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Figure 1: HDR reconstruction from a single LDR image. Our method recovers missing details for both backlit and over-

exposed regions of real-world images by learning to reverse the camera pipeline. Note that the input LDR images are captured

by different real cameras, and all reconstructed HDR images have been tone-mapped by [32] for display.

Abstract

Recovering a high dynamic range (HDR) image from a

single low dynamic range (LDR) input image is challeng-

ing due to missing details in under-/over-exposed regions

caused by quantization and saturation of camera sensors.

In contrast to existing learning-based methods, our core

idea is to incorporate the domain knowledge of the LDR im-

age formation pipeline into our model. We model the HDR-

to-LDR image formation pipeline as the (1) dynamic range

clipping, (2) non-linear mapping from a camera response

function, and (3) quantization. We then propose to learn

three specialized CNNs to reverse these steps. By decom-

posing the problem into specific sub-tasks, we impose ef-

fective physical constraints to facilitate the training of indi-

vidual sub-networks. Finally, we jointly fine-tune the entire

model end-to-end to reduce error accumulation. With exten-

sive quantitative and qualitative experiments on diverse im-

age datasets, we demonstrate that the proposed method per-

forms favorably against state-of-the-art single-image HDR

reconstruction algorithms.

*Indicates equal contribution.

1. Introduction

HDR images are capable of capturing rich real-world

scene appearances including lighting, contrast, and details.

Consumer-grade digital cameras, however, can only capture

images within a limited dynamic range due to sensor con-

straints. The most common approach to generate HDR im-

ages is to merge multiple LDR images captured with differ-

ent exposures [12]. Such a technique performs well on static

scenes but often suffers from ghosting artifacts on dynamic

scenes or hand-held cameras. Furthermore, capturing mul-

tiple images of the same scene may not always be feasible

(e.g., existing LDR images on the Internet).

Single-image HDR reconstruction aims to recover an

HDR image from a single LDR input. The problem is

challenging due to the missing information in under-/over-

exposed regions. Recently, several methods [14, 15, 40, 53,

56] have been developed to reconstruct an HDR image from

a given LDR input using deep convolutional neural net-

works (CNNs). However, learning a direct LDR-to-HDR

mapping is difficult as the variation of HDR pixels (32-bit)

is significantly higher than that of LDR pixels (8-bit). Re-

cent methods address this challenge either by focusing on
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recovering the over-exposed regions [14] or synthesizing

several up-/down-exposed LDR images and fusing them to

produce an HDR image [15]. The artifacts induced by quan-

tization and inaccurate camera response functions (CRFs)

are, however, only implicitly addressed through learning.

In this work, we incorporate the domain knowledge of

the LDR image formation pipeline to design our model. We

model the image formation with the following steps [12]:

(1) dynamic range clipping, (2) non-linear mapping with

a CRF, and (3) quantization. Instead of learning a direct

LDR-to-HDR mapping using a generic network, our core

idea is to decompose the single-image HDR reconstruc-

tion problem into three sub-tasks: i) dequantization, ii) lin-

earization, and iii) hallucination, and develop three deep

networks to specifically tackle each of the tasks. First, given

an input LDR image, we apply a Dequantization-Net to re-

store the missing details caused by quantization and reduce

the visual artifacts in the under-exposed regions (e.g., band-

ing artifacts). Second, we estimate an inverse CRF with a

Linearization-Net and convert the non-linear LDR image to

a linear image (i.e., scene irradiance). Building upon the

empirical model of CRFs [16], our Linearization-Net lever-

ages the additional cues from edges, the intensity histogram

and a monotonically increasing constraint to estimate more

accurate CRFs. Third, we predict the missing content in

the over-exposed regions with a Hallucination-Net. To han-

dle other complicated operations (e.g., lens shading correc-

tion, sharpening) in modern camera pipelines that we do

not model, we use a Refinement-Net and jointly fine-tune

the whole model end-to-end to reduce error accumulation

and improve the generalization ability to real input images.

By explicitly modeling the inverse functions of the LDR

image formation pipeline, we significantly reduce the diffi-

culty of training one single network for reconstructing HDR

images. We evaluate the effectiveness of our method on

four datasets and real-world LDR images. Extensive quan-

titative and qualitative evaluations, as well as the user study,

demonstrate that our model performs favorably against the

state-of-the-art single-image HDR reconstruction methods.

Figure 1 shows our method recovers visually pleasing re-

sults with faithful details. Our contributions are three-fold:

• We tackle the single-image HDR reconstruction prob-

lem by reversing image formation pipeline, including

the dequantization, linearization, and hallucination.

• We introduce specific physical constraints, features,

and loss functions for training each individual network.

