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Abstract

Computer vision tasks such as image classification, im-

age retrieval, and few-shot learning are currently domi-

nated by Euclidean and spherical embeddings so that the

final decisions about class belongings or the degree of sim-

ilarity are made using linear hyperplanes, Euclidean dis-

tances, or spherical geodesic distances (cosine similarity).

In this work, we demonstrate that in many practical scenar-

ios, hyperbolic embeddings provide a better alternative.

1. Introduction

Learned high-dimensional embeddings are ubiquitous in

modern computer vision. Learning aims to group together

semantically-similar images and to separate semantically-

different images. When the learning process is success-

ful, simple classifiers can be used to assign an image to

classes, and simple distance measures can be used to assess

the similarity between images or image fragments. The op-

erations at the end of deep networks imply a certain type

of geometry of the embedding spaces. For example, image

classification networks [19, 22] use linear operators (ma-

trix multiplication) to map embeddings in the penultimate

layer to class logits. The class boundaries in the embed-

ding space are thus piecewise-linear, and pairs of classes

are separated by Euclidean hyperplanes. The embeddings

learned by the model in the penultimate layer, therefore, live

in the Euclidean space. The same can be said about systems

where Euclidean distances are used to perform image re-

trieval [31, 44, 58], face recognition [33, 57] or one-shot

learning [43].

Alternatively, some few-shot learning [53], face recog-

nition [41], and person re-identification methods [52, 59]

*Equal contribution

Figure 1: An example of two–dimensional Poincaré embed-

dings computed by a hyperbolic neural network trained on

MNIST, and evaluated additionally on Omniglot. Ambigu-

ous and unclear images from MNIST, as well as most of

the images from Omniglot, are embedded near the center,

while samples with clear class labels (or characters from

Omniglot similar to one of the digits) lie near the boundary.

*For inference, Omniglot was normalized to have the same

background color as MNIST. Omniglot images are marked

with black crosses, MNIST images with colored dots.

learn spherical embeddings, so that sphere projection op-

erator is applied at the end of a network that computes

the embeddings. Cosine similarity (closely associated with
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Figure 2: In many computer vision tasks, we want to learn

image embeddings that obey the hierarchical constraints.

E.g., in image retrieval (left), the hierarchy may arise from

whole-fragment relation. In recognition tasks (right), the hi-

erarchy can arise from image degradation, when degraded

images are inherently ambiguous and may correspond to

various identities/classes. Hyperbolic spaces are more suit-

able for embedding data with such hierarchical structure.

sphere geodesic distance) is then used by such architectures

to match images.

Euclidean spaces with their zero curvature and spherical

spaces with their positive curvature have certain profound

implications on the nature of embeddings that existing com-

puter vision systems can learn. In this work, we argue that

hyperbolic spaces with negative curvature might often be

more appropriate for learning embedding of images. To-

wards this end, we add the recently-proposed hyperbolic

network layers [11] to the end of several computer vision

networks, and present a number of experiments correspond-

ing to image classification, one-shot, and few-shot learning

and person re-identification. We show that in many cases,

the use of hyperbolic geometry improves the performance

over Euclidean or spherical embeddings.

Our work is inspired by the recent body of works that

demonstrate the advantage of learning hyperbolic embed-

dings for language entities such as taxonomy entries [29],

common words [50], phrases [8] and for other NLP tasks,

such as neural machine translation [12]. Our results imply

that hyperbolic spaces may be as valuable for improving the

performance of computer vision systems.

Motivation for hyperbolic image embeddings. The use

of hyperbolic spaces in natural language processing [29, 50,

8] is motivated by the ubiquity of hierarchies in NLP tasks.

Hyperbolic spaces are naturally suited to embed hierarchies

(e.g., tree graphs) with low distortion [40, 39]. Here, we ar-

gue that hierarchical relations between images are common

in computer vision tasks (Figure 2):

• In image retrieval, an overview photograph is related

to many images that correspond to the close-ups of dif-

ferent distinct details. Likewise, for classification tasks

in-the-wild, an image containing the representatives of

multiple classes is related to images that contain rep-

resentatives of the classes in isolation. Embedding a

dataset that contains composite images into continuous

space is, therefore, similar to embedding a hierarchy.

