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Abstract

We describe a simple method for unsupervised domain

adaptation, whereby the discrepancy between the source

and target distributions is reduced by swapping the low-

frequency spectrum of one with the other. We illustrate the

method in semantic segmentation, where densely annotated

images are aplenty in one domain (e.g., synthetic data), but

difficult to obtain in another (e.g., real images). Current

state-of-the-art methods are complex, some requiring ad-

versarial optimization to render the backbone of a neural

network invariant to the discrete domain selection variable.

Our method does not require any training to perform the do-

main alignment, just a simple Fourier Transform and its in-

verse. Despite its simplicity, it achieves state-of-the-art per-

formance in the current benchmarks, when integrated into

a relatively standard semantic segmentation model. Our re-

sults indicate that even simple procedures can discount nui-

sance variability in the data that more sophisticated meth-

ods struggle to learn away.1

1. Introduction

Unsupervised domain adaptation (UDA) refers to adapt-

ing a model trained with annotated samples from one dis-

tribution (source), to operate on a different (target) distribu-

tion for which no annotations are given. For example, the

source domain can consist of synthetic images and their cor-

responding pixel-level labels (semantic segmentation), and

the target can be real images with no ground-truth annota-

tions. Simply training the model on the source data does

not yield satisfactory performance on the target data, due to

the covariate shift. In some cases, perceptually insignificant

changes in the low-level statistics can cause significant de-

terioration of the performance of the trained model, unless

UDA is performed.

State-of-the-art UDA methods train a deep neural net-

work (DNN) model for a given task (say, semantic segmen-

tation) plus an auxiliary loss designed to make the model

1Code available at: https://github.com/YanchaoYang/FDA

invariant to the binary selection of source/target domain.

This requires difficult adversarial training. We explore the

hypothesis that simple alignment of the low-level statistics

between the source and target distributions can improve per-

formance in UDA, without any need for training beyond the

primary task of semantic segmentation.

Our method is illustrated in Fig. 1: One simply computes

the (Fast) Fourier Transform (FFT) of each input image, and

replaces the low-level frequencies of the target images into

the source images before reconstituting the image for train-

ing, via the inverse FFT (iFFT), using the original annota-

tions in the source domain.

To test our hypothesis, we use as a baseline (lower

bound) the performance on the target data of a model trained

on the source. As a paragon (upper bound), we use a

state-of-the-art model with adversarial training [19]. We

expect that such a simple, “zero-shot” alignment of low-

level statistics would improve the baseline, and hopefully

come close to the paragon. However, the method actually

outperforms the paragon in semantic segmentation. We do

not take this to mean that our method is the way to per-

form UDA, in particular for general tasks beyond semantic

segmentation. However, the fact that such a simple method

outperforms sophisticated adversarial learning suggests that

these models are not effective at managing low-level nui-

sance variability.

Fourier domain adaptation requires selecting one free pa-

rameter, the size of the spectral neighborhood to be swapped

(green square in Fig. 1). We test a variety of sizes, as well

as a simple multi-scale method consisting of averaging the

results arising from different domain sizes.

The motivation for our approach stems from the obser-

vation that the low-level spectrum (amplitude) can vary sig-

nificantly without affecting the perception of high-level se-

mantics. Whether something is a vehicle or a person should

not depend on the characteristics of the sensor, or the illu-

minant, or other low-level sources of variability. Yet such

variability has significant impact on the spectrum, forcing

a learning-based model to “learn it away” along with other

nuisance variability. If this variability is not represented in

the training set, the models fail to generalize. However,
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Figure 1. Spectral Transfer: Mapping a source image to a target “style” without altering semantic content. A randomly sampled target

image provides the style by swapping the low-frequency component of the spectrum of the source image with its own. The outcome “source

image in target style” shows a smaller domain gap perceptually and improves transfer learning for semantic segmentation as measured in

the benchmarks in Sect. 3.

there are sources of variability that we know at the outset

not to be informative of the task at hand. The categorical

interpretation of an image is unchanged if we manipulated

global photometric statistics. Any monotonic rescaling of

the color map, including non-linear contrast changes, are

known nuisance factors, and can be eliminated at the outset

without having to be learned. This is especially important

since it appears that networks do not transfer well across

different low-level statistics [1]. While one could normalize

contrast transformations, in the absence of a canonical ref-

erence our Fourier transfer is among the simplest methods

to register them. The broader point is that known nuisance

variability can be dealt with at the outset, without the need

to learn it through complex adversarial training.