• We collect two HDR image datasets, one with syn-

thetic LDR images and the other with real LDR im-

ages, for training and evaluation. We show that our

method performs favorably against the state-of-the-art

methods in terms of the HDR-VDP-2 scores and visual

quality on the collected and existing datasets.

2. Related Work

Multi-image HDR reconstruction. The most common

technique for creating HDR images is to fuse a stack of

bracketed exposure LDR images [12, 38]. To handle dy-

namic scenes, image alignment and post-processing are re-

quired to minimize artifacts [25, 37, 50]. Recent methods

apply CNNs to fuse multiple flow-aligned LDR images [23]

or unaligned LDR images [52]. In contrast, we focus on re-

constructing an HDR image from a single LDR image.

Single-image HDR reconstruction. Single-image HDR

reconstruction does not suffer from ghosting artifacts but

is significantly more challenging than the multi-exposure

counterpart. Early approaches estimate the density of light

sources to expand the dynamic range [1, 2, 3, 4, 5] or ap-

ply the cross-bilateral filter to enhance the input LDR im-

ages [20, 27]. With the advances of deep CNNs [17, 48],

several methods have been developed to learn a direct LDR-

to-HDR mapping [40, 53, 56]. Eilertsen et al. [14] propose

the HDRCNN method that focuses on recovering missing

details in the over-exposed regions while ignoring the quan-

tization artifacts in the under-exposed areas. In addition, a

fixed inverse CRF is applied, which may not be applica-

ble to images captured from different cameras. Instead of

learning a direct LDR-to-HDR mapping, some recent meth-

ods [15, 30] learn to synthesize multiple LDR images with

different exposures and reconstruct the HDR image using

the conventional multi-image technique [12]. However, pre-

dicting LDR images with different exposures from a single

LDR input itself is challenging as it involves the non-linear

CRF mapping, dequantization, and hallucination.

Unlike [15, 30], our method directly reconstructs an

HDR image by modeling the inverse process of the image

formation pipeline. Figure 2 illustrates the LDR image for-

mation pipeline, state-of-the-art single-image HDR recon-

struction approaches [14, 15, 40], and the proposed method.

Dequantization and decontouring. When converting real-

valued HDR images to 8-bit LDR images, quantization er-

rors inevitably occurs. They often cause scattered noise or

introduce false edges (known as contouring or banding arti-

facts) particularly in regions with smooth gradient changes.

While these errors may not be visible in the non-linear LDR

image, the tone mapping operation (for visualizing an HDR

image) often aggravates them, resulting in noticeable arti-

facts. Existing decontouring methods smooth images by

applying the adaptive spatial filter [9] or selective average

filter [49]. However, these methods often involve meticu-

lously tuned parameters and often produce undesirable ar-

tifacts in textured regions. CNN-based methods have also

been proposed [18, 35, 58]. Their focus is on restoring an 8-

bit image from lower bit-depth input (e.g., 2-bit or 4-bit). In

contrast, we aim at recovering a 32-bit floating-point image

from an 8-bit LDR input image.
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Radiometric calibration. As the goal of HDR reconstruc-

tion is to measure the full scene irradiance from an input

LDR image, it is necessary to estimate the CRF. Recovering

the CRF from a single image requires certain assumptions

of statistical priors, e.g., color mixtures at edges [33, 34, 43]

or noise distribution [41, 51]. Nevertheless, these priors

may not be applicable to a wide variety of images in the

wild. A CRF can be empirically modeled by the basis vec-

tors extracted from a set of real-world CRFs [16] via the

principal component analysis (PCA). Li and Peers [31] train

a CRF-Net to estimate the weights of the basis vectors from

a single input image and then use the principal components

to reconstruct the CRF. Our work improves upon [31] by

introducing new features and monotonically increasing con-

straint. We show that an accurate CRF is crucial to the qual-

ity of the reconstructed HDR image. After obtaining an ac-

curate HDR image, users can adopt advanced tone-mapping

methods (e.g., [32, 46]) to render a more visually pleasing

LDR image. Several other applications (e.g., image-based

lighting [11] and motion blur synthesis [12]) also require

linear HDR images for further editing or mapping.

Image completion. Recovering the missing contents in sat-

urated regions can be posed as an image completion prob-

lem. Early image completion approaches synthesize the

missing contents via patch-based synthesis [6, 13, 19]. Re-

cently, several learning-based methods have been proposed

to synthesize the missing pixels using CNNs [21, 36, 45,

55, 54]. Different from the generic image completion task,

the missing pixels in the over-exposed regions always have

equal or larger values than other pixels in an image. We in-

corporate this constraint in our Hallucination-Net to reflect

the physical formation in over-exposed regions.

