
Talking To The Database In A Semantically Rich Way

Henrietta Dombrovskaya
 Enova

200 W. Jackson Blvd.
Chicago, IL 60606

hdombrovskaya@enova.com

Richard Lee
Enova

200 W. Jackson Blvd.
Chicago, IL 60606

rlee@enova.com

ABSTRACT
Conventional recommendations for Object Oriented application
design include the concept of Object-Relational Mapping and
suggest clear separation of business logic from interaction with
the database. While these requirements seem natural to
application developers, it prevents them from using the full power
of the database engine, and thereby become the most essential
source of application performance degradation. Acknowledging
the widespread usage of the above concepts, our approach
provides an algorithm for “splitting” logic between different
layers of classes. We identify the parts of logic that are essential
for data retrieval and thereby belong to the database, and the parts
of logic that drive the computation or other data transformation
and can reside in the application model. Although the splitting
logic algorithm, as yet, is not implemented in any tool, we
consider it an important part of the application design process. In
our paper we provide examples of redesigned methods as well as
before-and-after performance data from the production system.

General Terms
Performance, Design, Human Factors.

Keywords
Application development, object-relational impedance mismatch,
code analysis, code factoring, delinquent coding patterns

1. INTRODUCTION
Everybody wants applications to function efficiently. When it
comes to the database application, the most important way to
reach this goal is to ensure that the application interacts efficiently
with the database, since this interaction is the most time
consuming portion of the application activity. After all – why
choose to use databases in the first place? Why not develop the
data accessing tools along with your application? The reason is
that the DBMS is specialized software designed to manage data in
the most efficient way. Nevertheless, the most common complaint

of the application developers is “the database is slow”.

What is the reason for this complaint and what are the areas a
database developer would usually start looking at? Traditional
database optimization is targeted towards optimization of stand-
alone queries, including query rewriting and database schema
changes on one hand, and tuning of the database system
parameters on the other [1-4]. Application and database
developers have a great variety of tools available, which help with
these kinds of optimization, including DBMS–specific tools [5,6]
along with third-party products [7].

However, in many cases the reason for poor performance is “too
many too tiny queries”, which consume a significant portion of
database resources. Recently, a growing number of database
researchers and practitioners have started to target this area. The
general direction of research is to find the ways of restructuring of
the application code that interacts with the database; in effort to
reduce the total number of database calls. The perfect example of
this approach is the AppSleuth tool, described in [8]. The fact that
application code often suffers from the “delinquent patterns”,
most commonly the repeated processing of a single record in a
loop, is evident and hard to ignore. However, the frequency of the
problem is most often attributed to the fact that “that is how the
programmers are taught to write programs at school”. We argue
that the problem has deeper roots, and therefore it won’t vanish if
we just teach people “how to code properly”.

We believe that the reason for this type of programming, in most
cases, is the problem commonly referred to as “impedance
mismatch” [9,10]. The problem has been known since the mid
80’s when the first database programming languages started to
appear. However, when the object-oriented approach to
application design and development became the dominant trend,
the problem became apparent. Conventional recommendations on
the object-oriented application design [11] suggest clear
separation in the levels of classes. Best programming practices
favor the separation of classes into different levels: those that
implement the business logic and those that interact with the
database, in particular. While these requirements seem natural to
application developers, they prevent using the full power of the
database engine.

With the emergence of Object Oriented (OO) programming and
design, many software developers tried to simplify the ways in
which applications interact with the database. The most
commonly used approach is Object-Relational Mapping (ORM)
[12]. This approach maps a database object to the in-memory
application object. While solving the problem of abstraction from

(c) 2014, Copyright is with the authors. Published in Proc. of
EDBT/ICDT’17 Joint Conference, March 24-28, 2014, Athens, Greece.
on OpenProceedings.org. Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0
.

676 10.5441/002/edbt.2014.74

details of data storing, it does not provide an effective means of
manipulation of data sets, thus does not solve the impedance
mismatch problem.

In the case of ORMs, the problem became known as object-
relational impedance mismatch (ORIM) [13]. It is commonly
defined as a set of conceptual and technical difficulties that is
encountered when a relational database management system
(RDBMS) is being used by a program written in an object-
oriented programming language or style, particularly apparent
when objects, or class definitions, are mapped in a straightforward
way to database tables or relational schemata.

