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Abstract

Point cloud is an important type of geometric data

structure. Due to its irregular format, most researchers

transform such data to regular 3D voxel grids or collections

of images. This, however, renders data unnecessarily

voluminous and causes issues. In this paper, we design a

novel type of neural network that directly consumes point

clouds, which well respects the permutation invariance of

points in the input. Our network, named PointNet, pro-

vides a unified architecture for applications ranging from

object classification, part segmentation, to scene semantic

parsing. Though simple, PointNet is highly efficient and

effective. Empirically, it shows strong performance on

par or even better than state of the art. Theoretically,

we provide analysis towards understanding of what the

network has learnt and why the network is robust with

respect to input perturbation and corruption.

1. Introduction

In this paper we explore deep learning architectures

capable of reasoning about 3D geometric data such as

point clouds or meshes. Typical convolutional architectures

require highly regular input data formats, like those of

image grids or 3D voxels, in order to perform weight

sharing and other kernel optimizations. Since point clouds

or meshes are not in a regular format, most researchers

typically transform such data to regular 3D voxel grids or

collections of images (e.g, views) before feeding them to

a deep net architecture. This data representation transfor-

mation, however, renders the resulting data unnecessarily

voluminous — while also introducing quantization artifacts

that can obscure natural invariances of the data.

For this reason we focus on a different input rep-

resentation for 3D geometry using simply point clouds

– and name our resulting deep nets PointNets. Point

clouds are simple and unified structures that avoid the

combinatorial irregularities and complexities of meshes,

and thus are easier to learn from. The PointNet, however,
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Figure 1. Applications of PointNet. We propose a novel deep net

architecture that consumes raw point cloud (set of points) without

voxelization or rendering. It is a unified architecture that learns

both global and local point features, providing a simple, efficient

and effective approach for a number of 3D recognition tasks.

still has to respect the fact that a point cloud is just a

set of points and therefore invariant to permutations of its

members, necessitating certain symmetrizations in the net

computation. Further invariances to rigid motions also need

to be considered.

Our PointNet is a unified architecture that directly

takes point clouds as input and outputs either class labels

for the entire input or per point segment/part labels for

each point of the input. The basic architecture of our

network is surprisingly simple as in the initial stages each

point is processed identically and independently. In the

basic setting each point is represented by just its three

coordinates (x, y, z). Additional dimensions may be added

by computing normals and other local or global features.

Key to our approach is the use of a single symmetric

function, max pooling. Effectively the network learns a

set of optimization functions/criteria that select interesting

or informative points of the point cloud and encode the

reason for their selection. The final fully connected layers

of the network aggregate these learnt optimal values into the

global descriptor for the entire shape as mentioned above

(shape classification) or are used to predict per point labels

(shape segmentation).

Our input format is easy to apply rigid or affine transfor-

mations to, as each point transforms independently. Thus

we can add a data-dependent spatial transformer network

that attempts to canonicalize the data before the PointNet

processes them, so as to further improve the results.
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We provide both a theoretical analysis and an ex-

perimental evaluation of our approach. We show that

our network can approximate any set function that is

continuous. More interestingly, it turns out that our network

learns to summarize an input point cloud by a sparse set of

key points, which roughly corresponds to the skeleton of

objects according to visualization. The theoretical analysis

provides an understanding why our PointNet is highly

robust to small perturbation of input points as well as

to corruption through point insertion (outliers) or deletion

(missing data).

On a number of benchmark datasets ranging from shape

classification, part segmentation to scene segmentation,

we experimentally compare our PointNet with state-of-

the-art approaches based upon multi-view and volumetric

representations. Under a unified architecture, not only is

our PointNet much faster in speed, but it also exhibits strong

performance on par or even better than state of the art.

The key contributions of our work are as follows:

• We design a novel deep net architecture suitable for

consuming unordered point sets in 3D;

• We show how such a net can be trained to perform

3D shape classification, shape part segmentation and

scene semantic parsing tasks;

• We provide thorough empirical and theoretical analy-

sis on the stability and efficiency of our method;

• We illustrate the 3D features computed by the selected

neurons in the net and develop intuitive explanations

for its performance.

The problem of processing unordered sets by neural nets

is a very general and fundamental problem – we expect that

our ideas can be transferred to other domains as well.