Camera pipeline. We follow the forward LDR image

formation pipeline in HDR reconstruction [12] and radio-

metric calibration [8] algorithms. While the HDRCNN

method [14] also models a similar LDR image formation,

this model does not learn to estimate accurate CRFs and re-

duce quantization artifacts. There exist more advanced and

complex camera pipelines to model the demosaicing, white

balancing, gamut mapping, noise reduction steps for image

formation [7, 24, 26]. In this work, we focus on the com-

ponents of great importance for HDR image reconstruction

and model the rest of the pipeline by a refinement network.

3. Learning to Reverse the Camera Pipeline

In this section, we first introduce the image formation

pipeline that renders an LDR image from an HDR image

(the scene irradiance) as shown in Figure 2(a). We then de-

scribe our design methodology and training procedures for

single-image HDR reconstruction by reversing the image

formation pipeline as shown in Figure 2(e).
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Figure 2: The LDR Image formation pipeline and

overview of single-image HDR reconstruction methods.

(a) We model the LDR image formation by (from right

to left) dynamic range clipping, non-linear mapping, and

quantization [12]. (b) ExpandNet [40] learns a direct map-

ping from LDR to HDR images. (c) DrTMO [15] synthe-

sizes multiple LDR images with different exposures and

fuses them into an HDR image. (d) HDRCNN [14] predicts

details in over-exposed regions while ignoring the quantiza-

tion errors in the under-exposed regions. (e) The proposed

method explicitly learns to “reverse” each step of the LDR

image formation pipeline.

3.1. LDR image formation

While the real scene irradiance has a high dynamic

range, the digital sensor in cameras can only capture and

store a limited extent, usually with 8 bits. Given the ir-

radiance E and sensor exposure time t, an HDR image is

recorded by H = E × t. The process of converting one

HDR image to one LDR image can be modeled by the fol-

lowing major steps:

(1) Dynamic range clipping. The camera first clips the

pixel values of an HDR image H to a limited range, which

can be formulated by Ic = C(H) = min (H, 1). Due to the

clipping operation, there is information loss for pixels in the

over-exposed regions.

(2) Non-linear mapping. To match the human perception

of the scene, a camera typically applies a non-linear CRF
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mapping to adjust the contrast of the captured image: In =
F(Ic). A CRF is unique to the camera model and unknown

in our problem setting.

(3) Quantization. After the non-linear mapping, the

recorded pixel values are quantized to 8 bits by Q(In) =
⌊255× In + 0.5⌋ /255. The quantization process leads to

errors in the under-exposed and smooth gradient regions.

In summary, an LDR image L is formed by:

L = Φ(H) = Q(F(C(H))) , (1)

where Φ denotes the pipeline of dynamic range clipping,

non-linear mapping, and quantization steps.

To learn the inverse mapping Φ−1, we propose to decom-

pose the HDR reconstruction task into three sub-tasks: de-

quantization, linearization, and hallucination, which model

the inverse functions of the quantization, non-linear map-

ping, and dynamic range clipping, respectively. We train

three CNNs for the three sub-tasks using the correspond-

ing supervisory signal and specific physical constraints.

We then integrate these three networks into an end-to-end

model and jointly fine-tune to further reduce error accumu-

lation and improve the performance.

3.2. Dequantization

Quantization often results in scattered noise or contour-

ing artifacts in smooth regions. Therefore, we propose to

learn a Dequantization-Net to reduce the quantization arti-

facts in the input LDR image.

Architecture. Our Dequantization-Net adopts a 6-level

U-Net architecture. Each level consists of two convolu-

tional layers followed by a leaky ReLU (α = 0.1) layer.

We use the Tanh layer to normalize the output of the

last layer to [−1.0, 1.0]. Finally, we add the output of the

Dequantization-Net to the input LDR image to generate the

dequantized LDR image Îdeq.

Training. We minimize the ℓ2 loss between the dequantized

LDR image Îdeq and corresponding ground-truth image In:

Ldeq = ‖Îdeq − In‖
2

2
. Note that In = F(C(H)) is con-

structed from the ground-truth HDR image with dynamic

range clipping and non-linear mapping.

3.3. Linearization

The goal of linearization (i.e., radiometric calibration) is

to estimate a CRF and convert a non-linear LDR image to a

linear irradiance. Although the CRF (denoted by F) is dis-

tinct for each camera, all the CRFs must have the following

properties. First, the function should be monotonically in-

creasing. Second, the minimal and maximal input values

should be respectively mapped to the minimal and maximal

output values: F(0) = 0 and F(1) = 1 in our case. As

the CRF is a one-to-one mapping function, the inverse CRF

(denoted by G = F−1) also has the above properties.
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Figure 3: Spatial-aware soft histogram layer. We extract

histogram features by soft counting on pixel intensities and

preserving the spatial information.

