the top of

Fig. 4. It consists of two major parts: encoder and clas-

sification. The encoder extracts features from each ring in-

dependently inside every layer and concatenates them at the

end to process further to extract high-level features. The

proposed architecture includes both regular rings and di-

lated rings. We end up using two rings per layer, because

it gives us pretty good experimental results as shown in the

Sec. 5. It can be easily extended to more than two rings per

layer, if necessary.

We use regular rings in the first layer and dilated rings in

the second layer in the encoder. Annular convolutions with

the kernel sizes 1×3 and stride 1 are applied in the first two

layers, followed by a batch normalization [12] (BN) and a

rectified linear unit [24] (ReLU). Different rings of the same

query point are processed in parallel. Then, the aggregated

features from each ring concatenate together to propagate to

the next layer. The last layer in the encoder performs con-

volutions with kernel sizes 1×1 followed by BN and ReLU

layers, where only spatial positions of the sampled points
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Figure 4: The architecture of A-CNN. Both classification and segmentation networks share encoder part for the feature extraction. Normals

are used only to determine the order of neighboring points in the local regions (dashed arrows mean no backpropagation during training)

and not used as additional features, unless it is mentioned explicitly in the experiments. N , N1, N2 (where N > N1 > N2) are the

numbers of points as input, after the first and second layer, respectively. K and K′ are the unordered and ordered points inside the local

rings, respectively. c is the number of classification classes. m is the number of segmentation classes. “FPS” stands for Farthest Point

Sampling algorithm. “mlp” stands for multi-layer perceptron. conv1×3(F1, F2, ..., Fn) stands for annular convolutions with the kernel

size 1× 3 applied sequentially with corresponding feature map sizes Fi, i ∈ 1, ..., n.

are considered. After that aggregated high-level features

are fed to the set of fully-connected layers with integrated

dropout [31] and ReLU layers to calculate probability of

each class. The output size of the classification network is

equal to the number of classes in the dataset.

4.2. Segmentation Network

The segmentation network shares encoder part with the

classification network as shown in Figure 4. In order to pre-

dict the segmentation label per point, we need to upsample

the sampled points in the encoder back to the original point

cloud size. As pointed out by [44], the consecutive feature

propagation proposed by [27] is not the most efficient ap-

proach. Inspired from [44], we propagate features from dif-

ferent levels from the encoder directly to the original point

cloud size, and concatenate them by allowing the network

to learn the most important features from different levels as

well as to learn the relationship between them.

The output of each level has different sizes due to the

hierarchical feature extractions, so we have to restore hier-

archical features from each level back to the original point

size by using an interpolation method [27]. The interpola-

tion method is based on the inverse squared Euclidean dis-

tance weighted average of the three nearest neighbors as:

f (l+1)(x) =

3
∑

j=1

f (l)(xj)
wj(x)

∑3
j=1 wj(x)

, (6)

where wj(x) = 1
d(x,xj)2

is an inverse squared Euclidean

distance weight.

Then, we concatenate upsampled features from different

levels and pass them through 1 × 1 convolution to reduce

feature space and learn the relationship between features

from different levels. Finally, the segmentation class dis-

tribution for each point is calculated.

5. Experiments

We evaluate our A-CNN model on various tasks such

as point cloud classification, part segmentation, and large-

scale scene segmentation. In the following subsections, we

demonstrate more details on each task. It is noted that for

the comparison experiments, best results in the tables are

shown in bold font.

All models in this paper are trained on a single NVIDIA

Titan Xp GPU with 12 GB GDDR5X. The training time of

our model is faster than that of PointNet++ model. More

details about the network configurations, training settings

and timings in our experiments can be found in Sec. 2 and

Tab. 2 of Supplementary Material. The source code of the

framework will be made available later.

5.1. Point Cloud Classification

We evaluate our classification model on two datasets:

ModelNet10 and ModelNet40 [38]. ModelNet is a large-

scale 3D CAD model dataset. ModelNet10 is a subset of

ModelNet dataset that consists of 10 different classes with

3991 training and 908 testing objects. ModelNet40 includes
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Table 1: Classification results on ModelNet10 and ModelNet40

datasets. AAC is accuracy average class, OA is overall accuracy.

