
PointGrid: A Deep Network for 3D Shape Understanding

Truc Le and Ye Duan

University of Missouri – Columbia

tdlxqb@mail.missouri.edu, duanye@missouri.edu

Abstract

Volumetric grid is widely used for 3D deep learning due

to its regularity. However the use of relatively lower or-

der local approximation functions such as piece-wise con-

stant function (occupancy grid) or piece-wise linear func-

tion (distance field) to approximate 3D shape means that it

needs a very high-resolution grid to represent finer geom-

etry details, which could be memory and computationally

inefficient. In this work, we propose the PointGrid, a 3D

convolutional network that incorporates a constant number

of points within each grid cell thus allowing the network to

learn higher order local approximation functions that could

better represent the local geometry shape details. With ex-

periments on popular shape recognition benchmarks, Point-

Grid demonstrates state-of-the-art performance over exist-

ing deep learning methods on both classification and seg-

mentation.

1. Introduction

Deep learning has become a universal tool for many vi-

sual recognition tasks ranging from classification to seg-

mentation, especially ConvNets for 2D images [28, 48, 50,

16, 10, 34, 37, 45, 18] thanks to its weight sharing and other

kernel optimizations of 2D convolutions. It is therefore nat-

ural that a lot of researchers currently aim at the adaptation

of deep ConvNets to 3D models. Such adaptation is, how-

ever, non-trivial due to the nature of 3D data representa-

tions. Currently the 3D geometry shape representation con-

sists of point, mesh and volumetric grid. Mesh is extremely

irregular and hence it is very hard to design a framework to

directly learn from it. Point is flexible but it is unorganized.

Volumetric grid is regular, which enables many researchers

to utilize either occupancy grid or distance field as a mean

of data representation and learn 3D convolutional networks

from it.

Belonging to the volumetric grid, VoxNet and its variants

[57, 35, 54, 6, 39, 32] is the most straightforward approach

which transforms a 3D model into an occupancy grid. How-

ever, naive implementation of VoxNet does not scale well

for dense 3D data because computational and memory re-

quirements grow cubicly with the 3D grid resolution. A

typical VoxNet takes as input a grid of size 64× 64× 64

which is incapable of exploiting the rich and detailed geom-

etry of the original 3D data. To resolve these issues, Kd-Net

[27], O-CNN [55] and Oct-Net [42] in many respects mimic

ConvNets but use the kd-tree or oct-tree structure to form

the computational graph and apply 3D convolutions level

by level, to share the learnable parameters, and to compute

a sequence of hierarchical representations in a feedforward

bottom-up fashion. These approaches exploit the sparsity

of 3D data and can adaptively allocate computational and

memory resources with respect to the data density. How-

ever, due to the use of more complicated data structures, it

is generally not a simple task to implement these networks

efficiently.

Recently Qi et al. [38] proposed PointNet that can con-

sume unorganized point sets in 3D. In this network, all 3D

points share the same set of multi-layer perceptrons which

independently transform individual points. However, a sin-

gle max-pooling layer is the only global operation in Point-

Net, which limits its ability to examine contextual neigh-

borhood structure of the points.

In this work, we propose the PointGrid, a 3D convolu-

tional network that is an integration of point and grid, a

hybrid model that can better represent the local geometry

shape details (Fig. 1). The proposed method scales better

than volumetric grid and avoid information loss at the same

time. PointGrid has an embedding volumetric grid that has

the regular structure which allows 3D convolutions to ex-

tract global information hierarchically. In each grid cell, we

sample a constant number of points (e.g. K) to overcome the

grid size limitation. We expect the sampling points within

the grid cell can better represent the local geometry shape

details while the grid scales well with respect to data size

as it only scales linearly in K, not cubicly as in pure vol-

umetric grid. Later, we also show that PointGrid does not

require a high resolution grid to perform well and a grid of

16×16×16 is experimentally sufficient, which is substan-

tially smaller than a typical 64× 64× 64 grid of VoxNet.

As a result, PointGrid (see Fig. 2) is simpler and faster in

19204

(a) Original shape (b) Discrete points (c) Occupancy grid

(d) Distance field (e) Point quantization (K = 4) (f) PointGrid (K = 4)

Figure 1: A 2D illustration of the proposed PointGrid, which is a hybrid 3D shape representation between discrete points (b)

and volumetric grid (c) and (d). Points within each grid cell will be quantitized (e), so that both occupied (yellow) and empty

(blue) cells have exactly K points (f).

both training and testing. By experiments, PointGrid com-

pared favorably with state-of-art methods including Point-

Net [38], PointNet++ [40], Kd-Net [27], O-CNN [55] and

Oct-Net [42], with a smaller memory footprint.