• In some tasks, more generic images may correspond to

images that contain less information and are therefore

more ambiguous. E.g., in face recognition, a blurry

and/or low-resolution face image taken from afar can

be related to many high-resolution images of faces that

clearly belong to distinct people. Again natural em-

beddings for image datasets that have widely varying

image quality/ambiguity calls for retaining such hier-

archical structure.

• Many of the natural hierarchies investigated in natural

language processing transcend to the visual domain.

E.g., the visual concepts of different animal species

may be amenable for hierarchical grouping (e.g. most

felines share visual similarity while being visually dis-

tinct from pinnipeds).

Hierarchical relations between images call for the use

of Hyperbolic spaces. Indeed, as the volume of hyperbolic

spaces expands exponentially, it makes them continuous

analogues of trees, in contrast to Euclidean spaces, where

the expansion is polynomial. It therefore seems plausible

that the exponentially expanding hyperbolic space will be

able to capture the underlying hierarchy of visual data.

In order to build deep learning models which operate on

the embeddings to hyperbolic spaces, we capitalize on re-

cent developments [11], which construct the analogues of

familiar layers (such as a feed–forward layer, or a multino-

mial regression layer) in hyperbolic spaces. We show that

many standard architectures used for tasks of image classifi-

cation, and in particular in the few–shot learning setting can

be easily modified to operate on hyperbolic embeddings,

which in many cases also leads to their improvement.

The main contributions of our paper are twofold:

• First, we apply the machinery of hyperbolic neural net-

works to computer vision tasks. Our experiments with

various few-shot learning and person re-identification

models and datasets demonstrate that hyperbolic em-

beddings are beneficial for visual data.

• Second, we propose an approach to evaluate the hyper-

bolicity of a dataset based on the concept of Gromov

δ-hyperbolicity. It further allows estimating the radius

of Poincaré disk for an embedding of a specific dataset

and thus can serve as a handy tool for practitioners.
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2. Related work

Hyperbolic language embeddings. Hyperbolic embed-

dings in the natural language processing field have recently

been very successful [29, 30]. They are motivated by the in-

nate ability of hyperbolic spaces to embed hierarchies (e.g.,

tree graphs) with low distortion [39, 40]. However, due to

the discrete nature of data in NLP, such works typically em-

ploy Riemannian optimization algorithms in order to learn

embeddings of individual words to hyperbolic space. This

approach is difficult to extend to visual data, where image

representations are typically computed using CNNs.

Another direction of research, more relevant to the

present work, is based on imposing hyperbolic structure

on activations of neural networks [11, 12]. However, the

proposed architectures were mostly evaluated on various

NLP tasks, with correspondingly modified traditional mod-

els such as RNNs or Transformers. We find that certain

computer vision problems that heavily use image embed-

dings can benefit from such hyperbolic architectures as

well. Concretely, we analyze the following tasks.

Few–shot learning. The task of few–shot learning is con-

cerned with the overall ability of the model to generalize to

unseen data during training. Most of the existing state-of-

the-art few–shot learning models are based on metric learn-

ing approaches, utilizing the distance between image repre-

sentations computed by deep neural networks as a measure

of similarity [53, 43, 48, 28, 4, 6, 23, 2, 38, 5]. In con-

trast, other models apply meta-learning to few-shot learn-

ing: e.g., MAML by [9], Meta-Learner LSTM by [35],

SNAIL by [27]. While these methods employ either Eu-

clidean or spherical geometries (like in [53]), there was no

extension to hyperbolic spaces.

Person re-identification. The task of person re-

identification is to match pedestrian images captured by

possibly non-overlapping surveillance cameras. Papers

[1, 13, 56] adopt the pairwise models that accept pairs of

images and output their similarity scores. The resulting

similarity scores are used to classify the input pairs as being

matching or non-matching. Another popular direction of

work includes approaches that aim at learning a mapping

of the pedestrian images to the Euclidean descriptor space.

Several papers, e.g., [46, 59] use verification loss functions

based on the Euclidean distance or cosine similarity. A

number of methods utilize a simple classification approach

for training [3, 45, 17, 60], and Euclidean distance is used

in test time.

3. Reminder on hyperbolic spaces and hyper-

bolicity estimation.

Formally, n-dimensional hyperbolic space denoted as

H
n is defined as the homogeneous, simply connected n-

dimensional Riemannian manifold of constant negative sec-

tional curvature. The property of constant negative curva-

ture makes it analogous to the ordinary Euclidean sphere

(which has constant positive curvature); however, the geo-

metrical properties of the hyperbolic space are very differ-

ent. It is known that hyperbolic space cannot be isomet-

rically embedded into Euclidean space [18, 24], but there

exist several well–studied models of hyperbolic geometry.