In the next section, we describe our method in more de-

tail and then test it empirically in standard UDA bench-

marks. Before doing so, we place our work in the context

of the current literature.

1.1. Related Work

Semantic Segmentation has benefited by the continu-

ous evolution of DNN architectures [26, 50, 5, 53, 41].

These are generally trained on datasets with dense pixel-

level annotations, such as Cityscapes [9], PASCAL [11] and

MSCOCO [24]. Manual annotation is not scalable [52],

and capturing representative imaging conditions adds to the

challenges. This has spurred interest in using synthetic data,

such as from GTA5 [33] and SYNTHIA [34]. Due to the

domain shift, models trained on the former tend to perform

poorly on the latter.

Domain Adaptation aims to reduce the shift between two

distributions [32, 10, 46]. A common discrepancy measure

is MMD (Maximum Mean Discrepancy) and its kernel vari-

ants [15, 27], extended by CMD (Central Moment Discrep-

ancy) [51] to higher-order statistics [3, 30]. Unfortunately,

two datasets are not guaranteed to be aligned even if the

MMD is minimized, due to the limited expressiveness of

such metrics. Adversarial Learning for domain adaptation

[14, 44, 39, 21] uses a discriminator trained to maximize the

confusion between source and target representations, thus

reducing the domain discrepancy. Alignment in high-level

feature space [27, 16, 36, 38, 31] can be counter-productive

for semantic segmentation, unlike image-level classifica-

tion, [20, 28, 37], due to the complex representations and

the difficulty in stabilizing adversarial training.

We draw on image-to-image translation and style trans-

fer [54, 25, 49, 8] to improve domain adaptation for se-

mantic segmentation. Cycada [19] aligns representations

at both the pixel-level and feature-level. DCAN [47] pre-

serves spatial structures and semantics by the channel-wise

alignment of multi-level features. To facilitate image space

alignment, [4] proposes domain-invariant structure extrac-

tion to disentangle domain-invariant and domain-specific

representations. [6] uses dense depth, readily available in

synthetic data. [17] generates intermediate style images be-

tween source and target. CLAN [29] enforce local semantic

consistency in global alignment. [52] proposes curriculum-

style learning to align both global distributions over images
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and local distributions over landmark superpixels. BDL

[23] employs bidirectional learning, where the segmenta-

tion network is exploited by the image transformation net-

work. There are also discriminators applied on the output

space [6, 43] to align source and target segmentation.

The use of a transformer network and discriminators at

multiple levels is computationally demanding, and more

challenging to train within the adversarial framework. In

contrast, our method does not utilize any image translation

networks to generate training images, nor discriminators to

align pixel/feature-level distributions. The only network

trained in our method is for the primary task of semantic

segmentation. We use a fully convolutional network that

outputs pixel-wise class (log) likelihoods. Note in the con-

current work [48], a transformer network trained with phase

preservation as a constraint also generates domain aligned

images that maintain semantic content in the source images.

Domain adaptation and Semi-Supervised Learning (SSL)

are closely related. When the domains are aligned, unsu-

pervised domain adaptation becomes SSL. CBST [55] and

BDL [23] used “self-training” as a form of regularization

[35], exploiting target images by treating pseudo-labels as

ground truth. ADVENT [45] minimizes both the entropy

of the pixel-wise predictions and the adversarial loss of the

entropy maps. The computation of the pixel-wise entropy

does not depend on any networks and entails no overhead.

We employ entropy minimization to regularize the training

of our segmentation network. Motivated by [42, 22, 12], we

also average the output of different models that are trained

with different spectral domain size, which fosters multi-

band transfer as discussed in detail next.