2. Related Work

This section briefly goes over some of the existing ap-

proaches for 3D classification and segmentation, which can

generally be categorized into two classes: learning on hand-

crafted features or deep learning.

Hand-crafted features: The traditional approaches typi-

cally first extract local features such as planarity of various

forms, higher degree geometric proxies (cylinders, cones,

spheres, etc.), dihedral angles between triangles [58], curva-

tures (Gaussian curvature or mean curvature) [30], geodesic

distances on a mesh [17, 64], slippage [61], symmetry, con-

vexity, medial axis [33], shape diameter [44] and motion

characteristics [43], shape contexts [4], spin images [21],

etc. After that, people either directly apply machine learn-

ing approaches on these features (e.g. k-NN, random for-

est, SVM [14], JointBoost classifier [23], correspondence

analysis [56, 62]) or employ some local and greedy meth-

ods such as region growing [52, 20], hierarchical clustering

[3, 11, 24], spectral clustering [46], k-means [60], normal-

ized cut [13], random walk [29] and heat walk [5]. Shamir

et al. [43], Agathos et al. [2] and Theologou et al. [51] gave

a comprehensive overview of methodologies in 3D segmen-

tation. In general, these approaches are often based on cer-

tain prior assumptions of some particular property of the 3D

object and hence may not generalize well.

Deep learning: While deep learning has been very popu-

lar in 2D images for many years, it has just been applied in

3D recently because unlike pixels in 2D images, 3D objects

do not have regular structure. As a result, in the early pe-

riod, people use deep learning as a tool to learn high level

features from low level cues (usually hand-crafted). The

unsupervised shape segmentation proposed by Shu et al.

[47] starts by over-segmenting the input model, comput-

9205

ing patch-based local features and then uses stacked auto-

encoder to learn high level features followed by Graph-Cut

based segmentation. Guo et al. [15] compute local features

at different scales for each triangle and arrange them into a

rectangular image, which is fed forward through a convolu-

tional neural network (CNN) to predict the semantic label

for each triangle. Although these two frameworks use deep

learning techniques (stacked auto-encoder, CNN) to learn

high level features from local low level ones, they do not

exploit the full potential of deep learning.

Recently researchers have started to either transform 3D

data into regular form or refined convolution operations

to adapt to the 3D’s irregularity. Voxelization and multi-

view are the most common representatives of the former

approach. VoxNet and its variants [57, 35, 54, 6, 39, 32]

discretizes the 3D bounding box into 3D occupancy grid,

then applies 3D convolutions in a similar way as in 2D im-

ages. Among these approaches, VRN [6] uses Voxception-

ResNet which mimics the Inception [50] and ResNet [16]

and achieves state-of-the-art results for 3D object classifca-

tion. The main drawback of the volumetric approach is the

information loss due to the voxelization as well as mem-

ory and computation consumptions as they increases cu-

bicly with respect to the voxel’s resolution. Kd-Net [27]

and Octree-Net [55, 42] are designed to resolve them by

skipping the computation on empty cells and focusing on

informative ones. However, these networks are hard to be

implemented efficiently.

Su et al. [49] was the first one to apply multi-view con-

volutional neural network (MV-CNN) for 3D recognition.

The 3D shape is rendered in multiple views, each of which

is passed through an identical image-based CNN. Features

obtained from multiple views are combined via a view pool-

ing (which is the max-pooling) and then passed through

another CNN to predict the final object label. Xie et al.

[59] used multi-view depth images via extreme learning ma-

chine to generate per-view segmentation and combine them

via Graph-Cut. This method works pretty fast due to the

easy training of the extreme learning machine but it does

not give high accuracy. Later, Kalogerakis et al. [22] pro-

posed a more complete multi-view framework. They first

render the 3D model with different views, each of which is

fed through a shared CNN before unprojected back to 3D.

The label consistency is solved by a Conditional Random

Field (CRF), which is part of the network and is optimized

in an end-to-end manner. Le et al. [31] proposed a MV-

RNN approach which treats multi-view images as a tempo-

ral sequence and uses recurrent neural network to correlate

them. Although multi-view approaches generally give com-

pelling results, it has several limitations. First, we need to

carefully choose the rendering pipeline such as image reso-

lution with respect to data sampling density, lighting, blend-

ing and keep track of the camera parameters. Second, each

view only contains partial information and it is not trivial

to correlate across views. Third, multi-view approaches are

limited to model only the object’s surface and cannot cap-

ture 3D internal structures.

Representatives for the later direction of adapting to the

3D irregularity include PointNet [38], PointNet++ [40],

SpecCNN [63]. Su et al. [38] proposed PointNet as the first

neural network which directly consumes 3D point clouds.