In every model, a certain subset of Euclidean space is en-

dowed with a hyperbolic metric; however, all these models

are isomorphic to each other, and we may easily move from

one to another base on where the formulas of interest are

easier. We follow the majority of NLP works and use the

Poincaré ball model.

The Poincaré ball model (Dn, gD) is defined by the man-

ifold D
n = {x ∈ R

n : ‖x‖ < 1} endowed with the Rie-

mannian metric gD(x) = λ2
xg

E , where λx = 2
1−‖x‖2 is

the conformal factor and gE is the Euclidean metric tensor

gE = In. In this model the geodesic distance between two

points is given by the following expression:

dD(x,y) = arccosh
(

1 + 2
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)
)

. (1)

Figure 3: Visualization of the two–dimensional Poincaré

ball. Point z represents the Möbius sum of points x and y.

HypAve stands for hyperbolic averaging. Gray lines rep-

resent geodesics, curves of shortest length connecting two

points. In order to specify the hyperbolic hyperplanes (bot-

tom), used for multiclass logistic regression, one has to pro-

vide an origin point p and a normal vector a ∈ TpD
2 \{0}.

For more details on hyperbolic operations see Section 4.

In order to define the hyperbolic average, we will

make use of the Klein model of hyperbolic space. Sim-

ilarly to the Poincaré model, it is defined on the set

K
n = {x ∈ R

n : ‖x‖ < 1}, however, with a different met-

ric, not relevant for further discussion. In Klein coordinates,
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the hyperbolic average (generalizing the usual Euclidean

mean) takes the most simple form, and we present the nec-

essary formulas in Section 4.

From the viewpoint of hyperbolic geometry, all points

of Poincaré ball are equivalent. The models that we con-

sider below are, however, hybrid in the sense that most lay-

ers use Euclidean operators, such as standard generalized

convolutions, while only the final layers operate within the

hyperbolic geometry framework. The hybrid nature of our

setups makes the origin a special point, since, from the Eu-

clidean viewpoint, the local volumes in Poincare ball ex-

pand exponentially from the origin to the boundary. This

leads to the useful tendency of the learned embeddings to

place more generic/ambiguous objects closer to the origin

while moving more specific objects towards the boundary.

The distance to the origin in our models, therefore, provides

a natural estimate of uncertainty, that can be used in several

ways, as we show below.

This choice is justified for the following reasons. First,

many existing vision architectures are designed to output

embeddings in the vicinity of zero (e.g., in the unit ball).

Another appealing property of hyperbolic space (assuming

the standard Poincare ball model) is the existence of a ref-

erence point – the center of the ball. We show that in image

classification which construct embeddings in the Poincare

model of hyperbolic spaces the distance to the center can

serve as a measure of confidence of the model — the input

images which are more familiar to the model get mapped

closer to the boundary, and images which confuse the model

(e.g., blurry or noisy images, instances of a previously un-

seen class) are mapped closer to the center. The geometrical

properties of hyperbolic spaces are quite different from the

properties of the Euclidean space. For instance, the sum of

angles of a geodesic triangle is always less than π. These

interesting geometrical properties make it possible to con-

struct a “score” which for an arbitrary metric space provides

a degree of similarity of this metric space to a hyperbolic

space. This score is called δ-hyperbolicity, and we now dis-

cuss it in detail.

3.1. δ­Hyperbolicity

Let us start with an illustrative example. The simplest

discrete metric space possessing hyperbolic properties is a

tree (in the sense of graph theory) endowed with the natu-

ral shortest path distance. Note the following property: for

any three vertices a, b, c, the geodesic triangle (consisting of

geodesics — paths of shortest length connecting each pair)

spanned by these vertices (see Figure 4) is slim, which in-

formally means that it has a center (vertex d) which is con-

tained in every side of the triangle. By relaxing this con-

dition to allow for some slack value δ and considering so-

called δ-slim triangles, we arrive at the following general

definition.

a
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Figure 4: Visualization of a geodesic triangle in a tree. Such

a tree endowed with a natural shortest path metric is a 0–

Hyperbolic space.