2. Method

We first describe the simple Fourier alignment, which

does not require any training, and then describe the loss we

use to train the overall semantic segmentation network to

leverage the Fourier alignment.

2.1. Fourier Domain Adaptation (FDA)

In unsupervised domain adaptation (UDA), we are given

a source dataset Ds = {(xs
i , y

s
i ) ∼ P (xs, ys)}Ns

i=1, where

xs ∈ R
H×W×3 is a color image, and ys ∈ R

H×W is the

semantic map associated with xs. Similarly Dt = {xt
i}

Nt

i=1

is the target dataset, where the ground truth semantic labels

are absent. Generally, the segmentation network trained on

Ds will have a performance drop when tested on Dt. Here,

we propose Fourier Domain Adaptation (FDA) to reduce

the domain gap between the two datasets.

Let FA,FP : R
H×W×3 → R

H×W×3 be the amplitude

and phase components of the Fourier transform F of an

RGB image, i.e., for a single channel image x we have:

F(x)(m,n) =
∑

h,w

x(h,w)e
−j2π





h

H
m+

w

W
n





, j2 = −1

(1)

which can be implemented efficiently using the FFT algo-

rithm in [13]. Accordingly, F−1 is the inverse Fourier trans-

form that maps spectral signals (phase and amplitude) back

to image space. Further, we denote with Mβ a mask, whose

value is zero except for the center region where β ∈ (0, 1):

Mβ(h,w) = 1(h,w)∈[−βH:βH,−βW :βW ] (2)

here we assume the center of the image is (0, 0). Note that

β is not measured in pixels, thus the choice of β does not

depend on image size or resolution. Given two randomly

sampled images xs ∼ Ds, xt ∼ Dt, Fourier Domain Adap-

tation can be formalized as:

xs→t = F−1([Mβ◦F
A(xt)+(1−Mβ)◦F

A(xs),FP (xs)])
(3)

where the low frequency part of the amplitude of the source

image FA(xs) is replaced by that of the target image xt.

Then, the modified spectral representation of xs, with its

phase component unaltered, is mapped back to the image

xs→t, whose content is the same as xs, but will resemble the

appearance of a sample from Dt. The process is illustrated

in Fig. 1 where the mask Mβ is shown in green.

Choice of β: As we can see from Eq. (3), β = 0 will

render xs→t the same as the original source image xs. On

the other hand, when β = 1.0, the amplitude of xs will be

replaced by that of xt. Fig. 2 illustrates the effect of β. We

find that, as β increases to 1.0, the image xs→t approaches

the target image xt, but also exhibits visible artifacts, as can

be seen from the enlarged area in Fig. 2. We set β ≤ 0.15.

However, in Table 1 we show the effect of various choices

of β along with the average of the resulting models, akin to

a simple multi-scale pooling method.

2.2. FDA for Semantic Segmentation

Given the adapted source dataset Ds→t,2 we can train a

semantic segmentation network φw, with parameters w, by

minimizing the following cross-entropy loss:

Lce(φ
w;Ds→t) = −

∑

i

〈ysi , log(φ
w(xs→t

i ))〉. (4)

Since FDA aligns the two domains, UDA becomes a semi-

supervised learning (SSL) problem. The key to SSL is the

regularization model. We use as a criterion a penalty for the

decision boundary to cross clusters in the unlabeled space.

2the cardinality of Ds→t should be |Ds|× |Dt|, which is large, so we

do online random generation of Ds→t given the efficiency of the FFT.
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Figure 2. Effect of the size of the domain β, shown in Fig. 1, where the spectrum is swapped: increasing β will decrease the domain gap

but introduce artifacts (see zoomed insets). We tune β until artifacts in the transformed images become obvious and use a single value for

some experiments. In other experiments, we maintain multiple values simultaneously in a multi-scale setting (Table 1).

Figure 3. Charbonnier penalty used for robust entropy minimiza-

tion, visualized for different values of the parameter η.