PointNet is pretty fast and robust to rigid transformation

and points’ ordering. Its main limitation is relying on only

the max-pooling to have context information. Later, Point-

Net++ was developed to compensate this weakness. Yi et

al. [63] proposed SpecCNN uniquely designed for polygo-

nal mesh. SpecCNN converts convolution to multiplication

in spectral domain by Fourier analysis.

3. PointGrid

Volumetric grid is widely used for 3D deep learning due

to its regularity. However the use of relatively lower or-

der local approximation functions such as piece-wise con-

stant function (occupancy grid) or piece-wise linear func-

tion (distance field) to approximate 3D shape means it needs

a very high-resolution grid to represent finer geometry de-

tails, which could be memory and computationally ineffi-

cient.

In this work, we propose the PointGrid, a 3D convolu-

tional network that incorporates a constant number of points

within each grid cell thus allowing the network to learn

higher order local approximation functions that could better

represent the local geometry shape details (Fig. 1).

We now introduce our PointGrid, starting with the dis-

cussion of its input format, then discussing its architecture

for classification, and finally discussing how to use it for

semantic segmentation of 3D point clouds.

3.1. Input Layer

The new deep architecture works with 3D grid con-

structed for 3D point clouds. We normalize the point cloud

to the unit box [−1,1]3 and this is the only preprocessing

step in our framework. In contrast to VoxNet which uses oc-

cupancy grid as the primary representation of the 3D struc-

ture, we stack the points’ coordinates as features for each

cell. As a result, a cell with K points will have features 3K

for the corresponding x, y and z coordinates. However, each

cell has different number of points and constructing such

grid is infeasible for sharing 3D convolutional kernels.

To solve this issue, we use a simple yet effective sam-

pling strategy which we call Point Quantization, to keep a

fixed number of K points in each cell. More specifically,

if there are more than K points, we randomly sample K of

them. If there are less than K points, we sample with re-

placement K of them. We pad zeros to cells with no point.

9206

Figure 2: The architecture of PointGrid. Starting from the grid obtained from our sampling strategy, both classification

and segmentation networks share the feature extraction (encoder) part. Segmentation network uses skip connections to

preserve information of different hierarchical levels. All convolutions, deconvolutions and fully connected layers include

batch normalization and ReLU (except object category and object-part segmentation layers). The notion 32@16x16 means

there are 32 convolutional filters and the spatial dimension is 16×16. The network is visualized in 2D.

This mimics the commonly used zero-padding to compen-

sate the boundary loss in convolutions. The value of K theo-

retically can be approximated by the total number of points

(P) divided by the number of cells in the grid (N3) (i.e.

K ≈ P
N3). When working with point clouds of size P= 1024,

we empirically set K = 4 with a grid size of 16× 16× 16

for the best trade-off between accuracy and performance.

3.2. Classification Network

The classification network of PointGrid is illustrated in

2D in Fig. 2, which extracts features from input grid.

Hence, we need the architecture to be deep and efficiently

generate perceptually multi-level features. PointGrid con-

sists of several blocks of convolutions followed by max-

pooling to represent different hierarchical feature represen-

tations. Each convolution layer includes a 3× 3× 3 kernel

with stride 1 convolution, a batch normalization [19] and a

rectified linear unit (ReLU) [36, 28]. The first block use 32-

filter convolutions and they are doubled in each successive

block. The pooling layers not only provide another form

of translation invariance but also serve to progressively re-

duce the spatial size of the representation, to reduce the

number of parameters and amount of computation in the

network, and hence to also control overfitting. All of our

pooling layers are max-pooling which reduce the grid size

half in each spatial dimension. After several convolutional

and max pooling layers, as usual, the high-level reasoning

in our PointGrid is done via fully connected layers. Point-

Grid has two fully connected layers, each of which consists

of a fully connected layer, a ReLU activation and a dropout

layer (with dropout rate 0.3). Finally, another fully con-

nected layer followed by a softmax to regress to the proba-

9207

bility of each category. The number of nodes in this layer

equals to the number of object categories in the dataset.

3.3. Segmentation Network

Our segmentation network shares the feature extraction

(or encoder) from the classification network (see Fig. 2)

and decodes the extracted features to build the segmenta-

tion. It is intuitive that labeling object parts depends on

the object category so we include both the high-level fea-

tures in the last fully connected layer and the object category

probability for better global features. The decoder is almost

symmetric to the encoder with convolutions replaced by de-

convolutions (or sometimes referred as transposed convo-

lutions). We optimize both networks simultaneously. The

final loss is a linear combination of classification loss and

segmentation loss.

The classification network progressively extracts and

down-samples features, while the segmentation counterpart

upsamples and combines them to construct the output. The

sizes of feature maps are exactly mirrored in our network.