To represent a CRF, we first discretize an inverse CRF

by uniformly sampling 1024 points between [0, 1]. There-

fore, an inverse CRF is represented as a 1024-dimensional

vector g ∈ R
1024. We then adopt the Empirical Model of

Response (EMoR) model [16], which assumes that each in-

verse CRF g can be approximated by a linear combination

of K PCA basis vectors. In this work, we set K = 11
as it has been shown to capture the variations well in the

CRF dataset [31]. To predict the inverse CRF, we train a

Linearization-Net to estimate the weights from the input

non-linear LDR image.

Input features. As the edge and color histogram have been

shown effective to estimate an inverse CRF [33, 34], we

first extract the edge and histogram features from the non-

linear LDR image. We adopt the Sobel filter to obtain the

edge responses, resulting in 6 feature maps (two directions

× three color channels). To extract the histogram features,

we propose a spatial-aware soft-histogram layer. Specifi-

cally, given the number of histogram bins B, we construct

a soft counting of pixel intensities by:

h(i, j, c, b) =

{

1− d ·B , if d < 1

B

0 , otherwise
(2)

where i, j indicate horizontal and vertical pixel positions, c
denotes the index of color channels, b ∈ {1, · · · , B} is the

index for the histogram bin, and d = |I(i, j, c) − (2b −
1)/(2B)| is the intensity distance to the center of the b-
th bin. Every pixel contributes to the two nearby bins ac-

cording to the intensity distance to the center of each bin.

Figure 3 shows a 1D example of our soft-histogram layer.

Our histogram layer preserves the spatial information and is

fully differentiable.

Architecture. We use the ResNet-18 [17] as the backbone

of our Linearization-Net. To extract a global feature, we add

a global average pooling layer after the last convolutional
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Figure 4: Architecture of the Linearization-Net. Our

Linearization-Net takes as input the non-linear LDR image,

edge maps, and histogram maps, and predicts the PCA coef-

ficients for reconstructing an inverse CRF, followed by en-

forcing the monotonically increasing constraint.

layer. We then use two fully-connected layers to generate

K PCA weights and reconstruct an inverse CRF.

Monotonically increasing constraint. To satisfy the con-

straint that a CRF/inverse CRF should be monotonically in-

creasing, we adjust the estimated inverse CRF by enforcing

all the first-order derivatives to be non-negative. Specifi-

cally, we calculate the first-order derivatives by g′
1
= 0 and

g′
d
= gd − gd−1 for d ∈ [2, · · · , 1024] and find the small-

est negative derivative g′
m

= min(mind(g
′
d
), 0). We then

shift the derivatives by g̃′
d
= g′

d
− g′

m
. The inverse CRF

g̃ = [g̃1, · · · , g̃1024] is then reconstructed by integration and

normalization:

g̃d =
1

∑

1024

i=1
g̃′
i

d
∑

i=1

g̃′
i
. (3)

We normalize g̃d to ensure the inverse CRF satisfies the con-

straint that G(0) = 0 and G(1) = 1. Figure 4 depicts the

pipeline of our Linearization-Net. With the normalized in-

verse CRF g̃, we then map the non-linear LDR image Îdeq

to a linear LDR image Îlin.

Training. We define the linear LDR image reconstruction

loss by: Llin = ‖Îlin−Ic‖
2

2
, where Ic = C(H) is constructed

from the ground-truth HDR image with the dynamic range

clipping process. In addition, we formulate the inverse CRF

reconstruction loss by: Lcrf = ‖g̃ − g‖2
2
, where g is the

ground-truth inverse CRF. We train the Linearization-Net

by optimizing Llin + λcrfLcrf. We empirically set λcrf = 0.1
in all our experiments.

3.4. Hallucination

After dequantization and linearization, we aim to recover

the missing contents due to dynamic range clipping. To this

end, we train a Hallucination-Net (denoted by C−1(·)) to

Reconstructed HDR

Over-exposed mask

!"
Residual

#
Linear LDR

ReLU

HDR Image 

reconstruction 

loss $%&'
Perceptual loss $(

TV loss $)*
Figure 5: Architecture of the Hallucination-Net. We train

the Hallucination-Net to predict positive residuals and re-

cover missing content in the over-exposed regions.

predict the missing details within the over-exposed regions.