One of the reasons for ignoring the problem is the widespread
concept of “performance not being an issue”. In present
development practices the developers time is considered to be the
most expensive part of the application development process, and a
common approach is that if a development methodology allows us
to produce correct results fast enough, the performance issues can
be resolved by adding more hardware: more (and faster) CPUs,
faster disks, etc. Unfortunately, such an approach masks
performance problems for an extended period of time, but with
growing data volumes the problem re-emerges sooner or later, and
when it re-emerges, it is far more difficult to remedy. Most often,
by the time the organization reaches the hardware limits, it is
close to impossible to restructure the application code because the
system has already been in production for quite a while.

As infrequently as this problem is addressed, even less has been
done to propose a solid solution that would remain in the
boundaries of OO frameworks. In many cases, when application
performance becomes a critical issue, developers tend to introduce
a shortcut and execute embedded SELECT statements outside of
the model. These SELECT statements are not organized in a class
structure, and quickly spread all over the application making
simultaneous changes to the query logic impossible.

Figure 1. The sketch of proposed approach

In this paper, we propose an application code design and
refactoring methodology, which combines the power of the
database search engine with the application model logic. The main
idea of our approach is illustrated on Figure 1. This methodology
is easy enough to be used by application developers, with minimal
changes to their standard process, and provides enough
performance gain so that they will be willing to accept the change.
It also works well when we need to make changes to an existing
application, in which case the existing top-level methods’
interfaces must remain unchanged.

The preliminary version of this work was first presented at PG
Open 2013 Conference in Chicago, IL September 16-18 2013
[14], the abstract and the presentation video are available at the
conference website.

The rest of this paper is organized as follows: in section 2 we give
a formal description of our methodology. In section 3 we present a
simple case study. We describe Enova’s application environment
and the original structure of methods. Then we show how we
applied the new methodology to refactor this method, and how
this rewriting helped both to make the code clearer and improve
the overall system performance. In section 4 we present more
complex example of method rewriting based on the same
principles. In section 5 we discuss execution statistics. In section 6
we review related work and outline the differences of our
approach. In section 7 we summarize results and discuss future
work.

2. PROPOSED METHODOLOGY
In this section we present a description of the principles and
guidelines we use to separate the application logic into “layers”.

2.1 Behind a Screen Rendering
This project was initiated after a group of application and database
developers in our organization decided to take a closer look at the
application logs, in order to find out “why the application is
slow”. We were fully aware of the fact that the application is
written in an imperative way, and that the number of database
calls is more than optimal. As it turned out, we were not aware of
the magnitude of the problem.

For an OLTP application a “logical unit” of application code is a
“screen rendering” – a collection of methods that are invoked
when an application user clicks a button on the screen (or presses
“Enter”). No additional information is passed to the application
between the moment of clicking the button and the moment the
screen is rendered; which means that, at the moment the screen
rendering starts, the application has enough information to
retrieve all necessary information from the database. However,
our analysis of the application logs showed that in some cases the
application produces up to a 1,000 database calls per screen
rendering.

Why does it happen? The reason is not that application developers
do not know how to code, but the fact that they code in
compliance with OO development standards, which inevitably
lead to Object-Relational Impedance Mismatch. Typically the
smallest programming unit considered in the OO environment is a
method (which belongs to some class). Each method is designed
to perform some specific task. For example: calculate outstanding
balance for a loan.

What happens when an application, developed in line with the OO
principles, renders a screen view? Since elements of the screen
may belong to different classes and obtaining their values may
require using different methods, this means that an application is

677

unable to retrieve all the necessary data “in one shot”. Instead, it
will submit queries to a database “as needed” thus treating the
database like main memory. This results in a large number of
database calls and, while each single SELECT execution may be
very fast, total execution time may significantly increase
application latency [15, 16]. In our case, with average execution
time for each query as low as 20-50 milliseconds, a screen
rendering could take 30 or more seconds, which would result in
application timeouts. This observation prompted us to look for

alternative ways of method structuring and resulted in this
methodology, which we named Logic Split.