We link early encoded features (from the classification net-

work) to the corresponding decoded features (from the seg-

mentation network) at the same spatial resolution, in or-

der to obtain local sharp details preserved in early encoder

layers. A mirror-link is a short notation for concatenation

a copy followed by convolution. Besides the sharpness,

mirror-links could also make the training converge faster.

The segmentation network produces K + 1 labels for

each cell in the 3D grid with K labels correspond to K points

in that cell and one additional cell-level label. To obtain the

ground truth labels for object parts at the cell-level, we take

the majority label among labels of points in each cell. Cells

with no point (and hence are filled with zeros) are labeled

as “no label” and so are all the points within those cells. In

testing, if there are less than or equal to K points in each

cell, we use the corresponding K labels for each of them.

Otherwise, the remaining points take the cell-level label.

3.4. Implementation details

3.4.1 Data augmentation

During training, before sampling to input grid, we augment

the point cloud on-the-fly by randomly rotating the object

along the up-axis and jittering the position of each points

by a Gaussian noise with zero mean and 0.02 standard de-

viation. The sampling layer of our PointGrid also serves as

an additional data augmentation.

3.4.2 Training

We set batch size as 32, batch normalization initial decay

as 0.5, batch normalization decay clipping as 0.99. The

weights for classification and segmentation losses are 0.2

and 0.8, respectively. Both losses are cross-entropy. We

Table 1: Object classification results on ModelNet40 [57].

Method Input
Accuracy Accuracy

Overall Avg. Class

SPH [25] mesh – 68.2

3DShapeNets [57] volume 84.7 77.3

VoxNet [35] volume 85.9 83.0

Subvolume [39] volume 89.2 86.0

VRN (simple) [6] volume 91.3 –

VRN (ensemble) [6] volume 95.5 –

LFD [57] image – 75.5

MVCNN [49] image – 90.1

FusionNet [53]
volume

90.8 –
& image

Set-Conv [41] point 90.0 –

PointNet [38] point 89.2 86.2

PointNet++ [40] point 91.9 –

Kd-Net [27] point 91.8 –

O-CNN [55] point 90.6 –

PointGrid (ours) point 92.0 88.9

Table 2: Object classification results on ShapeNet-55 [7].

Method Input
Accuracy Accuracy

Overall Avg. Class

PointNet [38] point 83.2 78.2

PointGrid (ours) point 86.1 80.5

Table 3: Accuracy of PointGrid’s alternative structures on

ModelNet40 [57].

P
P
P
P
P
P

PP
Grid

K
1 2 4 8 16

4×4×4 77.3 80.8 81.9 85.9 84.7

8×8×8 87.1 87.9 87.5 88.3 87.4

16×16×16 90.0 91.9 92.0 91.4 91.0

32×32×32 91.7 92.2 92.4 92.7 92.4

use Adam optimizer [26] with initial learning rate of 10−4.

Adam realizes the benefits of both AdaGrad [8] and RM-

SProp [12]. Instead of adapting the parameter learning rates

based on the average first moment (the mean) as in RM-

SProp, Adam also makes use of the average of the second

moments of the gradients (the uncentered variance). We

implement our PointGrid using the public deep learning li-

brary TensorFlow [1] and train it using Nvidia Titan X for

8 hours for classification and 20 hours for segmentation

(equivalent to 100 epochs). PointGrid consumes 4.0GB and

8.4GB of memory for classification and segmentation net-

work, respectively. These figures are for grid size N = 16,

K = 4 for each cell and batch size of 32.

9208

bed

piano

TV stand

dresser

bench

sofa

vase

flower pot

flower pot

plant

table

night stand

Figure 3: Some wrongly classified models. Predicted and

actual labels are italicized and highlighted, respectively.

4. Experiments

We now discuss some experimental results of applying

PointGrid to shape classification and object-part segmen-

tation benchmark datasets. For classification, we evaluate

PointGrid with various hyper-parameters such as the grid

size (N) and the number of points per cell (K).

4.1. Shape Classification

Datasets: The ModelNet40 [57] benchmark contains

12,311 CAD models from 40 man-made object categories,

which have been extensively used for 3D shape classifica-

tion. The dataset is split into the training (9843 models) and

the testing (2468) sets. ShapeNet-Core55 [7] benchmark

contains a total of 51,190 3D models with 55 categories

and 204 subcategories. The models are normalized to a unit

length cube and have a consistent upright orientation. 70%

of the dataset is used for training, 10% for validation, and

20% for testing.

Sampling point cloud: Given a triangular mesh model, 3D

point cloud is computed as follows: firstly, a given number

of triangles are sampled with the probability proportional to

their surface areas. Then, for the sampled triangle a random

point was taken by the following sampling equation.