This can be achieved, assuming class separation, by penal-

izing the decision boundary traversing regions densely pop-

ulated by data points, which can be done by minimizing the

prediction entropy on the target images. However, as noted

in [45], this is ineffective in regions with low entropy. In-

stead of placing an arbitrary threshold on which pixels to

apply the penalty to, we use a robust weighting function for

entropy minimization, namely

Lent(φ
w;Dt) =

∑

i

ρ(−〈φw(xt
i), log(φ

w(xt
i))〉) (5)

where ρ(x) = (x2 + 0.0012)η is the Charbonnier penalty

function [2]. It penalizes high entropy predictions more

than the low entropy ones for η > 0.5 as shown in Fig. 3.

Combining this with the segmentation loss on the adapted

source images, we can use the following overall loss to train

the semantic segmentation network φw from scratch:

L(φw;Ds→t, Dt) = Lce(φ
w;Ds→t) + λentLent(φ

w;Dt)
(6)

Self-Supervised training (or, more accurately, “self-

learning”) is a common way of attempting to boost the per-

formance of SSL by using highly confident pseudo-labels

predicted with φw as if they were ground truth. In the ab-

sence of regularization, this practice is self-referential, so

we focus on regularization.

As observed in [42], the mean teacher improves semi-

supervised learning performance by averaging the model

weights, which provides regularization in the learning pro-

cess. Here, we propose using the mean of the predictions

of multiple models to regularize self-learning. However,

instead of training multiple models using the same loss at

once, with an explicit divergence term as in [21], we directly

train multiple models φw
β with different β′s in the FDA pro-

cess, with no need to explicitly force model divergence. We

instantiate M=3 segmentation networks φw
βm

,m = 1, 2, 3,

which are all trained from scratch using (6), and the mean

prediction for a certain target image xt
i can be obtained by:

ŷti = argmax
k

1

M

∑

m

φw
βm

(xt
i). (7)

Note that the output of the network is the softmax activa-

tion, so the average is still a probability distribution over K

categories. Using the pseudo-labels generated by M mod-

els, we can train φw
β to get further improvement using the

following self-supervised training loss:

Lsst(φ
w;Ds→t, D̂t) = Lce(φ

w;Ds→t)

+ λentLent(φ
w;Dt) + Lce(φ

w; D̂t) (8)

where D̂t is Dt augmented with pseudo labels ŷti ’s. Since

our training entails different β’s in the FDA operation,

we call the self-supervised training using the mean predic-

tion of different segmentation networks Multi-band Trans-

fer (MBT). The full training procedure of our FDA semantic

segmentation network consists of one round of initial train-

ing of M models from scratch using Eq. (6), and two more

rounds of self-supervised training using Eq. (8), as we de-

tail in the next section.
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3. Experiments

3.1. Datasets and Training Details

We evaluate the proposed method on two challeng-

ing synthetic-to-real unsupervised domain adaptation tasks,

where we have abundant semantic segmentation labels in

the synthetic domain (source), but zero in the real domain

(target). The two synthetic datasets are GTA5 [33] and

SYNTHIA [34]; the real domain dataset is CityScapes [9].

GTA5: consists of 24,966 synthesized images captured

in a video game, with the original image size 1914×1052.

During training, we resize the images to 1280×720, and

then random crop them to 1024×512. The original GTA5

provides pixel-wise semantic annotations of 33 classes, but

we use the 19 classes in common with CityScapes for stan-

dard comparison to other state-of-the-art methods.

SYNTHIA: also aligned with the other SOTA meth-

ods, we use the SYNTHIA-RAND-CITYSCAPES subset

which has 9,400 annotated images with the original res-

olution 1280×760. The images are randomly cropped to

1024×512 during training. Again, the 16 common classes

are used for training, but evaluations are performed on both

the 16 classes and a subset of 13 classes following the stan-

dard protocol.

CityScapes: is a real-world semantic segmentation

dataset collected in driving scenarios. We use the 2,975

images from the training set as the target domain data for

training. We test on the 500 validation images with dense

manual annotations. Images in CityScapes are simply re-

sized to 1024×512, with no random cropping. The two

domain adaptation scenarios are GTA5→CityScapes and

SYNTHIA→CityScapes.