Architecture. We adopt an encoder-decoder architecture

with skip connections [14] as our Hallucination-Net. The

reconstructed HDR image is modeled by Ĥ = Îlin +
α · C−1(Îlin), where Îlin is the image generated from the

Linearization-Net and α = max(0, Îlin − γ)/(1− γ) is the

over-exposed mask with γ = 0.95. Since the missing values

in the over-exposed regions should always be greater than

the existing pixel values, we constrain the Hallucination-

Net to predict positive residuals by adding a ReLU layer

at the end of the network. We note that our over-exposed

mask is a soft mask where α ∈ [0, 1]. The soft mask allows

the network to smoothly blend the residuals with the exist-

ing pixel values around the over-exposed regions. Figure 5

shows the design of our Hallucination-Net.

We find that the architecture of [14] may generate visi-

ble checkerboard artifacts in large over-exposed regions. In

light of this, we replace the transposed convolutional layers

in the decoder with the resize-convolution layers [44].

Training. We train our Hallucination-Net by minimizing

the log−ℓ2 loss: Lhal = ‖ log(Ĥ) − log(H)‖2
2
, where

H is the ground-truth HDR image. We empirically find

that training is more stable and achieves better performance

when minimizing the loss in the log domain. As the high-

light regions (e.g., sun and light sources) in an HDR image

typically have values with orders of magnitude larger than

those of other regions, the loss is easily dominated by the

errors in the highlight regions when measured in the linear

domain. Computing the loss in the log domain reduces the

influence of these extremely large errors and encourages the

network to restore more details in other regions.

To generate more realistic details, we further include the

perceptual loss Lp [22]: As the VGG-Net (used in Lp) is

trained on non-linear RGB images, directly feeding an lin-

ear HDR image to the VGG-Net may not obtain meaningful

features. Therefore, we first apply a differentiable global

tone-mapping operator [52] to map the HDR images to a

non-linear RGB space. We can then compute the percep-

tual loss on the tone-mapped HDR images. To improve the

spatial smoothness of the predicted contents, we also mini-

mize the total variation (TV) loss Ltv on the recovered HDR
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image. Our total loss for training the Hallucination-Net is

Lhal + λpLp + λtvLtv. We empirically set λp = 0.001 and

λtv = 0.1 in our experiments.

3.5. Joint training

We first train the Dequantization-Net, Linearization-Net,

and Hallucination-Net with the corresponding input and

ground-truth data. After the three networks converge, we

jointly fine-tune the entire pipeline by minimizing the com-

bination of loss functions Ltotal:

λdeqLdeq+λlinLlin+λcrfLcrf+λhalLhal+λpLp+λtvLtv (4)

where we set the weights to λdeq = 1, λlin = 10, λcrf = 1,

λhal = 1, λp = 0.001, and λtv = 0.1. The joint training

reduces error accumulation between the sub-networks and

further improves the reconstruction performance.

3.6. Refinement

Modern camera pipeline contains significant amounts

of spatially-varying operations, e.g. local tone-mapping,

sharpening, chroma denoising, lens shading correction, and

white balancing. To handle these effects that are not cap-

tured by our image formation pipeline, we introduce an op-

tional Refinement-Net.

Architecture. Our Refinement-Net adopts the same U-Net

architecture as the Dequantization-Net, which learns to re-

fine the output of the Hallucination-Net by a residual learn-

ing. The output of the Refinement-net is denoted by Ĥref.

Training. To model the effects of real camera pipelines, we

train the Refinement-Net using HDR images reconstructed

from exposure stacks captured by various cameras (more

details in the supplementary material). We minimize the

same Ltotal for end-to-end fine-tuning (with λdeq, λlin, λcrf,

and λhal set to 0 as there are no stage-wise supervisions),

and replace the output of Hallucination-Net Ĥ with refined

HDR image Ĥref.

4. Experimental Results

We first describe our experimental settings and evalua-

tion metrics. Next, we present quantitative and qualitative

comparisons with the state-of-the-art single-image HDR re-

construction algorithms. We then analyze the contributions

of individual modules to justify our design choices.

4.1. Experiment setups

Datasets. For training and evaluating single-image HDR

reconstruction algorithms, we construct two HDR image

datasets: HDR-SYNTH and HDR-REAL. We also evalu-

ate our method on two publicly available datasets: RAISE

(RAW-jpeg pairs) [10] and HDR-EYE [42].

Evaluation metrics. We adopt the HDR-VDP-2 [39] to

evaluate the accuracy of HDR reconstruction. We normalize

both the predicted HDR and reference ground-truth HDR

images with the processing steps in [40]. We also evalu-

ate the PSNR, SSIM, and perceptual score with the LPIPS

metric [57] on the tone-mapped HDR images in the supple-

mentary material.