(1−
√

r1)A+
√

r1 (1− r2)B+ r2

√
r1C (1)

where A,B,C are the coordinates of the triangle’s vertices

and r1,r2 are random real numbers with r1,r2 ∼U(0,1).
The whole sampling procedure thus closely approxi-

mated uniform sampling of model surfaces. For each

model, we uniformly sample 1024 points on the surface.

Results: Our PointGrid gets 92.0% and 86.1% overall ac-

curacy on ModelNet40 and ShapeNet-Core55 datasets, re-

spectively. Fig. 3 shows some wrongly classified models.

A
ir

p
la

n
e

B
at

h
tu

b
C

u
rt

ai
n

T
o

il
et

T
en

t
T

V
S

ta
n

d

Figure 4: Visualization of object saliency. Magnitude of the

gradient of the probability w.r.t. input grid is populated to

points. Red indicates highly salient regions.

As we can see, there are still some ambiguities in categories

whose appearances could be similar such as bench versus

sofa and flower pot versus vase.

Comparison: In Table 1, we compare our method with a

representative set of state of the art methods. In the cate-

gory of “accuracy overall”, our PointGrid performs better

than the majority of other voxel-based approaches such as

3DShapeNet [57], VoxNet [35], Subvolume [39] and VRN

(single) [6] while being worse than the VRN-ensemble [6]

which involves an ensemble of 6 models each trained sepa-

rately over the course of 6 days on NVidia Titan X. Compar-

ing with methods applied to point cloud, despite of its sim-

plicity, our network edges out Set-Conv [41], PointNet [38],

PointNet++ [40], Kd-Net [27] and O-CNN [55]. One of the

reason may be because our method better captures points’

contextual neighborhood and hence learns better high-level

features. There is still a small gap between our method and

multi-view based method (MVCNN [49]) in the “average

class accuracy” which may be due to the fact that MVCNN

9209

Table 4: Object-part segmentation results on ShapeNet-part [62].

Method
shapes Wu Yi 3D Point- Kd-Net SpecCNN O-CNN PointGrid

test total [56] [62] CNN Net [38] [27] [63] [55] (ours)

mean IoU – 81.4 79.4 83.7 77.2 84.7 85.9 86.4

airplane 341 2690 63.2 81.0 75.1 83.4 79.9 81.6 85.5 85.7

bag 14 76 – 78.4 72.8 78.7 71.2 81.7 87.1 82.5

cap 11 55 – 77.7 73.3 82.5 80.9 81.9 84.77 81.8

car 158 898 – 75.7 70.0 74.9 68.8 75.2 77.0 77.9

chair 704 3758 73.5 87.6 87.2 89.6 88.0 90.2 91.1 92.1

earphone 14 69 – 61.9 63.5 73.0 72.4 74.9 85.1 82.4

guitar 159 787 – 92.0 88.4 91.5 88.9 93.0 91.9 92.7

knife 80 392 – 85.4 79.6 85.9 86.4 86.1 87.4 85.8

lamp 286 1547 74.4 82.5 74.4 80.8 79.8 84.7 83.3 84.2

laptop 83 451 – 95.7 93.9 95.3 94.9 95.6 95.4 95.3

motor 51 202 – 70.6 58.7 65.2 55.8 66.7 56.9 65.2

mug 38 184 – 91.9 91.8 93.0 86.5 92.7 96.2 93.4

pistol 44 283 – 85.9 76.4 81.2 79.3 81.6 81.6 81.7

rocket 12 66 – 53.1 51.2 57.9 50.4 60.6 53.5 56.9

skateboard 31 152 – 69.8 65.3 72.8 71.1 82.9 74.1 73.5

table 848 5271 74.8 75.3 77.1 80.6 80.2 82.1 84.4 84.6

used a higher resolution to represent an object (80 views of

224×224 image versus 16×16×16×4 in our PointGrid).

Table 2 shows a side-by-side comparison between our

PointGrid and PointNet [38]. Our method outperforms

PointtNet [38] in both categories, 2.9% overall accuracy

and 2.3% average-class accuracy.

Alternative network architecture: We conduct experi-

ments with alternative PointGrid’s architectures (on N and

K) and report their overall accuracy for the object classifi-

cation on ModelNet40 dataset [57]. According to Table 3,

increasing the grid resolution (with extra memory and com-

putational cost) increases the accuracy as it captures finer

details. However, the improvement keeps decreasing each

time we double the size of the grid. This might be due to

the relatively lower sampling resolution of the 3D data in

the experiment where only 1024 points are sampled for each

model. Regarding to the number of points per cell K, again

keep using more points is not always better. This may also

be due to fact that with the lower sampling rate of the 3D

data, the point cloud has already been well represented with

K points per cell, and further increasing K could result in

randomly duplicating data which could make it harder for

the convolution to extract good features. We choose N = 16

and K = 4 for the best trade-off between accuracy and the

memory/computation usage.