2.2 How the Logic Split Works
We start our logic split process for a specific screen rendering (or,
more precisely, for a specific controller action execution) by
building a tree of methods, which are called to populate all fields
in the screen. The sample screen view is presented on Figure 2.

Figure 2. Splitting logic schema

Since we are using the ORM framework, some of the attributes
are mapped directly to database table fields and do not require
additional method execution. However, we want to make sure that
we retrieve the data from all tables using one SELECT statement,
not one SELECT statement per table; or worse: one SELECT
statement per attribute. The ORM model defines relationships
between classes of objects as joins between tables, which we can
utilize (similar to “eager loading”[17], but selecting only the fields
we need, not the whole table). This mapping is presented in
Figure 2 by links between the screen attributes T1_a, T1_b, T2_a
and T3_a and tables T1, T2 and T3.

Other attributes on the screen are populated by methods, which
are designed according the OO guidelines. In Figure 2 these
attributes are C1_calc and C2_calc. The first, C1_calc, is
computed by m_C1 method, the second C2_calc, by m_C2
method.

Until this moment our methodology is not significantly different
from the standard ORM approach, according to which the
application would execute each of the methods and populate the
remaining attributes with obtained results. Instead, we start to
examine the internal structure of each of the methods called.
Each of the methods can be broken into smaller, more granular
tasks; each of those tasks can be disassembled into yet smaller
tasks. This way the method structure can be presented as a tree of
method calls where the leaves present the low-level “atomic”
methods. Some of these tasks may require data collection while
others perform calculations based on the previously obtained

values. This distinction is important for our methodology but
typically, application developers do not take this characteristic
into consideration, they just present the “imperative” way of
execution and all data sources are considered an “extension of
main memory”. In contrast, our approach makes this distinction
the most important factor in making decisions about the methods’
internal structure.

In the example presented on Figure 2 m_C1 method selects
attributes b and c from T3 table and calls m_C1_1 method, which
in turn selects attribute d from T2 table. The other method (m_C2)
calls two methods: m_C2_1 and m_C2_2, which select data from
T2 and T3 respectively. The right portion of Figure 2 (enclosed in
the dashed rectangle) contains all data elements, which need to be
retrieved from the database. Since we can obtain this list of

SELECT	 	 T1_a	
,T1_b	 	

	 	 	 	 	 	 	 ,T2_a	
	 	 	 	 	 	 	 ,T3_a
FROM	 T1	 INNER	 JOIN	 T2	
	 	 ON	 T1.id=T2.T1_id	 	
	 INNER	 JOIN	 T3	
	 	 ON	 T2.id=T3.T2_id	

Figure 3. ORM-based SELECT

678

elements before any method execution is started, we can add them
to the SELECT statement, shown on Figure 3.
The complete SELECT is presented on Figure 4.

Now we can create a leaf-level method, which will retrieve all
data elements from the database, wrapping into a method the
SELECT statement above. When all the values from the database
are retrieved and reside in the application memory, the remaining
methods can use them as variables. Going in the reverse order,
m_C2_1 method uses T2.c value, m_C2_2 method uses T3.d
value, and they pass their execution results to m_C2 method,
which in addition utilizes T4.a value, and then continue to the root
methods.

Note the there are no changes to the logic of original methods, we
only refactor them to use extracted data as input parameters.

2.3 Defining a Division Line
The methodology described in the previous section seems rather
obvious but this type of analysis is not something that is typically
performed during OO development. This happens because when a
database object is mapped on the main memory object, the
application programmer considers all data “equally reachable”
and does not care about order of access of these objects.

When we construct the lower level SELECT statement, we need
to be aware of the ways the objects are associated with one
another, so that related objects can be identified. Which means
that, along with identifying the data elements, we are identifying
their relationships.

This is the part of the logic we are taking away from the model,
which is exactly the piece of logic that allows us to write complex
queries and enable database optimization.

By applying our method of Logic Split we achieve two separate
goals. First, we make the method logic more visible; the code
becomes shorter and easier to understand. Second, we can avoid
execution of a large number of small database queries and utilize
the database optimizer. As an extra bonus, any database structural
changes that occur, due to the need to support data volume growth
or new requirements, become “invisible” to the application and do
not require any upper level methods changes. In short, we allow
optimization of application code and database query optimization
to be performed independently.