2. Related Work

Point Cloud Features Most existing features for point

cloud are handcrafted towards specific tasks. Point features

often encode certain statistical properties of points and are

designed to be invariant to certain transformations, which

are typically classified as intrinsic [2, 21, 3] or extrinsic

[18, 17, 13, 10, 5]. They can also be categorized as local

features and global features. For a specific task, it is not

trivial to find the optimal feature combination.

Deep Learning on 3D Data 3D data has multiple popular

representations, leading to various approaches for learning.

Volumetric CNNs: [25, 15, 16] are the pioneers applying

3D convolutional neural networks on voxelized shapes.

However, volumetric representation is constrained by its

resolution due to data sparsity and computation cost of

3D convolution. FPNN [12] and Vote3D [23] proposed

special methods to deal with the sparsity problem; however,

their operations are still on sparse volumes, it’s challenging

for them to process very large point clouds. Multiview

CNNs: [20, 16] have tried to render 3D point cloud or

shapes into 2D images and then apply 2D conv nets to

classify them. With well engineered image CNNs, this

line of methods have achieved dominating performance on

shape classification and retrieval tasks [19]. However, it’s

nontrivial to extend them to scene understanding or other

3D tasks such as point classification and shape completion.

Spectral CNNs: Some latest works [4, 14] use spectral

CNNs on meshes. However, these methods are currently

constrained on manifold meshes such as organic objects

and it’s not obvious how to extend them to non-isometric

shapes such as furniture. Feature-based DNNs: [6, 8]

firstly convert the 3D data into a vector, by extracting

traditional shape features and then use a fully connected net

to classify the shape. We think they are constrained by the

representation power of the features extracted.

Deep Learning on Unordered Sets From a data structure

point of view, a point cloud is an unordered set of vectors.

While most works in deep learning focus on regular input

representations like sequences (in speech and language

processing), images and volumes (video or 3D data), not

much work has been done in deep learning on point sets.

One recent work from Oriol Vinyals et al [22] looks

into this problem. They use a read-process-write network

with attention mechanism to consume unordered input sets

and show that their network has the ability to sort numbers.

However, since their work focuses on generic sets and NLP

applications, there lacks the role of geometry in the sets.

3. Problem Statement

We design a deep learning framework that directly

consumes unordered point sets as inputs. A point cloud is

represented as a set of 3D points {Pi| i = 1, ..., n}, where

each point Pi is a vector of its (x, y, z) coordinate plus extra

feature channels such as color, normal etc. For simplicity

and clarity, unless otherwise noted, we only use the (x, y, z)
coordinate as our point’s channels.

For the object classification task, the input point cloud is

either directly sampled from a shape or pre-segmented from

a scene point cloud. Our proposed deep network outputs

k scores for all the k candidate classes. For semantic

segmentation, the input can be a single object for part region

segmentation, or a sub-volume from a 3D scene for object

region segmentation. Our model will output n × m scores

for each of the n points and each of the m semantic sub-

categories.
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then

aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers

in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets

The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in R
n (Sec 4.1).

4.1. Properties of Point Sets in R
n

Our input is a subset of points from an Euclidean space.

It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel

arrays in volumetric grids, point cloud is a set of points

without specific order. In other words, a network that

consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space

with a distance metric. It means that points are not

isolated, and neighboring points form a meaningful

subset. Therefore, the model needs to be able to

capture local structures from nearby points, and the

combinatorial interactions among local structures.

• Invariance under transformations. As a geometric

object, the learned representation of the point set

should be invariant to certain transformations. For

example, rotating and translating points all together

should not modify the global point cloud category nor

the segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,

where the classification network and the segmentation

network share a great portion of structures. Please read the

caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling

layer as a symmetric function to aggregate information from

all the points, a local and global information combination

structure, and two joint alignment networks that align both

input points and point features.

We will discuss our reason behind these design choices

in separate paragraphs below.

Symmetry Function for Unordered Input In order

to make a model invariant to input permutation, three

strategies exist: 1) sort input into a canonical order; 2) treat

the input as a sequence to train an RNN, but augment the

training data by all kinds of permutations; 3) use a simple

symmetric function to aggregate the information from each

point. Here, a symmetric function takes n vectors as input

and outputs a new vector that is invariant to the input

order. For example, + and ∗ operators are symmetric binary

functions.