Table 1: Comparison of the theoretical degree of hyper-

bolicity with the relative delta δrel values estimated using

Equations (2) and (4). The numbers are given for the two-

dimensional Poincaré ball D2, the 2D sphere S2, the upper

hemisphere S+
2 , and a (random) tree graph.

D
2 S+

2 S2 Tree

Theory 0 1 1 0
δrel 0.18± 0.08 0.86± 0.11 0.97± 0.13 0.0

Table 2: The relative delta δrel values calculated for differ-

ent datasets. For image datasets we measured the Euclidean

distance between the features produced by various standard

feature extractors pretrained on ImageNet. Values of δrel
closer to 0 indicate a stronger hyperbolicity of a dataset. Re-

sults are averaged across 10 subsamples of size 1000. The

standard deviation for all the experiments did not exceed

0.02.

Encoder
Dataset

CIFAR10 CIFAR100 CUB MiniImageNet

Inception v3 [49] 0.25 0.23 0.23 0.21
ResNet34 [14] 0.26 0.25 0.25 0.21
VGG19 [42] 0.23 0.22 0.23 0.17

Let X be an arbitrary (metric) space endowed with

the distance function d. Its δ-hyperbolicity value then

may be computed as follows. We start with the so-called

Gromov product for points x, y, z ∈ X:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)). (2)

Then, δ is defined as the minimal value such that the follow-

ing four-point condition holds for all points x, y, z, w ∈ X:

(x, z)w ≥ min((x, y)w, (y, z)w)− δ. (3)

The definition of hyperbolic space in terms of the Gromov

product can be seen as saying that the metric relations be-

tween any four points are the same as they would be in a

tree, up to the additive constant δ. δ-Hyperbolicity captures
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the basic common features of “negatively curved” spaces

like the classical real-hyperbolic space D
n and of discrete

spaces like trees.

For practical computations, it suffices to find the δ value

for some fixed point w = w0 as it is independent of w.

An efficient way to compute δ is presented in [10]. Having

a set of points, we first compute the matrix A of pairwise

Gromov products using Equation (2). After that, the δ value

is simply the largest coefficient in the matrix (A⊗A)−A,

where ⊗ denotes the min-max matrix product

A⊗B = max
k

min{Aik, Bkj}. (4)

Results. In order to verify our hypothesis on hyperbolic-

ity of visual datasets we compute the scale-invariant metric,

defined as δrel(X) = 2δ(X)
diam(X) , where diam(X) denotes the

set diameter (maximal pairwise distance). By construction,

δrel(X) ∈ [0, 1] and specifies how close is a dataset to a

hyperbolic space. Due to computational complexities of

Equations (2) and (4) we employ the batched version of the

algorithm, simply sampling N points from a dataset, and

finding the corresponding δrel. Results are averaged across

multiple runs, and we provide resulting mean and stan-

dard deviation. We experiment on a number of toy datasets

(such as samples from the standard two–dimensional unit

sphere), as well as on a number of popular computer vi-

sion datasets. As a natural distance between images, we

used the standard Euclidean distance between feature vec-

tors extracted by various CNNs pretrained on the ImageNet

(ILSVRC) dataset [7]. Specifically, we consider VGG19

[42], ResNet34 [14] and Inception v3 [49] networks for dis-

tance evaluation. While other metrics are possible, we hy-

pothesize that the underlying hierarchical structure (useful

for computer vision tasks) of image datasets can be well

understood in terms of their deep feature similarity.

Our results are summarized in Table 2. We observe that

the degree of hyperbolicity in image datasets is quite high,

as the obtained δrel are significantly closer to 0 than to 1
(which would indicate complete non-hyperbolicity). This

observation suggests that visual tasks can benefit from hy-

perbolic representations of images.

Relation between δ-hyperbolicity and Poincaré disk ra-

dius. It is known [50] that the standard Poincaré ball is

δ-hyperbolic with δP = log(1+
√
2) ≈ 0.88. Formally, the

diameter of the Poincaré ball is infinite, which yields the

δrel value of 0. However, from computational point of view

we cannot approach the boundary infinitely close. Thus, we

can compute the effective value of δrel for the Poincaré ball.

For the clipping value of 10−5, i.e., when we consider only

the subset of points with the (Euclidean) norm not exceed-

ing 1 − 10−5, the resulting diameter is equal to ∼ 12.204.

This provides the effective δrel ≈ 0.144. Using this con-

stant we can estimate the radius of Poincaré disk suitable

for an embedding of a specific dataset. Suppose that for

some dataset X we have found that its δrel is equal to δX .