To summarize, the Logic Split methodology consists of the
following five steps:

1. Disassemble method into atomic steps
2. Identify ones which require data retrieval
3. Using knowledge about database objects relationships,

construct a single query
4. Execute
5. Use retrieved data in other steps

3. CASE STUDY: CALCULATION OF
OUTSTANDING LOAN AMOUNTS
3.1 Enova Environment
Enova is a Ruby on Rails shop that uses the ActiveRecord Object
Relational Mapping (ORM) library to communicate with a
Postgres database. ActiveRecord is named after the ‘active record’
pattern defined by Martin Fowler in his book, Patterns of
Enterprise Application Architecture[8]. This pattern is an
approach to accessing and manipulating data in a database within
an object oriented system by providing the translations and tools
for interaction between the objects defined in the system and the
tables of records in the database. With ActiveRecord a database
table or view is mapped into a class and an object instance is tied
to a single row in the table.

Figure 5. Interaction between the website and the database
The ActiveRecord library creates a persistent domain model from
business objects and database tables, where logic and data are
presented as a unified package. ActiveRecord adds inheritance
and associations to the pattern above, solving two substantial
limitations of that pattern. A set of macros acts as a domain
language for the latter, and the Single Table Inheritance pattern is
integrated for the former; thus, ActiveRecord increases the
functionality of the active record pattern approach to database
interaction. ActiveRecord is the default “model” component of the

SELECT	 	 T1_a	
,T1_b	 	

	 	 	 	 	 	 	 ,T2_a	
	 	 	 	 	 	 	 ,T3_a	 	

,T3.b	
	 ,T2.d	
	 ,T3.c	
	 ,T2.c	
	 ,T4.a	
	 ,T3.d
FROM	 T1	 INNER	 JOIN	 T2	
	 	 ON	 T1.id=T2.T1_id	 	
	 INNER	 JOIN	 T3	
	 	 ON	 T2.id=T3.T2_id	
	 INNER	 JOIN	 T4	
	 	 ON	 T4.T2_id=T2.id	

Figure 4. Complete SELECT statement

679

model-view-controller web-application framework Ruby on Rails,
and is also a stand-alone ORM package for other Ruby
applications. The interaction between the application and the
database is presented on Figure 5.

Due to the lack of awareness by methods of the underlying
interaction with the database, one controller performs multiple
trips to the database. For example, when an application needs to
retrieve a loan summary, it would execute the sequence of calls
presented in Figure 6.

Figure 6. Methods to display loan summary view

3.2 Choosing the Test Case
One of the statements that caught our attention during the
preliminary performance analysis was the SELECT shown in
Figure 7. The screenshot presents a part of the log with the list of
“top 100 offenders”, the queries that take the most total execution
time throughout the day. The first column is the sequential
number of the query in the list; the second the total execution time
of all occurrences of this query during the day; the third, the
number of executions; the forth, the average execution time of the
individual query. This fragment of the log shows that the second
and third position in the list of top offenders is occupied by two
different versions of one query.
These two SELECT statements have an average execution time of
20 to 40 milliseconds, but are executed about 700,000 times
during a 24 hour period, bringing their total execution time to
about 5 hours and putting unnecessary load on the database.

This observation prompted us to find the method which was
executing this SELECT statements and choose it as our test case.
This test case illustrates only a subset of our methodology.
Specifically, we illustrate rewriting of one of the methods, which
is used to compute a calculated field on the screen (like m_C1
method on Figure 2). In Section 4 we present an example of a
more generic case and then show how the Logic Split
methodology is applied to the whole screen view rendering.

3.3 Original Method Description
The first method we selected for optimization is called
amount_outstanding, and appears to be one of the most often
executed methods.
It takes a loan number as an input parameter, along with some
optional parameters, and calculates the outstanding amount for
this loan. The UML diagram of the original method is presented
on Figure 8.