While sorting sounds like a simple solution, in high

dimensional space there in fact does not exist an ordering

that is stable w.r.t. point perturbations in the general

sense. This can be easily shown by contradiction. If

such an ordering strategy exists, it defines a bijection map

between a high-dimensional space and a 1d real line. It

is not hard to see, to require an ordering to be stable w.r.t

point perturbations is equivalent to requiring that this map

preserves spatial proximity as the dimension reduces, a task

that cannot be achieved in the general case. Therefore,

sorting does not fully resolve the ordering issue, and it’s

hard for a network to learn a consistent mapping from

input to output as the ordering issue persists. As shown in

experiments (Fig 5), we find that applying a MLP directly

on the sorted point set performs poorly, though slightly

better than directly processing an unsorted input.

The idea to use RNN considers the point set as a

sequential signal and hopes that by training the RNN
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with randomly permuted sequences, the RNN will become

invariant to input order. However in “OrderMatters” [22]

the authors have shown that order does matter and cannot be

totally omitted. While RNN has relatively good robustness

to input ordering for sequences with small length (dozens),

it’s hard to scale to thousands of input elements, which is

the common size for point sets. Empirically, we have also

shown that model based on RNN does not perform as well

as our proposed method (Fig 5).

Our idea is to approximate a general function defined on

a point set by applying a symmetric function on transformed

elements in the set:

f({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (1)

where f : 2R
N

→ R, h : R
N → R

K and g :
R

K × · · · × R
K

︸ ︷︷ ︸

n

→ R is a symmetric function.

Empirically, our basic module is very simple: we

approximate h by a multi-layer perceptron network and

g by a composition of a single variable function and a

max pooling function. This is found to work well by

experiments. Through a collection of h, we can learn a

number of f ’s to capture different properties of the set.

While our key module seems simple, it has interesting

properties (see Sec 5.3) and can achieve strong performace

(see Sec 5.1) in a few different applications. Due to the

simplicity of our module, we are also able to provide

theoretical analysis as in Sec 4.3.

Local and Global Information Aggregation The output

from the above section forms a vector [f1, . . . , fK ], which

is a global signature of the input set. We can easily

train a SVM or multi-layer perceptron classifier on the

shape global features for classification. However, point

segmentation requires a combination of local and global

knowledge. We can achieve this by a simple yet highly

effective manner.

Our solution can be seen in Fig 2 (Segmentation Net-

work). After computing the global point cloud feature vec-

tor, we feed it back to per point features by concatenating

the global feature with each of the point features. Then we

extract new per point features based on the combined point

features - this time the per point feature is aware of both the

local and global information.

With this modification our network is able to predict

per point quantities that rely on both local geometry and

global semantics. For example we can accurately predict

per-point normals (fig in supplementary), validating that the

network is able to summarize information from the point’s

local neighborhood. In experiment session, we also show

that our model can achieve state-of-the-art performance on

shape part segmentation and scene segmentation.

Joint Alignment Network The semantic labeling of a

point cloud has to be invariant if the point cloud undergoes

certain geometric transformations, such as rigid transforma-

tion. We therefore expect that the learnt representation by

our point set is invariant to these transformations.

A natural solution is to align all input set to a canonical

space before feature extraction. Jaderberg et al. [9]

introduces the idea of spatial transformer to align 2D

images through sampling and interpolation, achieved by a

specifically tailored layer implemented on GPU.

Our input form of point clouds allows us to achieve this

goal in a much simpler way compared with [9]. We do not

need to invent any new layers and no alias is introduced as in

the image case. We predict an affine transformation matrix

by a mini-network (T-net in Fig 2) and directly apply this

transformation to the coordinates of input points. The mini-

network itself resembles the big network and is composed

by basic modules of point independent feature extraction,

max pooling and fully connected layers. More details about

the T-net are in the supplementary.

This idea can be further extended to the alignment of

feature space, as well. We can insert another alignment net-

work on point features and predict a feature transformation

matrix to align features from different input point clouds.