4.2. Comparisons with state­of­the­art methods

We compare the proposed method with five recent CNN-

based approaches: HDRCNN [14], DrTMO [15], Expand-

Net [40], Deep chain HDRI [29], and Deep recursive

HDRI [30]. As the ExpandNet does not provide the code for

training, we only compare with their released pre-trained

model. Both the Deep chain HDRI and Deep recursive

HDRI methods do not provide their pre-trained models, so

we compare with the results on the HDR-EYE dataset re-

ported in their papers.

We first train our model on the training set of the HDR-

SYNTH dataset (denoted by Ours) and the fine-tune on the

training set of the HDR-REAL dataset (denoted by Ours+).

For fair comparisons, we also re-train the HDRCNN and

DrTMO models with both the HDR-SYNTH and HDR-

REAL datasets (denoted by HDRCNN+ and DrTMO+). We

provide more comparisons with the pre-trained models of

HDRCNN and DrTMO and the our results from each train-

ing stage in the supplementary material.

Quantitative comparisons. Table 1 shows the average

HDR-VDP-2 scores on the HDR-SYNTH, HDR-REAL,

RAISE, and HDR-EYE datasets. The proposed method

performs favorably against the state-of-the-art methods on

all four datasets. After fine-tuning on the HDR-REAL train-

ing set, the performance of our model (Ours+) is further

improved by 1.57 on HDR-REAL, 0.41 on the RAISE, and

0.5 on HDR-EYE datasets, respectively.

Visual comparisons. Figure 6 compares the proposed

model with existing methods on a real image captured us-

ing NIKON D90 provided by HDR-REAL and an example

provided in [15]. We note that both two examples in Fig-

ure 6 come from unknown camera pipeline, and there are

no ground-truth HDRs. In general, the HDRCNN [14] of-

ten generates overly-bright results and suffers from noise

in the under-exposed regions as an aggressive and fixed in-

verse CRF x2 is used. The results of the DrTMO [15] often

looks blurry or washed-out. The ExpandNet [40] cannot re-

store the details well in the under-exposed regions and gen-

erates visual artifacts in the over-exposed regions, such as

sky. Due to the space limit, we provide more visual com-

parisons in the supplementary material.

User study. We conduct a user study to evaluate the human

preference on HDR images. We adopt the paired compari-

son [28, 47], where users are asked to select a preferred im-

age from a pair of images in each comparison. We design

the user study with the following two settings: (1) With-
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Table 1: Quantitative comparison on HDR images with existing methods. * represents that the model is re-trained on our

synthetic training data and + is fine-tuned on both synthetic and real training data. RedRedRed text indicates the best and blue text

indicates the best performing state-of-the-art method.

Method Training dataset HDR-SYNTH HDR-REAL RAISE [10] HDR-EYE [42]

HDRCNN+ [14] HDR-SYNTH + HDR-REAL 55.51± 6.64 51.38± 7.17 56.51± 4.33 51.08± 5.84

DrTMO+ [15] HDR-SYNTH + HDR-REAL 56.41± 7.20 50.77± 7.78 57.92± 3.69 51.26± 5.94

ExpandNet [40] Pre-trained model of [40] 53.55± 4.98 48.67± 6.46 54.62± 1.99 50.43± 5.49

Deep chain HDRI [29] Pre-trained model of [29] - - - 49.80± 5.97

Deep recursive HDRI [30] Pre-trained model of [30] - - - 48.85± 4.91

Ours* HDR-SYNTH 60.11± 6.1060.11± 6.1060.11± 6.10 51.59± 7.42 58.80± 3.91 52.66± 5.64

Ours+ HDR-SYNTH + HDR-REAL 59.52± 6.02 53.16± 7.1953.16± 7.1953.16± 7.19 59.21± 3.6859.21± 3.6859.21± 3.68 53.16± 5.9253.16± 5.9253.16± 5.92

(a) Input LDR (b) HDRCNN+ (c) DrTMO+ (d) ExpandNet (e) Ours+

Figure 6: Visual comparison on real input image. The example on the top is captured by NIKON D90 from HDR-REAL,

and the bottom one is from DrTMO [15]. The HDRCNN [14] often suffers from noise, banding artifacts or over-saturated

colors in the under-exposed regions. The DrTMO [15] cannot handle over-exposed regions well and leads to blurry and

low-contrast results. The ExpandNet [40] generates artifacts in the over-exposed regions. In contrast, our method restores

fine details in both the under-exposed and over-exposed regions and renders visually pleasing results.

reference test: We show both the input LDR and the ground-

truth HDR images as reference. This test evaluates the

faithfulness of the reconstructed HDR image to the ground-

truth. (2) No-reference test: The input LDR and ground-

truth HDR images are not provided. This test mainly com-

pares the visual quality of two reconstructed HDR images.