Note that, in all experiments, we perform FDA via Eq.

(3) on the training images in the range [0, 255] before we

do mean subtraction, since the FFT algorithm we employ is

numerically stable for non-negative values.

Segmentation Network φw: We experiment with two

different architectures to show the robustness of FDA,

DeepLabV2 [5] with a ResNet101 [18] backbone, and

FCN-8s [26] with a VGG16 [40] backbone. We use the

same initialization as in [23] for both networks. Again,

the segmentation network φw is the only network in our

method.

Training: Our training is carried out on a GTX1080 Ti

GPU; due to memory limitations, the batch size is set to 1 in

all our experiments. To train DeepLabV2 with ResNet101

using SGD, the initial learning rate is 2.5e-4, and adjusted

according to the ’poly’ learning rate scheduler with a power

of 0.9, and weight decay 0.0005. For FCN-8s with VGG16,

we use ADAM with the initial learning rate 1e-5, which

is decreased by the factor of 0.1 every 50000 steps until

150000 steps. We also apply early stopping as in [23]. The

momentum for Adam is 0.9 and 0.99.

3.2. FDA with Single Scale

We first test the proposed FDA method with single

scale on the task GTA5→CityScapes. We instantiate

three DeepLabV2 segmentation netowrks φw
β , with β =

0.01, 0.05, 0.09, and train them separately using Eq. (6).

We set λent = 0.005 and η = 2.0 for all experiments.

We report the mean intersection over union score (mIOU)

across semantic classes on the validation set of CityScapes

in Tab. 1, where T=0 represents training from scratch. As

we can see from the first section in Tab. 1, The segmenta-

tion networks trained with different β’s in the FDA opera-

tion maintain similar performance. This demonstrates the

robustness of FDA with respect to the choice of β when

training with Eq. (6).

Moreover, the network φw
β=0.09 trained simply using Eq.

(4) (β = 0.09, λent = 0) i.e., without entropy loss, sur-

passes the baseline Cycada [19] by 4.54%, which demon-

strates better management of variability by FDA than the

two-stage image translation based adversarial domain adap-

tation, where an image transformer is trained from one do-

main to another, and a discriminator is trained to distinguish

between the two domains.

3.3. Multi­band Transfer (MBT)

We could apply self-training (SST) using the pseudo la-

bels generated for the target domain to further improve the

performance of a single network. However, the gain is

pretty marginal as expected, as can be seen from the sec-

ond section in Tab. 1, entry (β=0.09, SST). The relative

improvement after SST is only 0.9%, compared to (β=0.09,

T=0) in the first section. However, when we analyze the

networks trained from scratch with different β’s in the first

section, we can see that, even though the performance is

robust to the change of β, the best performing entries (un-

derlined) are equally distributed across classes, rather than

being dominated by a single network. This suggests averag-

ing over predictions of different φw
β ’s. By simply averaging

prediction from the first round (MBT, T=0), we get a more

significant relative improvement of 3.9% than the best per-

former from the first round (β = 0.09, T=0). This is consis-

tently observed also in subsequent self-supervised training

rounds in the third and fourth sections in Tab. 1.

3.4. Self­supervised Training with MBT

We can treat the pseudo labels generated from MBT

(T=0) as if they are ground truth labels to train φw
β ’s us-

ing Eq. (8). However, this is self-referential and cannot be

expected to work. To regularize, we also apply a thresh-

olding on the confidence values of each prediction. More

specifically, for each semantic class, we accept the predic-

tions with confidence that is within the top 66% or above

0.9. In the third and fourth sections in Tab. 1, we list the
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mIoU

β=0.01 (T=0) 88.8 35.4 80.5 24.0 24.9 31.3 34.9 32.0 82.6 35.6 74.4 59.4 31.0 81.7 29.3 47.1 1.2 21.1 32.3 44.61