Then we can estimate c(X) as follows.

c(X) =
(0.144

δX

)2

. (5)

For the previously studied datasets, this formula provides

an estimate of c ∼ 0.33. In our experiments, we found that

this value works quite well; however, we found that some-

times adjusting this value (e.g., to 0.05) provides better re-

sults, probably because the image representations computed

by deep CNNs pretrained on ImageNet may not have been

entirely accurate.

4. Hyperbolic operations

Hyperbolic spaces are not vector spaces in a tradi-

tional sense; one cannot use standard operations as sum-

mation, multiplication, etc. To remedy this problem, one

can utilize the formalism of Möbius gyrovector spaces al-

lowing to generalize many standard operations to hyper-

bolic spaces. Recently proposed hyperbolic neural net-

works adopt this formalism to define the hyperbolic ver-

sions of feed-forward networks, multinomial logistic re-

gression, and recurrent neural networks [11]. In Ap-

pendix A, we discuss these networks and layers in detail,

and in this section, we briefly summarize various opera-

tions available in the hyperbolic space. Similarly to the

paper [11], we use an additional hyperparameter c which

modifies the curvature of Poincaré ball; it is then defined

as Dn
c = {x ∈ R

n : c‖x‖2 < 1, c ≥ 0}. The corresponding

conformal factor now takes the form λc
x = 2

1−c‖x‖2 . In

practice, the choice of c allows one to balance between hy-

perbolic and Euclidean geometries, which is made precise

by noting that with c → 0, all the formulas discussed below

take their usual Euclidean form. The following operations

are the main building blocks of hyperbolic networks.

Möbius addition. For a pair x,y ∈ D
n
c , the Möbius ad-

dition is defined as follows:

x⊕cy :=
(1 + 2c〈x,y〉+ c‖y‖2)x+ (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2 . (6)

Distance. The induced distance function is defined as

dc(x,y) :=
2√
c
arctanh(

√
c‖ − x⊕c y‖). (7)

Note that with c = 1 one recovers the geodesic distance

(1), while with c → 0 we obtain the Euclidean distance

limc→0 dc(x,y) = 2‖x− y‖.
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Exponential and logarithmic maps. To perform opera-

tions in the hyperbolic space, one first needs to define a bi-

jective map from R
n to D

n
c in order to map Euclidean vec-

tors to the hyperbolic space, and vice versa. The so-called

exponential and (inverse to it) logarithmic map serves as

such a bijection.

The exponential map expcx is a function from

TxD
n
c
∼= R

n to D
n
c , which is given by

expcx(v) := x⊕c

(

tanh

(√
c
λc
x‖v‖
2

)

v√
c‖v‖

)

. (8)

The inverse logarithmic map is defined as

logcx(y) :=
2√
cλc

x

arctanh(
√
c‖ − x⊕c y‖)

−x⊕c y

‖ − x⊕c y‖
.

(9)

In practice, we use the maps expc0 and logc0 for a tran-

sition between the Euclidean and Poincaré ball representa-

tions of a vector.

Hyperbolic averaging. One important operation com-

mon in image processing is averaging of feature vectors,

used, e.g., in prototypical networks for few–shot learning

[43]. In the Euclidean setting this operation takes the form

(x1, . . . ,xN ) → 1
N

∑

i xi. Extension of this operation to

hyperbolic spaces is called the Einstein midpoint and takes

the most simple form in Klein coordinates:

HypAve(x1, . . . ,xN ) =

N
∑

i=1

γixi/

N
∑

i=1

γi, (10)

where γi =
1√

1−c‖xi‖2
are the Lorentz factors. Recall from

the discussion in Section 3 that the Klein model is supported

on the same space as the Poincaré ball; however, the same

point has different coordinate representations in these mod-

els. Let xD and xK denote the coordinates of the same point

in the Poincaré and Klein models correspondingly. Then the

following transition formulas hold.

xD =
xK

1 +
√

1− c‖xK‖2
, (11)

xK =
2xD

1 + c‖xD‖2
. (12)

Thus, given points in the Poincaré ball, we can first map

them to the Klein model, compute the average using Equa-

tion (10), and then move it back to the Poincaré model.