ModelNet10 ModelNet40

AAC OA AAC OA

different methods with additional input or more points

AO-CNN [36] - - - 90.5

O-CNN [35] - - - 90.6

PointNet++ [27] - - - 91.9

SO-Net [17] 95.5 95.7 90.8 93.4

MVCNN-MultiRes [26] - - 91.4 93.8

VRN Ensemble [5] - 97.1 - 95.5

point cloud based methods with 1024 points

PointNet [25] - - 86.2 89.2

Kd-Net (depth 15) [13] 93.5 94.0 88.5 91.8

Pointwise CNN [9] - - 81.4 86.1

KCNet [30] - 94.4 - 91.0

PointGrid [16] - - 88.9 92.0

PCNN [3] - 94.9 - 92.3

PointCNN [18] - - 88.1 92.2

Point2Sequence [19] 95.1 95.3 90.4 92.6

A-CNN (our) 95.3 95.5 90.3 92.6

40 different classes with 9843 objects for training and 2468

objects for testing. Point clouds with 10,000 points and

normals are sampled from meshes, normalized into a unit

sphere, and provided by [27].

For experiments on ModelNet10 and ModelNet40, we

sample 1024 points with normals, where normals are only

used to order points in the local region. For data augmenta-

tion, we randomly scale object sizes, shift object positions,

and perturb point locations. For better generalization, we

apply point shuffling in order to generate different centroids

for the same object at different epochs.

In Tab. 1, we compare our method with several state-of-

the-art methods in the shape classification results on both

ModelNet10 and ModelNet40 datasets. Our model achieves

better accuracy among the point cloud based methods

(with 1024 points), such as PointNet [25], PointNet++ [27]

(5K points + normals), Kd-Net (depth 15) [13], Point-

wise CNN [9], KCNet [30], PointGrid [16], PCNN [3],

and PointCNN [18]. Our model is slightly better than

Point2Sequence [19] on ModelNet10 and shows compara-

ble performance on ModelNet40.

Meanwhile, our model performs better than other volu-

metric approaches, such as O-CNN [35] and AO-CNN [36];

while we are a little worse than SO-Net [17], which uses

denser input points, i.e., 5000 points with normals as the in-

put (1024 points in our A-CNN); MVCNN-MultiRes [26],

which uses multi-view 3D volumes to represent an object

(i.e., 20 views of 30 × 30 × 30 volume); the VRN Ensem-

ble [5], which involves an ensemble of six models.

We also provide some feature visualization results in

Sec. 3 of Supplementary Material, including global feature

(e.g., t-SNE clustering) visualization and local feature (e.g.,

the magnitude of the gradient per point) visualization.
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Figure 5: Qualitative results on ShapeNet-part dataset. We com-

pare our results with PointNet++ [27] and ground truth.

5.2. Point Cloud Segmentation

We evaluate our segmentation model on ShapeNet-

part [41] dataset. The dataset contains 16,881 shapes from

16 different categories with 50 label parts in total. The main

challenge of this dataset is that all categories are highly im-

balanced. There are 2048 points sampled for each shape

from the dataset, where most shapes contain less than six

parts. We follow the same training and testing splits pro-

vided in [25, 41]. For data augmentation, we perturb point

locations with the point shuffling for better generalization.

We evaluate our segmentation model with two differ-

ent inputs. One of the models is trained without feed-

ing normals as additional features and the other model is

trained with normals as additional features. The quan-

titative results are provided in Tab. 2, where mean IoU

(Intersection-over-Union) is reported. The qualitative re-

sults are visualized in Fig. 5. Our approach with point loca-

tions only as input outperforms PointNet [25], Kd-Net [13],

KCNet [30], and PCNN [3]; and shows slightly worse per-

formance comparing to PointGrid [16] (volumetric method)

and PointCNN [18]. Meanwhile, our model achieves the

best performance with the input of point locations and nor-

mals, compared with PointNet++ [27], SyncSpecCNN [42],

SO-Net [17], SGPN [37], O-CNN [35], RSNet [11], and

Point2Sequence [19]. The more detailed quantitative results

(e.g., per-category IoUs) and more visualization results are

provided in Sec. 5 of Supplementary Material.

5.3. Semantic Segmentation in Scenes

We also evaluate our segmentation model on two large-

scale indoor datasets Stanford 3D Large-Scale Indoor

Spaces (S3DIS) [2] and ScanNet [7]. S3DIS contains 6

large-scale indoor areas with 271 rooms sampled from 3

different buildings, where each point has the semantic label

that belongs to one of the 13 categories. ScanNet includes

1513 scanned indoor point clouds, where each voxel has

been labeled with one of the 21 categories.