We evaluate all 70 HDR images in the HDR-REAL test

set. We compare the proposed method with the HDR-

CNN [14], DrTMO [15], and ExpandNet [40]. We ask each

participant to compare 30 pairs of images and collect the

results from a total of 200 unique participants. Figure 7

reports the percentages of the head-to-head comparisons in

which users prefer our method over the HDRCNN, DrTMO,

and ExpandNet. Overall, there are 70% and 69% of users

prefer our results in the with-reference and no-reference

tests, respectively. Both user studies show that the proposed

method performs well to human subjective perception.

1657



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

vs. DrTMO vs. ExpandNet vs. HDRCNN vs. All

With-reference test No-reference test

Figure 7: Results of user study. Our results are preferred

by users in both with-reference and no-reference tests.

Table 2: Comparisons on Dequantization-Net. Our

Dequantization-Net restores the missing details due to

quantization and outperforms existing methods.

Method PSNR (↑) SSIM (↑)

w/o dequantization 33.86± 6.96 0.9946± 0.0109

Hou et al. [18] 33.79± 6.72 0.9936± 0.0110

Liu et al. [35] 34.83± 6.04 0.9954± 0.0073

Dequantization-Net (Ours) 35.87± 6.1135.87± 6.1135.87± 6.11 0.9955± 0.00700.9955± 0.00700.9955± 0.0070

4.3. Ablation studies

In this section, we evaluate the contributions of individ-

ual components using the HDR-SYNTH test set.

Dequantization. We consider the LDR images as the in-

put and the image In = F(C(H)) synthesized from the

HDR images as the ground-truth of the dequantization pro-

cedure. We compare our Dequantization-Net with CNN-

based models [18, 35]. Table 2 shows the quantitative com-

parisons of dequantized images, where our method per-

forms better than other approaches.

Linearization. Our Linearization-Net takes as input the

non-linear LDR image, Sobel filter responses, and his-

togram features to estimate an inverse CRF. To validate the

effectiveness of these factors, we train our Linearization-

Net with different combinations of the edge and histogram

features. Table 3 shows the reconstruction error of the

inverse CRF and the PSNR between the output of our

Linearization-Net and the corresponding ground-truth im-

age Ic = C(H). The edge and histogram features help

predict more accurate inverse CRFs. The monotonically in-

creasing constraint further boosts the reconstruction perfor-

mance on both the inverse CRFs and the linear images.

Hallucination. We start with the architecture of Eilert-

sen et al. [14], which does not enforce the predicted residu-

als being positive. As shown in Table 4, our model design

(predicting positive residuals) can improve the performance

by 1.19 HDR-VDP-2 scores. By replacing the transposed

convolution with the resize convolution in the decoder, our

Table 3: Analysis on alternatives of Linearization-Net.

We demonstrate the edge and histogram features and mono-

tonically increasing constraint are effective to improve the

performance of our Linearization-Net.

Image Edge Histogram
Monotonically L2 error (↓) PSNR (↑)

increasing of inverse CRF of linear image

X - - - 2.00± 3.15 33.43± 7.03
X X - - 1.66± 2.93 34.31± 6.94
X - X - 1.61± 3.03 34.51± 7.14
X X X - 1.58± 2.73 34.53± 6.83
X X X X 1.56± 2.521.56± 2.521.56± 2.52 34.64± 6.7334.64± 6.7334.64± 6.73

Table 4: Analysis on alternatives of Hallucination-Net.

With the positive residual learning, the model predicts phys-

ically accurate values within the over-exposed regions. The

resize convolution reduces the checkerboard artifacts, while

the perceptual loss helps generate realistic details.

Positive residual Resize convolution Perceptual loss HDR-VDP-2 (↑)

- - - 63.60 ± 15.32

X - - 64.79 ± 15.89

X X - 64.52 ± 16.05

X X X 66.31 ± 15.8266.31 ± 15.8266.31 ± 15.82

model effectively reduces the checkerboard artifacts. Fur-

thermore, introducing the perceptual loss for training not

only improves the HDR-VDP-2 scores but also helps the

model to predict more realistic details. We provide visual

comparisons in the supplementary material.

End-to-end training from scratch. To demonstrate the

effectiveness of explicitly reversing the camera pipeline,

we train our entire model (including all sub-networks)

from scratch without any intermediate supervisions. Com-

pared to the proposed model shown in Table 1, the perfor-

mance of such a model drops significantly (-4.43 and -3.48

HDR-VDP-2 scores in the HDR-SYNTH and HDR-REAL

datasets, respectively). It shows that our stage-wise train-

ing is effective, and the performance improvement does not

come from the increase of network capacity.