However, transformation matrix in the feature space has

much higher dimension than the spatial transform matrix,

which greatly increases the difficulty of optimization. We

therefore add a regularization term to our softmax training

loss. We constrain the feature transformation matrix to be

close to orthogonal matrix:

Lreg = ‖I −AAT ‖2F , (2)

where A is the feature alignment matrix predicted by a

mini-network. An orthogonal transformation will not lose

information in the input, thus is desired. We find that by

adding the regularization term, the optimization becomes

more stable and our model achieves better performance.

4.3. Theoretical Analysis

Universal approximation We first show the universal

approximation ability of our neural network to continuous

set functions. By the continuity of set functions, intuitively,

a small perturbation to the input point set should not

greatly change the function values, such as classification or

segmentation scores.

Formally, let X = {S : S ⊆ [0, 1]m and |S| = n}, f :
X → R is a continuous set function on X w.r.t to Hausdorff

distance dH(·, ·), i.e., ∀ǫ > 0, ∃δ > 0, for any S, S′ ∈ X ,

if dH(S, S′) < δ, then |f(S) − f(S′)| < ǫ. Our theorem

says that f can be arbitrarily approximated by our network

given enough neurons at the max pooling layer, i.e., K in

(1) is sufficiently large.
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Figure 3. Qualitative results for part segmentation. We

visualize the CAD part segmentation results across all 16 object

categories. We show both results for partial simulated Kinect scans

(left block) and complete ShapeNet CAD models (right block).

Theorem 1 Suppose f : X → R is a continuous

set function w.r.t Hausdorff distance dH(·, ·). ∀ǫ >

0, ∃ a continuous function h and a symmetric function

g(x1, . . . , xn) = γ ◦ MAX, such that for any S ∈ X ,

∣
∣
∣
∣
f(S)− γ

(

MAX
xi∈S

{h(xi)}

)∣
∣
∣
∣
< ǫ

where x1, . . . , xn is the full list of elements in S ordered

arbitrarily, γ is a continuous function, and MAX is a vector

max operator that takes n vectors as input and returns a

new vector of the element-wise maximum.

The proof to this theorem can be found in our supplemen-

tary material. The key idea is that in the worst case the

network can learn to convert a point cloud into a volumetric

representation, by partitioning the space into equal-sized

voxels. In practice, however, the network learns a much

smarter strategy to probe the space, as we shall see in point

function visualizations.

Bottleneck dimension and stability Theoretically and

experimentally we find that the expressiveness of our

network is strongly affected by the dimension of the max

pooling layer, i.e., K in (1). Here we provide an analysis,

which also reveals properties related to the stability of our

model.

We define u = MAX
xi∈S

{h(xi)} to be the sub-network of f

which maps a point set in [0, 1]m to a K-dimensional vector.

The following theorem tells us that small corruptions or

extra noise points in the input set are not likely to change

the output of our network:

Theorem 2 Suppose u : X → R
K such that u =

MAX
xi∈S

{h(xi)} and f = γ ◦ u. Then,

(a) ∀S, ∃ CS ,NS ⊆ X , f(T ) = f(S) if CS ⊆ T ⊆ NS;

(b) |CS | ≤ K

input #views accuracy accuracy

avg. class overall

SPH [11] mesh - 68.2 -

3DShapeNets [25] volume 1 77.3 84.7

VoxNet [15] volume 12 83.0 85.9

Subvolume [16] volume 20 86.0 89.2

LFD [25] image 10 75.5 -

MVCNN [20] image 80 90.1 -

Ours baseline point - 72.6 77.4

Ours PointNet point 1 86.2 89.2

Table 1. Classification results on ModelNet40. Our net achieves

state-of-the-art among deep nets on 3D input.

We explain the implications of the theorem. (a) says that

f(S) is unchanged up to the input corruption if all points

in CS are preserved; it is also unchanged with extra noise

points up to NS . (b) says that CS only contains a bounded

number of points, determined by K in (1). In other words,

f(S) is in fact totally determined by a finite subset CS ⊆ S

of less or equal to K elements. We therefore call CS the

critical point set of S and K the bottleneck dimension of f .

Combined with the continuity of h, this explains the

robustness of our model w.r.t point perturbation, corruption

and extra noise points. The robustness is gained in analogy

to the sparsity principle in machine learning models.