Visualization: Fig. 4 shows the magnitude of the gradient

of the highest predicted probability with respect to the in-

put cell with blue to red indicates low to high magnitude.

We populate the gradient magnitude from each cell to all

the underlying points. Loosely speaking, a large gradient’s

magnitude indicates that a small change of points within

that cell results in a large change in its classification prob-

ability. Therefore, this figure could be thought as saliency

map of the objects. It is interesting that to classify an object,

PointGrid looks for some tube structure for airplane, curvy

surface for curtain, roof for tent and flat horizontal surface

for TV stand.

4.2. Objectpart Segmentation

Dataset: We evaluate our architecture for object-part seg-

mentation on ShapeNet-part dataset from [62], which aug-

ments a subset of the ShapeNet models with semantic part

annotations. It contains 16,881 shapes represented as sepa-

rate point clouds from 16 categories with per point annota-

tion (with 2 to 6 parts per category and 50 parts in total). We

use the same training/testing split provided by [38, 63]. In

this dataset, both the object categories and the object parts

within the categories are highly imbalanced, which poses a

challenge to all methods including ours.

Comparison: Fig. 5 displays some examples of segmenta-

tion results of our PointGrid compared with those of Point-

Net [38]. As we can see, our results are visually better in

most cases. For example, our PointGrid can separate out

the wheels from the body of a motorcycle while PointNet

cannot. Similar observations can be made for other models

such as the pistol, skateboard and cap.

Table 4 numerically compares the segmentation perfor-

mance of our PointGrid against other deep learning ap-

proaches. Evaluation metric is per-category and mean IoU

on points. In the category of “mean IoU”, our PointGrid

9210

PointNet [38] PointGrid Ground Truth

Figure 5: Comparison between PointGrid and PointNet on

object-part segmentation. This result is based on grid size

16×16×16 and K = 4.

achieves the best accuracy. In individual categories, we rank

the best in airplane, car, chair and table; the second best in

bag, earphone, guitar, lamp, mug and pistol; the third in

cap, motor, rocket and skateboard. Our method places the

fourth in laptop, and the fifth in knife. As we can see, our

method performs better when there is more data in the cat-

egory such as airplane, chair, table, etc. Note that we only

Table 5: Average testing time on ModelNet40 [57].

Classification Segmentation

PointNet [38] 8.98ms 28.37ms

3D CNN (323) 27.50ms 64.32ms

3D CNN (643) 49.12ms 136.54ms

PointGrid (163) 14.91ms 48.94ms

use grid size of 16×16×16 where all the other volumetric

methods use at least 32×32×32 grid. Moreover, we do not

have any post-processing step such as boundary refinement

by Conditional Random Field as is done in O-CNN [55].

Time complexity: Table 5 shows average inference time of

our method on both classification and segmentation tasks

(We test our method on individual data sequentially). For

comparison, we run the authors’ code of PointNet [38].

Since the 3DShapeNet [57] does not conduct segmentation,

we extend the network in [57] to a fully convolutional net-

work by omitting the fully connected layers and symmet-

rically adding the deconvolution layers. As we can see,

PointGrid with grid resolution of 163 is faster than 3D CNN

methods such as [57] with grid resolution of 323, and still

outperforms it in the accuracy as shown in our paper. It is

slower than PointNet but it performs better than PointNet in

both classification and segmentation.

5. Conclusion

In this work we propose a new deep learning architec-

ture PointGrid suitable for 3D visual recognition tasks such

as 3D classification and semantic segmentation. PointGrid

is a hybrid representation of point and grid that can better

capture local geometric details while exhibits easy-to-learn

regular structure. Experiments on widely used benchmark

datasets [57, 7, 62] show that PointGrid compares favor-

ably over existing deep learning methods [56, 62, 38, 27,

63, 55] on both classification and segmentation with sig-

nificantly smaller memory footprint than other volumetric

approaches.

Currently in the “point quantization” step of Section 3.1,

if there are more than K points, we randomly sample K of

them. Although it works well in our experiment, we would

like to explore other advanced sampling techniques, e.g.

furthest sampling [9], which may provide better represen-

tation of the local shape.

Acknowledgement

We would like to thank the authors of ModelNet40 [57]

and ShapeNet [7, 62] datasets. We also appreciate Su et

el. [38], Wang et al. [55] for making PointNet and O-CNN

publicly available.