Figure 7. Database execution log report

680

Figure 8. UML diagram of original amount_outstanding

method
The amount_outstanding method summarizes balances of
several accounts in order to get the value for each of the balances.
This is done using a call to the sum_account_by_loan_id
method. Which, in turn calls a sequence of either sum_account
or sum_account2 methods, depending on whether the due date
is specified. These two methods access the database and perform
SELECT statements. Note that two separate SELECTs are
maintained in two separate classes, and there is no guarantee they
will be updated simultaneously should a change will be required.

Depending on the input parameters, one of several Ruby methods,
which directly interact with the database, is executed. Each
executes one of the following SELECT statements:
SELECT	 	
	 vl.value	 AS	 account	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
,SUM(CASE	 vl.value	 WHEN	 pt.debit_account_cd	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 END)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
-‐	 SUM(CASE	 vl.value	 WHEN	 pt.credit_account_cd	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 END)	
AS	 sum	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

FROM	 payment_transactions	 pt	
JOIN	 valuelists	 vl	 ON	 vl.type_cd	
='transaction_account'	 	 	 	
	 AND	 vl.value	 IN	 (pt.debit_account_cd	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
,pt.credit_account_cd)	
AND	 loan_id=?	

	

Or:
SELECT	 	 vl.value	 AS	 account	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 ,(SUM(CASE	 WHEN	 pt.debit_account_cd	 =	
vl.value	 AND	
	 	 	 	 	 	 	 	 	 (debit_account_due_date	 <=	 '{?}'	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 OR	 debit_account_due_date	 IS	 NULL)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 END)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

-‐	 SUM(CASE	 WHEN	 pt.credit_account_cd	 =	
vl.value	 AND	 	
	 	 	 	 	 	 (credit_account_due_date	 <=	 '{?}'	 	
OR	 credit_account_due_date	 IS	 NULL)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

THEN	 pt.amount	 ELSE	 0	 END))	 as	 sum	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
FROM	 payment_transactions_committed	 pt	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

JOIN	 valuelists	 vl	 ON	 vl.type_cd	 =	
'transaction_account'	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
AND	 vl.value	 IN	 (pt.debit_account_cd	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
,pt.credit_account_cd)

These are the SELECT statements that we observed in the list of
“top offenders”.

3.4 Drawbacks of Existing Method
Technically the method described in the previous subsection
would allow retrieving all the information related to one loan “in
one shot”. However, due to the application developers being
unaware of the underlying levels, there appears to be no
difference in whether to obtain the values of all accounts balances
one by one through following the logic of the method (in an
imperative way) or to obtain them simultaneously.

At the top level the business logic defines the components of the
“outstanding amount” for a loan, which are defined in the model
the following way:
AccountsOutstanding=	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 AccountsUncollected	 +	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 FeesOutstanding	 +	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 InterestOutstanding	 +	

	 	 	 	 	 PrincipalAccounts	 +	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 AccountsDue
Each of them is defined as an aggregate of a set of “atomic”
accounts for example:
AccountsUncollected	 =	 	
	 uncollected_principal	 +	
	 uncollected_installment_principal

According to these definitions the same SELECT statement is
executed multiple times, and each time only one atomic account is
selected. This explains, why one single execution of
amount_outstanding method produced multiple database
calls.

3.5 Utilizing the Logic Split
In Figure 9 we present a new UML diagram of
amount_outstanding_by_loan_id method. In the modified
method we isolated SQL parts, and instead of calling several
SELECT statements in different parts of the method, call it in just
one place.

Figure 9. UML diagram of modified amount_outstanding
method

681

Specifically, the optimized_amount_outstanding_by_loan_id
method calls the sum_accounts_by_loan_id	 optimized
method, which invokes the execution of a single PostgreSQL
function, generating and executing one single SELECT statement.
The particular SELECT statement is generated based on the
method parameters. The important part is that now there is no
need for special precautions regarding keeping all SELECT
statements in sync.