Numerical stability. While implementing most of the

formulas described above is straightforward, we employ

some tricks to make the training more stable. In particu-

lar, to ensure numerical stability, we perform clipping by

norm after applying the exponential map, which constrains

the norm not to exceed 1√
c
(1− 10−3).

5. Experiments

Experimental setup. We start with a toy experiment sup-

porting our hypothesis that the distance to the center in

Poincaré ball indicates a model uncertainty. To do so, we

first train a classifier in hyperbolic space on the MNIST

dataset [21] and evaluate it on the Omniglot dataset [20].

We then investigate and compare the obtained distributions

of distances to the origin of hyperbolic embeddings of the

MNIST and Omniglot test sets.

In our further experiments, we concentrate on the few-

shot classification and person re-identification tasks. The

experiments on the Omniglot dataset serve as a start-

ing point, and then we move towards more complex

datasets. Afterwards, we consider two datasets, namely:

MiniImageNet [35] and Caltech-UCSD Birds-200-2011

(CUB) [54]. Finally, we provide the re-identification re-

sults for the two popular datasets: Market-1501 [61] and

DukeMTMD [36, 62]. Further in this section, we provide a

thorough description of each experiment. Our code is avail-

able at github1.

Table 3: Kolmogorov-Smirnov distances between the dis-

tributions of distance to the origin of the MNIST and Om-

niglot datasets embedded into the Poincaré ball with the

hyperbolic classifier trained on MNIST, and between the

distributions of pmax (maximum probablity predicted for a

class) for the Euclidean classifier trained on MNIST and

evaluated on the same sets.

n = 2 n = 8 n = 16 n = 32

dD(x,0) 0.868 0.832 0.853 0.859
pmax(x) 0.834 0.835 0.840 0.846

5.1. Distance to the origin as the measure of uncer­
tainty

In this subsection, we validate our hypothesis, which

claims that if one trains a hyperbolic classifier, then the

distance of the Poincaré ball embedding of an image to

the origin can serve as a good measure of confidence of a

model. We start by training a simple hyperbolic convolu-

tional neural network on the MNIST dataset (we hypothe-

sized that such a simple dataset contains a very basic hierar-

chy, roughly corresponding to visual ambiguity of images,

as demonstrated by a trained network on Figure 1). The

output of the last hidden layer was mapped to the Poincaré

ball using the exponential map (8) and was followed by the

hyperbolic multi-linear regression (MLR) layer [11].

After training the model to ∼ 99% test accuracy, we

evaluate it on the Omniglot dataset (by resizing its images

to 28 × 28 and normalizing them to have the same back-

ground color as MNIST). We then evaluated the hyperbolic

1https://github.com/leymir/hyperbolic-image-embeddings
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Figure 5: Distributions of the hyperbolic distance to the origin of the MNIST (red) and Omniglot (blue) datasets embedded

into the Poincaré ball; parameter n denotes embedding dimension of the model trained for MNIST classification. Most

Omniglot instances can be easily identified as out-of-domain based on their distance to the origin.

distance to the origin of embeddings produced by the net-

work on both datasets. The closest Euclidean analogue to

this approach would be comparing distributions of pmax,

maximum class probability predicted by the network. For

the same range of dimensions, we train ordinary Euclidean

classifiers on MNIST and compare these distributions for

the same sets. Our findings are summarized in Figure 5 and

Table 3. We observe that distances to the origin represent

a better indicator of the dataset dissimilarity in three out of

four cases.

We have visualized the learned MNIST and Omniglot

embeddings in Figure 1. We observe that more “unclear”

images are located near the center, while the images that

are easy to classify are located closer to the boundary.

5.2. Few–shot classification

We hypothesize that a certain class of problems —

namely the few-shot classification task can benefit from hy-

perbolic embeddings, due to the ability of hyperbolic space

to accurately reflect even very complex hierarchical rela-

tions between data points. In principle, any metric learn-

ing approach can be modified to incorporate the hyper-

bolic embeddings. We decided to focus on the classical ap-

proach called prototypical networks (ProtoNets) introduced

in [43]. This approach was picked because it is simple in

general and simple to convert to hyperbolic geometry. Pro-

toNets use the so-called prototype representation of a class,

which is defined as a mean of the embedded support set of

a class. Generalizing this concept to hyperbolic space, we

substitute the Euclidean mean operation by HypAve, de-

fined earlier in (10). We show that Hyperbolic ProtoNets

can achieve results competitive with many recent state-of-

the-art models. Our main experiments are conducted on

MiniImageNet and Caltech-UCSD Birds-200-2011 (CUB).