9211

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 5

[2] A. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and

P. Azariadis. 3d mesh segmentation methodologies for cad

applications. Computer Aided Design and Applications,

4(6):827–841, 2007. 2

[3] M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical

mesh segmentation based on fitting primitives. The Visual

Computer, 22:181–193, 2006. 2

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 24(4):509–

522, 4 2002. 2

[5] W. Benjamin, A. W. Polk, S. Vishwanathan, and K. Ramani.

Heat walk: Robust salient segmentation of non-rigid shapes.

Computer Graphics Forum, 30(7):2097–2106, 2011. 2

[6] A. Brock, T. Lim, J. Ritchie, and N. Weston. Generative

and discriminative voxel modeling with convolutional neural

networks. Computing Research Repository - arXiv, 2016. 1,

3, 5, 6

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d

model repository. Computing Research Repository - arXiv,

2015. 5, 6, 8

[8] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-

dient methods for online learning and stochastic optimiza-

tion. Journal of Machine Learning Research, 12:2121–2159,

2011. 5

[9] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The

farthest point strategy for progressive image sampling. IEEE

Transactions on Image Processing, 6(9):1305–1315, 9 1997.

8

[10] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(8):1915–

1929, 8 2013. 1

[11] M. Garland, A. Willmott, and P. S. Heckbert. Hierarchical

face clustering on polygonal surfaces. In Processing of the

Symposium on Interactive 3D Graphics, I3D ’01, pages 49–

58, 2001. 2

[12] K. S. Geoffrey Hinton, Nitish Srivastava. Lecture 6 -

overview of mini-batch gradient descent. Computer Science

lecture at University of Toronto. 5

[13] A. Golovinskiy and T. Funkhouser. Randomized cuts

for 3d mesh analysis. ACM Transactions on Graphics,

27(5):145:1–145:12, 12 2008. 2

[14] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based

recognition of 3D point clouds in urban environments. Inter-

national Conference on Computer Vision, 9 2009. 2

[15] K. Guo, D. Zou, and X. Chen. 3d mesh labeling via deep con-

volutional neural networks. ACM Transactions on Graphics,

35(1):3:1–3:12, 12 2015. 3

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 6 2016. 1,

3

[17] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.

Topology matching for fully automatic similarity estimation

of 3d shapes. In ACM Transactions on Graphics, pages 203–

212, 2001. 2

[18] S. Hong, J. Oh, H. Lee, and B. Han. Learning transferrable

knowledge for semantic segmentation with deep convolu-

tional neural network. Computing Research Repository -

arXiv, 2015. 1

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International Conference on Machine Learning, 2015. 4

[20] A. Jagannathan and E. Miller. Three-dimensional surface

mesh segmentation using curvedness-based region growing

approach. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 29(12):2195–2204, 12 2007. 2

[21] A. E. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3d scenes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(5):433–

449, 5 1999. 2

[22] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3d

shape segmentation with projective convolutional networks.

Computing Research Repository - arXiv, 2016. 3

[23] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning

3d mesh segmentation and labeling. ACM Transactions on

Graphics, 29(3), 2010. 2

[24] S. Katz and A. Tal. Hierarchical mesh decomposition using

fuzzy clustering and cuts. ACM Transactions on Graphics,

22(3):954–961, 7 2003. 2

[25] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3d shape de-

scriptors. In Eurographics/ACM SIGGRAPH Symposium on

Geometry Processing, pages 156–164, 2003. 5

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. IEEE International Conference for Learning

Representations, 2015. 5

[27] R. Klokov and V. S. Lempitsky. Escape from cells: Deep

kd-networks for the recognition of 3d point cloud models.

Computing Research Repository - arXiv, 2017. 1, 2, 3, 5, 6,

7, 8

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 1, 4

[29] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. Fast

mesh segmentation using random walks. In Processing of

the ACM Symposium on Solid and Physical Modeling, SPM

’08, pages 183–191, 2008. 2

9212

[30] G. Lavoue, F. Dupont, and A. Baskurt. A new cad mesh

segmentation method based on curvature tensor analysis.

Computer-Aided Design, 37(10):975–987, 2005. 2

[31] T. Le, G. Bui, and Y. Duan. A multi-view recurrent neural

network for 3d mesh segmentation. Computers & Graphics,

66(Supplement C):103–112, 2017. 3

[32] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn:

Field probing neural networks for 3d data. In IEEE Inter-

national Conference on Neural Information Processing Sys-

tems, pages 307–315, 2016. 1, 3

[33] R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or. A part-

aware surface metric for shape analysis. Computer Graphics

Forum, 28(2):397–406, 2009. 2

[34] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE International

Conference on Pattern Recognition, 11 2015. 1

[35] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 922–928, 9 2015. 1, 3, 5, 6

[36] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In IEEE International Confer-

ence on Machine Learning, pages 807–814, 2010. 4

[37] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In IEEE International Con-

ference on Computer Vision, 2015. 1

[38] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

Computing Research Repository - arXiv, 2016. 1, 2, 3, 5, 6,

7, 8

[39] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas.