β=0.05 (T=0) 90.7 45.0 80.4 24.6 22.6 31.8 30.3 39.4 81.4 33.8 72.6 57.6 29.1 83.2 26.3 36.9 6.6 20.6 34.9 44.6

β=0.09 (T=0) 90.8 42.7 80.8 28.1 26.6 31.8 32.8 29.1 81.6 31.2 76.2 56.9 27.7 82.8 25.3 44.1 15.3 21.1 30.2 45.01

Cycada[19] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19 65.0 12.0 28.6 4.5 31.1 42.0 42.7

β=0.09 (λent = 0) 90.0 40.5 79.4 25.3 26.7 30.6 31.9 29.3 79.4 28.8 76.5 56.4 27.5 81.7 27.7 45.1 17.0 23.8 29.6 44.64

β=0.09 (SST) 91.6 52.4 81.2 26.8 22.7 31.6 33.3 32.6 81.1 29.2 73.8 57.2 27.1 82.5 23.8 44.4 15.4 21.9 34.7 45.42

MBT (T=0) 91.3 44.2 82.2 32.1 29.4 32.8 35.7 30.4 83.2 35.7 76.3 59.8 31.7 84.5 29.5 46.1 6.9 23.2 33.7 46.77

β=0.01 (T=1) 92.3 51.4 82.3 30.5 24.5 31.2 36.9 34.2 82.4 39.7 76.6 57.6 28.5 82.3 27.9 47.0 5.5 21.7 40.3 47.03

β=0.05 (T=1) 92.2 50.9 81.5 27.2 27.3 32.5 35.8 35.7 81.3 37.1 76.3 58.6 30.0 83.0 23.4 45.1 6.7 23.8 40.0 46.8

β=0.09 (T=1) 91.0 46.9 80.3 25.3 21.1 30.1 35.5 37.8 80.8 38.9 79.1 58.5 31.2 82.4 29.4 46.0 9.1 24.2 39.1 46.71

MBT (T=1) 92.5 52.0 82.4 30.3 25.6 32.4 38.3 36.6 82.5 41.0 78.6 59.4 30.6 83.7 28.4 48.3 6.4 24.0 40.8 48.14

β=0.01 (T=2) 92.1 51.5 82.3 26.3 26.8 32.6 36.9 39.6 81.7 40.7 78.2 57.8 29.1 82.8 36.1 49.0 13.9 24.5 43.9 48.77

β=0.05 (T=2) 91.6 49.7 81.1 25.2 22.7 31.5 35.0 35.1 80.8 38.2 77.5 58.9 31.3 83.0 26.9 50.5 20.8 26.4 42.2 47.86

β=0.09 (T=2) 91.6 50.6 81.0 24.4 26.0 32.2 35.3 36.5 81.3 33.1 74.5 57.8 31.2 82.9 30.0 49.7 7.0 26.1 41.6 47.03

MBT (T=2) 92.5 53.3 82.3 26.5 27.6 36.4 40.5 38.8 82.2 39.8 78.0 62.6 34.4 84.9 34.1 53.12 16.8 27.7 46.4 50.45

Table 1. Ablation study on the GTA5→CityScapes task. The first section (T=0) shows the performance of the segmentation networks φw
β ’s

when trained from scratch using Eq. (6). Note that as β varies, the performance of each φw
β stays similar, whereas, the best performing

entries (underlined) equally distribute among the three individual networks. When the predictions across different φw
β ’s are averaged (MBT

(T=0)), the mIOU improves over all the constituent ones. And this is true even after the first (T=1) and the second (T=2) round of self-

supervised training using Eq. (8). Also note that, simply performing self-supervised training without averaging (MBT), the improvement

over (β=0.09 (T=0)) is marginal (β=0.09 (SST)).

performance of each φw
β after the first round of SST (T=1)

and the second round (T=2).