Now the SELECT statement, which is generated to retrieve all
outstanding balances, looks like this:
 SELECT	 	 loan_id	 	 	 	 	 	 	 	 	 	 	
	 ,sum(CASE	 WHEN	 debit_account_cd	 =	
'uncollected_principal'	 THEN	 pt.amount	 	

ELSE	 0	 	 END	 	 	 	
-‐CASE	 WHEN	 credit_account_cd	 =	
'uncollected_principal'	 THEN	 pt.amount	 	

ELSE	 0	 	 END)	 AS	 uncollected_principal	 	 	 	 	
<...>	
,	 sum(CASE	 WHEN	 debit_account_cd	 =	
'uncollected_nsf_fees'	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 	 END	 	

-‐	 CASE	 WHEN	 credit_account_cd	 =	
'uncollected_nsf_fees'	 	 	
	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 	 END)	 AS	
uncollected_nsf_fees	 	

	 	 	 	 	 	 ,	 sum(CASE	 WHEN	 debit_account_cd	 =	
'installment_principal'	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 pt.amount	 ELSE	 0	 	 END	 	 	

-‐ CASE	 WHEN	 credit_account_cd	 =	
'installment_principal'	 	

-‐ 	 THEN	 pt.amount	 ELSE	 0	 	 END)	 AS	
installment_principal	

	 	 FROM	 payment_transactions_committed	 pt	 	
	 	 	 	 	 	 	 	 	 	 	 	 INNER	 JOIN	 loans	 l	 ON	
l.id=pt.loan_id	 	 	

WHERE	 customer_id={?}	 	 	

GROUP	 BY	 loan_id

The due_on date, along with some other parameters, can be added
during SELECT generation.

We also added one more parameter, the customer number. If
application developers want to use this method the way they did
before, they can continue to do so. However, if they want to write
more efficient code, they can pass the customer number as a
parameter. In this way, they can retrieve outstanding balances for
all loans for a specified customer, with no additional database
load.

4. MORE COMPLEX CASE STUDY AND
CALLBACKS
4.1 Task Description
The methodology described in Section 2 is based entirely on the
maximal efficiency of the resulting implementation. In this
section we present a more complex example of logic split between
the database and the application code. We also introduce an
additional feature of our methodology that allows reprocessing
some of the data selected from the database and, in Ruby code,
return a callback result into the dataset.

One of the methods we implemented using our new methodology
returns, as a result, the account balance of a line of credit. It

includes some complex calculations that, for compliance reasons,
had to be performed in the model, rather than in the database.
To implement the Account_Balance method, we first listed the
upper-level steps. They included:

1. Obtain account principal balance
2. Obtain outstanding fees and interest as of next payment

due date
3. Calculate interest credit (unearned interest) for number

of days left before payment due date
4. Obtain existing customer balance
5. Calculate total account balance using values obtained in

steps 1-4

4.2 Utilizing the Logic Split
If we would utilize a traditional OO programming approach we
would write an Account_Balance method, which would call
Principal_Balance, Interest_Amount, Fees_Amount,
Customer_Balance, and Interest_Credit methods. Each of
these methods would interact with the database independently.
Instead, we continued drilling down into each of the steps:

1. Principal balance can be computed the same way as
described in item 3, so this is an atomic operation that
can be executed with a single database call

2. Outstanding interest and fees can also be obtained using
one database call each

3. Calculation of the interest credit involves several steps:
3.1. Obtain daily interest rate for this

customer
3.2. Obtain base amount, which is used to

calculate total interest
3.3. Obtain number of days for which interest

should be credited
3.4. Calculate amount of credit, based on

results from previous three steps
4. Customer balance can be obtained using one database

call, same as steps 1-3
Step 3.3, in turn can be separated into the following steps:

3.3.1. Obtain next payment due date
3.3.2. Calculate number of days based on obtained date
and today’s date

Now that we have disassembled the steps into atomic steps, we
can combine together the ones that deal with data retrieval. These
steps are: 1, 2, 3, 3.1, 3.2, 3.3.1, and 4, which means that the
database access method should execute the following task:

For a given loan, retrieve payment transactions, which
show principal balance, current interest, fees and
customer balance, also the loan’s daily interest rate and
next payment due date.