Volumetric and multi-view CNNs for object classification on

3d data. In IEEE International Conference on Computer Vi-

sion and Pattern Recognition, 2016. 1, 3, 5, 6

[40] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

Computing Research Repository - arXiv, 2017. 2, 3, 5, 6

[41] S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep learning

with sets and point clouds. Computing Research Repository

- arXiv, 2016. 5, 6

[42] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning

deep 3d representations at high resolutions. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017. 1,

2, 3

[43] A. Shamir. A survey on mesh segmentation techniques.

Computer Graphics Forum, 27(6):1539–1556, 9 2008. 2

[44] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh

partitioning and skeletonisation using the shape diameter

function. The Visual Computer, 24(4):249–259, 2008. 2

[45] A. Sharma, O. Tuzel, and D. W. Jacobs. Deep hierarchical

parsing for semantic segmentation. In 2015 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 530–538, 6 2015. 1

[46] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):888–905, 8 2000. 2

[47] Z. Shu, C. Qi, S. Xin, C. Hu, L. Wang, Y. Zhang, and L. Liu.

Unsupervised 3d shape segmentation and co-segmentation

via deep learning. Computer Aided Geometric Design,

43:39–52, 2016. Geometric Modeling and Processing 2016.

2

[48] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. International

Conference on Learning Representations, 2014. 1

[49] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.

Multi-view convolutional neural networks for 3d shape

recognition. In IEEE International Conference on Computer

Vision, 2015. 3, 5, 6

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–9, 6

2015. 1, 3

[51] P. Theologou, I. Pratikakis, and T. Theoharis. A comprehen-

sive overview of methodologies and performance evaluation

frameworks in 3d mesh segmentation. Computer Vision and

Image Understanding, 135:49–82, 2015. 2

[52] M. Vieira and K. Shimada. Surface mesh segmentation and

smooth surface extraction through region growing. Com-

puter Aided Geometric Design, 22:771–792, 2005. 2

[53] R. Z. Vishakh Hegde. Fusionnet: 3d object classification

using multiple data representations. Computing Research

Repository - arXiv, 2016. 5

[54] D. Z. Wang and I. Posner. Voting for voting in online point

cloud object detection. In Robotics: Science and Systems,

2015. 1, 3

[55] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.

O-CNN: Octree-based convolutional neural networks for 3d

shape analysis. ACM Transactions on Graphics, 36(4):72:1–

72:11, 7 2017. 1, 2, 3, 5, 6, 7, 8

[56] Z. Wu, R. Shou, Y. Wang, and X. Liu. Interactive shape co-

segmentation via label propagation. Computers & Graphics,

38:248–254, 2014. 2, 7, 8

[57] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In IEEE International Conference on Computer Vi-

sion and Pattern Recognition, pages 1912–1920, 2015. 1, 3,

5, 6, 7, 8

[58] D. Xiao, H. Lin, C. Xian, and S. Gao. Cad mesh model seg-

mentation by clustering. Computers & Graphics, 35(3):685–

691, 2011. Shape Modeling International (SMI) Conference

2011. 2

[59] Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, and H. Huang. Pro-

jective feature learning for 3d shapes with multi-view depth

images. Computer Graphics Forum, 34(7):1–11, 2015. 3

[60] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. G. Belyaev, and

H.-P. Seidel. Feature sensitive mesh segmentation with mean

shift. In In Processing of the International Conference on

Shape Modeling and Applications, pages 238–245, 2005. 2

[61] B. Yi, Z. Liu, J. Tan, F. Cheng, G. Duan, and L. Liu. Shape

recognition of cad models via iterative slippage analysis.

Computer Aided Design, 55(0):13–25, 2014. 2

9213

[62] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su,

C. Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable

active framework for region annotation in 3d shape collec-

tions. ACM Transactions on Graphics, 35(6):210:1–210:12,

11 2016. 2, 7, 8

[63] L. Yi, H. Su, X. Guo, and L. J. Guibas. SyncSpecCNN: Syn-

chronized spectral CNN for 3d shape segmentation. Com-

puting Research Repository - arXiv, 2016. 3, 7, 8

[64] E. Zhang, K. Mischaikow, and G. Turk. Feature-based sur-

face parameterization and texture mapping. ACM Transac-

tions on Graphics, 24(1):1–27, 1 2005. 2

9214