However, if we check the relative improvement of each

φw
β by SST (T=0,1,2), we see that the best performer in

the training from scratch round (T=0) is φw
β=0.09, which

becomes the worst performer during the first SST round

(T=1), and finally, after the second round of SST (T=2),

φw
β=0.01 becomes the best performer rater than φw

β=0.09. We

conjecture that small β will yield less variations (artifacts),

thus the adapted source dataset Ds→t has less chance to

cover the target dataset than the one with larger β. However,

when pseudo labels are used to further align the two do-

mains, Ds→t will impose less bias, since its center is closer

to the target dataset and variance is smaller. We illustrate

this in Fig. 4. Also this observation provides us a reference

to set β, i.e. if we just perform a single scale FDA, we may

want to use relatively larger β, however, for MBT, we may

gradually raise the weight on the predictions from φw
β with

smaller β.

3.5. Benchmarks

GTA5→CityScapes: We report the quantitative evalua-

tion of our method in Tab. 2. Again, we can observe that the

single scale FDA (FDA) with ResNet101 outperforms most

methods that employ adversarial training by instantiating

an image transformer and a discriminator [19, 43, 17, 29].

With entropy minimization activated, the single scale FDA

(FDA-ENT) achieves similar performance as [4, 45], which

incorporates spatial priors or more sophisticated adversar-

Figure 4. Larger β generalizes better if trained from scratch, but

induce more bias when combined with Self-supervised Training.

ial training on the structured output of entropy map. By

applying SST using the Multi-band Transfer, our method

achieves the top performance among others (FDA-MBT).

Note that BDL [23] also performs SST in the adversarial

setting, and our method achieves a 4.0% improvement over

BDL. The advantage of our method is also demonstrated on

the VGG backbone in the second section of Tab. 2.

SYNTHIA→CityScapes:

Following the evaluation protocol in [23], we report the

mIOU of our method on 16 classes using the VGG16 back-

bone, and on 13 classes using the ResNet101 backbone.

Quantitative comparison is shown in Tab. 3. Note again, our

method achieves the top performance using different back-

bones and outperforms the seconder performer BDL [23] by

2.1% and 3.9%, respectively.
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mIoU

ResNet101[18]

65.1

AdaStruct[43] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

DCAN[47] 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7

DLOW[17] 87.1 33.5 80.5 24.5 13.2 29.8 29.5 26.6 82.6 26.7 81.8 55.9 25.3 78.0 33.5 38.7 0.0 22.9 34.5 42.3

Cycada[19] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19 65.0 12.0 28.6 4.5 31.1 42.0 42.7

CLAN[29] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

ABStruct[4] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

AdvEnt[45] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

BDL [23] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

FDA 90.0 40.5 79.4 25.3 26.7 30.6 31.9 29.3 79.4 28.8 76.5 56.4 27.5 81.7 27.7 45.1 17.0 23.8 29.6 44.6

FDA-ENT 90.8 42.7 80.8 28.1 26.6 31.8 32.8 29.1 81.6 31.2 76.2 56.9 27.7 82.8 25.3 44.1 15.3 21.1 30.2 45.0

FDA-MBT 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.45

VGG16[40]

60.3

CBST[55] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

SIBAN[28] 83.4 13.0 77.8 20.4 17.5 24.6 22.8 9.6 81.3 29.6 77.3 42.7 10.9 76.0 22.8 17.9 5.7 14.2 2.0 34.2

Cycada[19] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0 35.4

AdvEnt[45] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

DCAN[47] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.30 17.0 6.70 36.2

CLAN[29] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

LSD[37] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

BDL [23] 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

FDA-MBT 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2

Table 2. Quantitative Comparison on GTA5→CityScapes. The scores under each backbone represent the upper bound (train and test on the

source domain). FDA: our method with a single scale; FDA-ENT: again single scale but with entropy regularization; FDA-MBT: FDA with

multiple scales and Self-supervised Training. Note that our method consistently achieves better performance across different backbones.
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mIoU

ResNet101[18]

71.7

SIBAN[28] 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3

CLAN[29] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8

ABStruct[4] 91.7 53.5 77.1 - - - 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 48.8

AdvEnt[45] 85.6 42.2 79.7 - - - 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0

BDL [23] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

FDA-MBT 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5

VGG16[40]

59.5

AdvEnt[45] 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4

DCAN[47] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4

LSD[37] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1

ROAD[7] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2

GIO-Ada[6] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3

BDL [23] 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0

FDA-MBT 84.2 35.1 78.0 6.1 0.44 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5

Table 3. Quantitative Comparison on SYNTHIA→CityScapes. Scores under each backbone represent the upper bound. For VGG, we

evaluate on the 16 subclasses, and for ResNet101, 13 of the 16 classes are evaluated according to the evaluation protocol in the literature.