Intuitively, our network learns to summarize a shape by

a sparse set of key points. In experiment section we see

that the key points form the skeleton of an object.

5. Experiment

Experiments are divided into four parts. First, we show

PointNets can be applied to multiple 3D recognition tasks

(Sec 5.1). Second, we provide detailed experiments to

validate our network design (Sec 5.2). At last we visualize

what the network learns (Sec 5.3) and analyze time and

space complexity (Sec 5.4).

5.1. Applications

In this section we show how our network can be

trained to perform 3D object classification, object part

segmentation and semantic scene segmentation 1. Even

though we are working on a brand new data representation

(point sets), we are able to achieve comparable or even

better performance on benchmarks for several tasks.

3D Object Classification Our network learns global

point cloud feature that can be used for object classification.

We evaluate our model on the ModelNet40 [25] shape

classification benchmark. There are 12,311 CAD models

from 40 man-made object categories, split into 9,843 for

1More application examples such as correspondence and point cloud

based CAD model retrieval are included in supplementary material.
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mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

Wu [24] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8

Yi [26] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

3DCNN 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

Ours 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Table 2. Segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points. We compare with two traditional methods [24]

and [26] and a 3D fully convolutional network baseline proposed by us. Our PointNet method achieved the state-of-the-art in mIoU.

training and 2,468 for testing. While previous methods

focus on volumetric and mult-view image representations,

we are the first to directly work on raw point cloud.

We uniformly sample 1024 points on mesh faces accord-

ing to face area and normalize them into a unit sphere.

During training we augment the point cloud on-the-fly by

randomly rotating the object along the up-axis and jitter the

position of each points by a Gaussian noise with zero mean

and 0.02 standard deviation.

In Table 1, we compare our model with previous works

as well as our baseline using MLP on traditional features

extracted from point cloud (point density, D2, shape contour

etc.). Our model achieved state-of-the-art performance

among methods based on 3D input (volumetric and point

cloud). With only fully connected layers and max pooling,

our net gains a strong lead in inference speed and can be

easily parallelized in CPU as well. There is still a small

gap between our method and multi-view based method

(MVCNN [20]), which we think is due to the loss of fine

geometry details that can be captured by rendered images.

3D Object Part Segmentation Part segmentation is a

challenging fine-grained 3D recognition task. Given a 3D

scan or a mesh model, the task is to assign part category

label (e.g. chair leg, cup handle) to each point or face.

We evaluate on ShapeNet part data set from [26], which

contains 16,881 shapes from 16 categories, annotated with

50 parts in total. Most object categories are labeled with

two to five parts. Ground truth annotations are labeled on

sampled points on the shapes.

We formulate part segmentation as a per-point classifi-

cation problem. Evaluation metric is mIoU on points. For

each shape S of category C, to calculate the shape’s mIoU:

For each part type in category C, compute IoU between

groundtruth and prediction. If the union of groundtruth and

prediction points is empty, then count part IoU as 1. Then

we average IoUs for all part types in category C to get mIoU

for that shape. To calculate mIoU for the category, we take

average of mIoUs for all shapes in that category.

In this section, we compare our segmentation version

PointNet (a modified version of Fig 2, Segmentation

Network) with two traditional methods [24] and [26] that

both take advantage of point-wise geometry features and

correspondences between shapes, as well as our own

3D CNN baseline. See supplementary for the detailed

modifications and network architecture for the 3D CNN.

In Table 2, we report per-category and mean IoU(%)

scores. We observe a 2.3% mean IoU improvement and our

net beats the baseline methods in most categories.

We also perform experiments on simulated Kinect scans

to test the robustness of these methods. For every CAD

model in the ShapeNet part data set, we use Blensor Kinect

Simulator [7] to generate incomplete point clouds from six

random viewpoints. We train our PointNet on the complete

shapes and partial scans with the same network architecture

and training setting. Results show that we lose only 5.3%

mean IoU. In Fig 3, we present qualitative results on both

complete and partial data. One can see that though partial

data is fairly challenging, our predictions are reasonable.

Semantic Segmentation in Scenes Our network on part

segmentation can be easily extended to semantic scene

segmentation, where point labels become semantic object

classes instead of object part labels.