5. Conclusions

We have presented a novel method for single-image

HDR reconstruction. Our key insight is to leverage the

domain knowledge of the LDR image formation pipeline

for designing network modules and learning to reverse the

imaging process. Explicitly modeling the camera pipeline

allows us to impose physical constraints for network train-

ing and therefore leads to improved generalization to un-

seen scenes. Extensive experiments and comparisons val-

idate the effectiveness of our approach to restore visually

pleasing details for a wide variety of challenging scenes.
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[1] Ahmet Oǧuz Akyüz, Roland Fleming, Bernhard E Riecke,

Erik Reinhard, and Heinrich H Bülthoff. Do hdr displays

support ldr content?: A psychophysical evaluation. ACM

TOG, 2007. 2
[2] Francesco Banterle, Kurt Debattista, Alessandro Artusi,

Sumanta Pattanaik, Karol Myszkowski, Patrick Ledda, and

Alan Chalmers. High dynamic range imaging and low dy-

namic range expansion for generating HDR content. Com-

puter Graphics Forum, 2009. 2
[3] Francesco Banterle, Patrick Ledda, Kurt Debattista, and

Alan Chalmers. Inverse tone mapping. In International con-

ference on Computer graphics and interactive techniques in

Australasia and Southeast Asia, 2006. 2
[4] Francesco Banterle, Patrick Ledda, Kurt Debattista, and

Alan Chalmers. Expanding low dynamic range videos for

high dynamic range applications. In Spring Conference on

Computer Graphics, 2008. 2
[5] Francesco Banterle, Patrick Ledda, Kurt Debattista, Alan

Chalmers, and Marina Bloj. A framework for inverse tone

mapping. The Visual Computer, 2007. 2
[6] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. PatchMatch: A randomized correspon-

dence algorithm for structural image editing. ACM TOG,

2009. 3
[7] MS Brown and SJ Kim. Understanding the in-camera image

processing pipeline for computer vision. 2015. 3
[8] Ayan Chakrabarti, Ying Xiong, Baochen Sun, Trevor Dar-

rell, Daniel Scharstein, Todd Zickler, and Kate Saenko.

Modeling radiometric uncertainty for vision with tone-

mapped color images. TPAMI, 2014. 3
[9] Scott J Daly and Xiaofan Feng. Decontouring: Prevention

and removal of false contour artifacts. In Human Vision and

Electronic Imaging IX, 2004. 2
[10] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conot-

ter, and Giulia Boato. Raise: A raw images dataset for digital

image forensics. In ACM MM, 2015. 6, 7
[11] Paul Debevec. Image-based lighting. In ACM SIGGRAPH

2006 Courses. 2006. 3
[12] Paul E. Debevec and Jitendra Malik. Recovering high dy-

namic range radiance maps from photographs. ACM TOG,

1997. 1, 2, 3
[13] Alexei A. Efros and William T. Freeman. Image quilting for

texture synthesis and transfer. ACM TOG, 2001. 3
[14] Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafał K.

Mantiuk, and Jonas Unger. HDR image reconstruction from

a single exposure using deep CNNs. ACM TOG, 2017. 1, 2,

3, 5, 6, 7, 8
[15] Yuki Endo, Yoshihiro Kanamori, and Jun Mitani. Deep re-

verse tone mapping. ACM TOG, 2017. 1, 2, 3, 6, 7
[16] Michael D. Grossberg and Shree K. Nayar. What is the space

of camera response functions? In CVPR, 2003. 2, 3, 4
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 4
[18] Xianxu Hou and Guoping Qiu. Image companding and in-

verse halftoning using deep convolutional neural networks.

arXiv, 2017. 2, 8
[19] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-

hannes Kopf. Image completion using planar structure guid-

ance. ACM TOG, 2014. 3
[20] Yongqing Huo, Fan Yang, Le Dong, and Vincent Brost.

Physiological inverse tone mapping based on retina re-

sponse. The Visual Computer, 2014. 2
[21] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.

Globally and locally consistent image completion. ACM

TOG, 2017. 3
[22] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 5
[23] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high

dynamic range imaging of dynamic scenes. ACM TOG,

2017. 2
[24] Hakki Can Karaimer and Michael S Brown. A software

platform for manipulating the camera imaging pipeline. In

ECCV, 2016. 3
[25] Erum Arif Khan, Ahmet Oguz Akyuz, and Erik Reinhard.

Ghost removal in high dynamic range images. In ICIP, 2006.

2
[26] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk,
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