We employ the same training and testing strategies as
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Figure 6: Qualitative results on S3DIS dataset. We compare our results with PointNet [25] and ground truth. The auditorium is a challenging

room type and appears only in Area 2. Our model produces much better segmentation result, compared with the result of PointNet.

PointNet [25] on S3DIS, where we use 6-fold cross valida-

tion over all six areas. The evaluation results are reported

in Tab. 2, and qualitative results are visualized in Fig. 6.

Our model demonstrates better segmentation results com-

pared with PointNet [25], MS+CU (2) [8], G+RCU [8], 3P-

RNN [40], SPGraph [15], and TangentConv [33]. However,

our model performs slightly worse than PointCNN [18]

due to their non-overlapping block sampling strategy with

paddings which we do not use. Meanwhile, our approach

shows the best segmentation results on ScanNet [7] and

achieves the state-of-the-art performance, compared with

PointNet [25], PointNet++ [27], TangentConv [33], and

PointCNN [18] according to Tab. 2.

More qualitative visualization results and data prepara-

tion details on both datasets are provided in Sec. 4 and Sec.

5, respectively, of Supplementary Material and Video.

Table 2: Segmentation results on ShapeNet-part, S3DIS, and Scan-

Net. “mean” is mean IoU (%), OA is overall accuracy.

ShapeNet-part S3DIS ScanNet

without normals with normals
OA OA

mean mean

PointNet [25] 83.7 - 78.5 73.9

PointNet++ [27] - 85.1 - 84.5

SyncSpecCNN [42] - 84.7 - -

O-CNN [35] - 85.9 - -

Kd-Net [13] 82.3 - - -

KCNet [30] 84.7 - - -

SO-Net [17] - 84.9 - -

SGPN [37] - 85.8 - -

MS+CU (2) [8] - - 79.2 -

G+RCU [8] - - 81.1 -

RSNet [11] - 84.9 - -

3P-RNN [40] - - 86.9 -

SPGraph [15] - - 85.5 -

TangentConv [33] - - * 80.9

PCNN [3] 85.1 - - -

Point2Sequence [19] - 85.2 - -

PointGrid [16] 86.4 - - -

PointCNN [18] 86.1 - 88.1 85.1

A-CNN (our) 85.9 86.1 87.3 85.4

Note: * TangentConv [33] OA on S3DIS Area 5 is 82.5% (as reported

in their paper), which is worse compared with our OA of 85.5%.

5.4. Ablation Study

The goal of our ablation study is to show the importance

of the proposed technique components (in Sec. 3) in our A-

CNN model. We evaluate three proposed components, such

as rings without overlaps (Sec. 3.1), ordering (Sec. 3.3), and

annular convolution (Sec. 3.4) on the classification task of

ModelNet40 dataset as shown in Tab. 3. In the first exper-

iment, we replace our proposed constraint-based k-NN on

ring regions with ball query in [27], but keep ordering and

annular convolutions on. In the second and third experi-

ments, we turn off either annular convolutions or ordering,

respectively; and keep the rest two components on. Our ex-

periments show that the proposed ring-shaped scheme con-

tributes the most to our model. It is because multi-level

rings positively affect annular convolutions. Finally, A-

CNN model with all three components (i.e., rings without

overlaps, ordering, and annular convolutions) achieves the

best results. We also discover that reducing overlap / redun-

dancy in multi-scale scheme can improve existing methods.

We evaluate the original PointNet++ [27] with and without

overlap as shown in Sec. 1 of Supplementary Material.

Table 3: Ablation experiments on ModelNet40 dataset. AAC is

accuracy average class, OA is overall accuracy.

AAC OA

A-CNN (without rings / with overlap) 89.2 91.7

A-CNN (without annular conv.) 89.2 91.8

A-CNN (without ordering) 89.6 92.0

A-CNN (with all components) 90.3 92.6

6. Conclusion

In this work, we propose a new A-CNN framework on

point clouds, which can better capture local geometric in-

formation of 3D shapes. Through extensive experiments on

several benchmark datasets, our method has achieved the

state-of-the-art performance on point cloud classification,

part segmentation, and large-scale semantic segmentation

tasks. Since our work does not solely focus on large-scale

scene datasets, we will explore some new deep learning ar-

chitectures to improve the current results. We will also in-

vestigate to apply the proposed framework on large-scale

outdoor datasets in our future work.
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