We experiment on the Stanford 3D semantic parsing data

set [1]. The dataset contains 3D scans from Matterport

scanners in 6 areas including 271 rooms. Each point in the

scan is annotated with one of the semantic labels from 13

categories (chair, table, floor, wall etc. plus clutter).

To prepare training data, we firstly split points by room,

and then sample rooms into blocks with area 1m by 1m.

We train our segmentation version of PointNet to predict

mean IoU overall accuracy

Ours baseline 20.12 53.19

Ours PointNet 47.71 78.62

Table 3. Results on semantic segmentation in scenes. Metric is

average IoU over 13 classes (structural and furniture elements plus

clutter) and classification accuracy calculated on points.

table chair sofa board mean

# instance 455 1363 55 137

Armeni et al. [1] 46.02 16.15 6.78 3.91 18.22

Ours 46.67 33.80 4.76 11.72 24.24

Table 4. Results on 3D object detection in scenes. Metric is

average precision with threshold IoU 0.5 computed in 3D volumes.
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Figure 4. Qualitative results for semantic segmentation. Top

row is input point cloud with color. Bottom row is output semantic

segmentation result (on points) displayed in the same camera

viewpoint as input.

per point class in each block. Each point is represented by

a 9-dim vector of XYZ, RGB and normalized location as

to the room (from 0 to 1). At training time, we randomly

sample 4096 points in each block on-the-fly. At test time,

we test on all the points. We follow the same protocol as [1]

to use k-fold strategy for train and test.

We compare our method with a baseline using hand-

crafted point features. The baseline extracts the same 9-

dim local features and three additional ones: local point

density, local curvature and normal. We use standard MLP

as the classifier. Results are shown in Table 3, where

our PointNet method significantly outperforms the baseline

method. In Fig 4, we show qualitative segmentation results.

Our network is able to output smooth predictions and is

robust to missing points and occlusions.

Based on the semantic segmentation output from our

network, we further build a 3D object detection system

using connected component for object proposal (see sup-

plementary for details). We compare with previous state-

of-the-art method in Table 4. The previous method is based

on a sliding shape method (with CRF post processing) with

SVMs trained on local geometric features and global room

context feature in voxel grids. Our method outperforms it

by a large margin on the furniture categories reported.

5.2. Architecture Design Analysis

In this section we validate our design choices by control

experiments. We also show the effects of our network’s

hyperparameters.

Comparison with Alternative Order-invariant Methods

As mentioned in Sec 4.2, there are at least three options for

consuming unordered set inputs. We use the ModelNet40

shape classification problem as a test bed for comparisons

of those options, the following two control experiment will

also use this task.

The baselines (illustrated in Fig 5) we compared with

include multi-layer perceptron on unsorted and sorted

(1,2,3) (2,3,4) (1,3,1)

rnn 
cell

rnn 
cell

rnn 
cell

MLP

...

(1,2,3)

(2,3,4)

(1,3,1)

...
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M
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M
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(1,3,1)

(2,3,4)

...

M
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sequential model

symmetry function

sorted

Figure 5. Three approaches to achieve order invariance. Multi-

layer perceptron (MLP) applied on points consists of 5 hidden

layers with neuron sizes 64,64,64,128,1024, all points share a

single copy of MLP. The MLP close to the output consists of two

layers with sizes 512,256.

points as n×3 arrays, RNN model that considers input point

as a sequence, and a model based on symmetry functions.

The symmetry operation we experimented include max

pooling, average pooling and an attention based weighted

sum. The attention method is similar to that in [22], where

a scalar score is predicted from each point feature, then the

score is normalized across points by computing a softmax.

The weighted sum is then computed on the normalized

scores and the point features. As shown in Fig 5, max-

pooling operation achieves the best performance by a large

winning margin, which validates our choice.

Effectiveness of Input and Feature Transformations In

Table 5 we demonstrate the positive effects of our input

and feature transformations (for alignment). It’s interesting

to see that the most basic architecture already achieves

quite reasonable results. Using input transformation gives

a 0.8% performance boost. The regularization loss is

necessary for the higher dimension transform to work.

By combining both transformations and the regularization

term, we achieve the best performance.