Classes not evaluated are replaced by ’-.’ Our method consistently achieves better performance than the others across different backbones.

3.6. Qualitative Results

We visually compare to the second performer BDL [23]

who uses the same segmentation network backbone as ours.

As we can see from Fig. 5, the predictions from our model

appear much less noisy, like the road in the first row. Not

only smoother, but our method can also maintain the fine

structures, like the poles in the fifth row. Moreover, our

method performs well on rare classes, for example, the truck

in the second row, and the bicycles in the third and fourth

rows. We accredit this to both the generalization ability of

the single scale FDA, and the regularized SST by our Multi-

band Transfer.
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Figure 5. Visual Comparison. Left to right: Input image from CityScapes, ground-truth semantic segmentation, BDL [23], FDA-MBT.

Note that the predictions from FDA-MBT are generally smoother, e.g. the road in the first and fourth row, and the wall in the third row.

Moreover, FDA-MBT achieves better performance on fine structures, e.g., the poles in the fifth row.

4. Discussion

We have proposed a simple method for domain align-

ment that does not require any learning, and can be eas-

ily integrated into a learning system that transforms unsu-

pervised domain adaptation into semi-supervised learning.

Some attention needs to be devoted to proper regularization

of the loss function, for which we propose an entropic regu-

larizer with anisotropic (Charbonnier) weighting. The self-

referential problem in self-supervised training is addressed

by the Multi-band Transfer scheme that requires no joint

training of student networks with complicated model selec-

tion.

The results indicate that our method not only improves

on the baseline, which was expected, but actually surpasses

the current state of the art, which is considerably more in-

volved, despite its simplicity. This suggests that some distri-

butional misalignment due to low-level statistics, which has

been known to wreak havoc with generalization across dif-

ferent domains, is quite simple to capture with a fast Fourier

transform. Moreover, the inverse Fourier transform of the

spectrum of a real signal is guaranteed to be real, as one can

easily show that the imaginary part is canceled given the

skew-symmetry of the integrand; thus, images that are do-

main adapted using our method still reside in the real image

space.

Robustness to nuisance variability affecting the image

domain remains a difficult problem in machine learning,

and we do not claim our method to be the final solution.

However, we show that in some cases, it may not be nec-

essary to learn what we already know, such as the fact that

low-level statistics of the image can vary widely without af-

fecting the semantics of the underlying scene. Such pre-

processing could be an alternative to sophisticated archi-

tectures or laborious data augmentation. In the future, we

would like to see applications of our method on other do-

main adaptation tasks.
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Cord, and Patrick Pérez. Advent: Adversarial entropy min-

imization for domain adaptation in semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2517–2526, 2019. 3, 4, 6, 7

[46] Mei Wang and Weihong Deng. Deep visual domain adapta-

tion: A survey. Neurocomputing, 312:135–153, 2018. 2

[47] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa

Gokhan Uzunbas, Tom Goldstein, Ser Nam Lim, and Larry S

Davis. Dcan: Dual channel-wise alignment networks for un-

supervised scene adaptation. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 518–

534, 2018. 2, 7

[48] Yanchao Yang, Dong Lao, Ganesh Sundaramoorthi, and Ste-

fano Soatto. Phase consistent ecological domain adaptation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2020. 3

[49] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dual-

gan: Unsupervised dual learning for image-to-image trans-

lation. In Proceedings of the IEEE international conference

on computer vision, pages 2849–2857, 2017. 2

[50] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015. 2

[51] Werner Zellinger, Thomas Grubinger, Edwin Lughofer,
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