Additional experiments on the Omniglot dataset, as well as

the implementation details and hyperparameters, are pro-

vided in Appendix B. For a visualization of learned embed-

dings see Appendix C.

MiniImageNet. MiniImageNet dataset is the subset of

ImageNet dataset [37] that contains 100 classes represented

Table 4: Few-shot classification accuracy results on

MiniImageNet on 1-shot 5-way and 5-shot 5-way tasks. All

accuracy results are reported with 95% confidence intervals.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way

MatchingNet [53] 4 Conv 43.56 ± 0.84% 55.31 ± 0.73%

MAML [9] 4 Conv 48.70 ± 1.84% 63.11 ± 0.92%

RelationNet [48] 4 Conv 50.44 ± 0.82% 65.32 ± 0.70%

REPTILE [28] 4 Conv 49.97 ± 0.32% 65.99 ± 0.58%

ProtoNet [43] 4 Conv 49.42 ± 0.78% 68.20 ± 0.66%

Baseline* [4] 4 Conv 41.08 ± 0.70% 54.50 ± 0.66%

Spot&learn [6] 4 Conv 51.03 ± 0.78% 67.96 ± 0.71%

DN4 [23] 4 Conv 51.24 ± 0.74% 71.02 ± 0.64%

Hyperbolic ProtoNet 4 Conv 54.43 ± 0.20% 72.67 ± 0.15%

SNAIL [27] ResNet12 55.71 ± 0.99% 68.88 ± 0.92%

ProtoNet+ [43] ResNet12 56.50 ± 0.40% 74.2 ± 0.20%

CAML [16] ResNet12 59.23 ± 0.99% 72.35 ± 0.71%

TPN [25] ResNet12 59.46% 75.65%

MTL [47] ResNet12 61.20 ± 1.8% 75.50 ± 0.8%

DN4 [23] ResNet12 54.37 ± 0.36% 74.44 ± 0.29%

TADAM [32] ResNet12 58.50% 76.70%

Qiao-WRN [34] Wide-ResNet28 59.60 ± 0.41% 73.74 ± 0.19%

LEO [38] Wide-ResNet28 61.76 ± 0.08% 77.59 ± 0.12%

Dis. k-shot [2] ResNet34 56.30 ± 0.40% 73.90 ± 0.30%

Self-Jig(SVM) [5] ResNet50 58.80 ± 1.36% 76.71 ± 0.72%

Hyperbolic ProtoNet ResNet18 59.47 ± 0.20% 76.84 ± 0.14%

by 600 examples per class. We use the following split pro-

vided in the paper [35]: the training dataset consists of 64
classes, the validation dataset is represented by 16 classes,

and the remaining 20 classes serve as the test dataset. We

test the models on tasks for 1-shot and 5-shot classifications;

the number of query points in each batch always equals to

15. Similarly to [43], the model is trained in the 30-shot

regime for the 1-shot task and the 20-shot regime for the 1-

shot task. We test our approach with two different backbone

CNN models: a commonly used four-block CNN [43, 4]

(denoted ‘4 Conv’ in the table) and ResNet18 [14]. To find

the best values of hyperparameters, we used the grid search;

see Appendix B for the complete list of values.

Table 4 illustrates the obtained results on the

MiniImageNet dataset (alongside other results in the

literature). Interestingly, Hyperbolic ProtoNet signif-

icantly improves accuracy as compared to the standard

ProtoNet, especially in the one-shot setting. We observe

that the obtained accuracy values, in many cases, exceed

the results obtained by more advanced methods, sometimes
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even in the case of architecture of larger capacity. This

partly confirms our hypothesis that hyperbolic geometry in-

deed allows for more accurate embeddings in the few–shot

setting.

Caltech-UCSD Birds. The CUB dataset consists of

11, 788 images of 200 bird species and was designed for

fine-grained classification. We use the split introduced in

[51]: 100 classes out of 200 were used for training, 50 for

validation and 50 for testing. Due to the relative simplic-

ity of the dataset, we consider only the 4-Conv backbone

and do not modify the training shot values as was done for

the MiniImageNet case. The full list of hyperparameters is

provided in Appendix B.

Our findings are summarized in Table 5. Interestingly,

for this dataset, the hyperbolic version of ProtoNet signifi-

cantly outperforms its Euclidean counterpart (by more than

10% in both settings), and outperforms many other algo-

rithms.