Robustness Test We show our PointNet, while simple

and effective, is robust to various kinds of input corruptions.

We use the same architecture as in Fig 5’s max pooling

network. Input points are normalized into a unit sphere.

Results are in Fig 6.

As to missing points, when there are 50% points missing,

the accuracy only drops by 2.4% and 3.8% w.r.t. furthest

and random input sampling. Our net is also robust to outlier

Transform accuracy

none 87.1

input (3x3) 87.9

feature (64x64) 86.9

feature (64x64) + reg. 87.4

both 89.2

Table 5. Effects of input feature transforms. Metric is overall

classification accuracy on ModelNet40 test set.
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Figure 6. PointNet robustness test. The metric is overall

classification accuracy on ModelNet40 test set. Left: Delete

points. Furthest means the original 1024 points are sampled with

furthest sampling. Middle: Insertion. Outliers uniformly scattered

in the unit sphere. Right: Perturbation. Add Gaussian noise to

each point independently.

points, if it has seen those during training. We evaluate two

models: one trained on points with (x, y, z) coordinates; the

other on (x, y, z) plus point density. The net has more than

80% accuracy even when 20% of the points are outliers.

Fig 6 right shows the net is robust to point perturbations.

5.3. Visualizing PointNet

In Fig 7, we visualize some results of the critical point

sets CS and the upper-bound shapes NS (as discussed in

Thm 2) for some sample shapes S. The point sets between

the two shapes will give exactly the same global shape

feature f(S).

We can see clearly from Fig 7 that the critical point

sets CS , those contributed to the max pooled feature,

summarizes the skeleton of the shape. The upper-bound

shapes NS illustrates the largest possible point cloud that

give the same global shape feature f(S) as the input point

cloud S. CS and NS reflect the robustness of PointNet,

meaning that losing some non-critical points does not

change the global shape signature f(S) at all.

The NS is constructed by forwarding all the points in a

edge-length-2 cube through the network and select points p

whose point function values (h1(p), h2(p), · · · , hK(p)) are
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Figure 7. Critical points and upper bound shape. While critical

points jointly determine the global shape feature for a given shape,

any point cloud that falls between the critical points set and the

upper bound shape gives exactly the same feature. We color-code

all figures to show the depth information.

no larger than the global shape descriptor.

5.4. Time and Space Complexity Analysis

Table 6 summarizes space (number of parameters in

the network) and time (floating-point operations/sample)

complexity of our classification PointNet. We also compare

PointNet to a representative set of volumetric and multi-

view based architectures in previous works.

While MVCNN [20] and Subvolume (3D CNN) [16]

achieve high performance, PointNet is orders more efficient

in computational cost (measured in FLOPs/sample: 141x

and 8x more efficient, respectively). Besides, PointNet

is much more space efficient than MVCNN in terms of

#param in the network (17x less parameters). Moreover,

PointNet is much more scalable – it’s space and time

complexity is O(N) – linear in the number of input points.

However, since convolution dominates computing time,

multi-view method’s time complexity grows squarely on

image resolution and volumetric convolution based method

grows cubically with the volume size.

Empirically, PointNet is able to process more than

one million points per second for point cloud classifica-

tion (around 1K objects/second) or semantic segmentation

(around 2 rooms/second) with a 1080X GPU on Tensor-

Flow, showing great potential for real-time applications.

#params FLOPs/sample

PointNet (vanilla) 0.8M 148M

PointNet 3.5M 440M

Subvolume [16] 16.6M 3633M

MVCNN [20] 60.0M 62057M
Table 6. Time and space complexity of deep architectures for 3D

data classification. PointNet (vanilla) is the classification PointNet

without input and feature transformations. FLOP stands for

floating-point operation. The “M” stands for million. Subvolume

and MVCNN used pooling on input data from multiple rotations

or views, without which they have much inferior performance.

6. Conclusion

In this work, we propose a novel deep neural network

PointNet that directly consumes point cloud. Our network

provides a unified approach to a number of 3D recognition

tasks including object classification, part segmentation and

semantic segmentation, while obtaining on par or better

results than state of the arts on standard benchmarks. We

also provide theoretical analysis and visualizations towards

understanding of our network.
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