Table 5: Few-shot classification accuracy results on CUB

dataset [55] on 1-shot 5-way task, 5-shot 5-way task. All

accuracy results are reported with 95% confidence intervals.

For each task, the best-performing method is highlighted.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way

MatchingNet [53] 4 Conv 61.16 ± 0.89 72.86 ± 0.70

MAML [9] 4 Conv 55.92 ± 0.95% 72.09 ± 0.76%

ProtoNet [43] 4 Conv 51.31 ± 0.91% 70.77 ± 0.69%

MACO [15] 4 Conv 60.76% 74.96%

RelationNet [48] 4 Conv 62.45 ± 0.98% 76.11 ± 0.69%

Baseline++ [4] 4 Conv 60.53 ± 0.83% 79.34 ± 0.61%

DN4-DA [23] 4 Conv 53.15 ± 0.84% 81.90 ± 0.60%

Hyperbolic ProtoNet 4 Conv 64.02 ± 0.24% 82.53 ± 0.14%

5.3. Person re­identification

The DukeMTMC-reID dataset [36, 62] contains 16, 522
training images of 702 identities, 2, 228 query images of

702 identities and 17, 661 gallery images. The Market1501

dataset [61] contains 12, 936 training images of 751 iden-

tities, 3, 368 queries of 750 identities and 15, 913 gallery

images respectively. We report Rank1 of the Cumulative

matching Characteristic Curve and Mean Average Precision

for both datasets. The results (Table 6) are reported after

the 300 training epochs. The experiments were performed

with the ResNet50 backbone, and two different learning rate

schedulers (see Appendix B for more details). The hyper-

bolic version generally performs better than the Euclidean

baseline, with the advantage being bigger for smaller di-

mensionality.

6. Discussion and conclusion

We have investigated the use of hyperbolic spaces for

image embeddings. The models that we have considered

Table 6: Person re-identification results for Market-1501

and DukeMTMC-reID for the classification baseline (Eu-

clidean) and its hyperbolic counterpart (Hyperbolic). (See

5.3 for the details). The results are shown for the three

embedding dimensionalities and for two different learning

rate schedules. For each dataset and each embedding di-

mensionality value, the best results are bold, they are all

given by the hyperbolic version of classification (either by

the schedule sch#1 or sch#2). The second-best results are

underlined.

Market-1501 DukeMTMC-reID

Euclidean Hyperbolic Euclidean Hyperbolic

dim, lr schedule r1 mAP r1 mAP r1 mAP r1 mAP

32, sch#1 71.4 49.7 69.8 45.9 56.1 35.6 56.5 34.9

32, sch#2 68.0 43.4 75.9 51.9 57.2 35.7 62.2 39.1

64, sch#1 80.3 60.3 83.1 60.1 69.9 48.5 70.8 48.6

64, sch#2 80.5 57.8 84.4 62.7 68.3 45.5 70.7 48.6

128, sch#1 86.0 67.3 87.8 68.4 74.1 53.3 76.5 55.4

128, sch#2 86.5 68.5 86.4 66.2 71.5 51.5 74.0 52.2

use Euclidean operations in most layers, and use the ex-

ponential map to move from the Euclidean to hyperbolic

spaces at the end of the network (akin to the normalization

layers that are used to map from the Euclidean space to Eu-

clidean spheres). The approach that we investigate here is

thus compatible with existing backbone networks trained in

Euclidean geometry.

At the same time, we have shown that across a number

of tasks, in particular in the few-shot image classification,

learning hyperbolic embeddings can result in a substantial

boost in accuracy. We speculate that the negative curvature

of the hyperbolic spaces allows for embeddings that are bet-

ter conforming to the intrinsic geometry of at least some

image manifolds with their hierarchical structure.

Future work may include several potential modifications

of the approach. We have observed that the benefit of hy-

perbolic embeddings may be substantially bigger in some

tasks and datasets than in others. A better understanding

of when and why the use of hyperbolic geometry is war-

ranted is therefore needed. Finally, we note that while all

hyperbolic geometry models are equivalent in the continu-

ous setting, fixed-precision arithmetic used in real comput-

ers breaks this equivalence. In practice, we observed that

care should be taken about numeric precision effects. Us-

ing other models of hyperbolic geometry may result in a

more favourable floating point performance.
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