This task can be relatively easily executed using just one SELECT
statement:
SELECT	 l.id	 AS	 loan_id	 	 	
	 	 	 	 	 	 	 	 	 ,sum(CASE	 WHEN	 debit_account_cd	 =	
‘principal’	

	 	 	 	 	 	 	 	 	 	 	 AND	 t.acct_date<=	
v_current_date	 	

	 	 	 	 	 	 	 	 	 	 THEN	 t.amount	 	 ELSE	 0	 	 END	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐	 CASE	 WHEN	
credit_account_cd	 	 =’principal’	 	

	 	 	 	 	 	 AND	 t.acct_date<=	 v_current_date	 	

682

	 	 	 	 	 THEN	 t.amount	 ELSE	 0	 	 END)	 	 AS	
amount_payable	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 ,sum	 (CASE	 WHEN	
t.debit_account_cd=’fees_provisional’	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 t.amount	 ELSE	
0	 END	

-‐	 CASE	 WHEN	 t.credit_account_cd=	
‘fees_provisional’	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 t.amount	 ELSE	 0	 END)	 	
	 AS	 fees_provisional	 	

	 	 	 	 	 	 	 	 ,sum	 (CASE	 WHEN	 t.debit_account_cd=’	
interest_provisional’	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 t.amount	
ELSE	 0	 END	

-‐	 CASE	 WHEN	 t.credit_account_cd	
=’interest_provisional’	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 t.amount	 ELSE	 0	 END)	 	
AS	 interest_provisional	 	 	

	 	 	 	 	 	 	 ,st.end_date	 AS	 next_closing_date	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 ,l.daily_rate	 AS	 interest_rate	 	 	
	 	 	 	 	 	 ,sum	 (CASE	 WHEN	 t.debit_account_cd	
='customer_balance'	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 -‐t.amount	 ELSE	 0	
END	 	

	 -‐	 CASE	 WHEN	 t.credit_account_cd	
='customer_balance	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 THEN	 -‐t.amount	 ELSE	 0	 END)	 	 	
	 	 	 	 	 	 AS	 customer_balance	 	 	 	
FROM	 loans	 l	 	 	 	 	
LEFT	 OUTER	 JOIN	
payment_transactions_committed	 t	 ON	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
l.id=t.loan_id	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 LEFT	 OUTER	 JOIN	 statements	 st	 ON	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 l.id=st.loan_id	 	
	 	 	 	 	 	 	 	 	 	 WHERE	 l.id={?}	 	 	
	 	 	 	 	 	 GROUP	 BY	 l.id	

,l.daily_rate	
,st.end_date	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

This SELECT statement, when executed as a part of the method
invoked from the application, delivers all the data at once. Then,
the Ruby method calculates the final account balance amount:
def	 account_balance	 	
	 	 	 	 amount_payable	 =	 amount_outstanding	 +	
amount_charged_off	
	 	 	 	 amt	 =	 amount_payable	 -‐	 customer_balance	
	 	 	 	 provisional_interest	 =	 interest_provisional	
	 	 	 	 provisional_fees	 =	 fees_provisional	
	 	 	 	 if	 provisional_interest	 >	 0.0	
	 	 	 	 	 	 amt	 =	 amt	 +	 provisional_fees	 +	 [
provisional_interest	 -‐	 [unearned_interest,	
0].max,	 0].max	
	 	 	 	 else	
	 	 	 	 	 	 amt	 =	 amt	 +	 provisional_fees	
	 	 	 	 end	
	 	 	 	 amt	 =	 amt.round_near	
	 	 	 	 return	 [0,	 amt].max	
	 	 end	
	
	 	 def	 unearned_interest	 	
	 	 	 	 amt	 =	 -‐1	 *	 (principal_amount	 +	
[(customer_balance	 -‐	 interest_provisional	 -‐	
fees_provisional),	 0].max)	

	 	 	 	 next_closing_date	 =	
Date.parse(self.next_closing_date)	
	 	 	 	 return	 0	 unless	 next_closing_date	
	 	 	 	 interest_period	 =	 [next_closing_date	 -‐	
Date.today	 +	 1,	 0].max	
	 	 	 	 interest_rate	 =	 oec_daily_rate.to_f	
	 	 	 	 interest	 =	 amt	 *	 interest_period	 *	
interest_rate	
	 	 	 	 interest	 =	 interest.round_down	
	 	 	 	 interest	 <	 0.0	 ?	 0	 :	 interest	
	 	 end	

4.3 Usage in Screen Rendering (Callback)
In our application this methods is used as a callback in a more
complex method. The important thing is to apply the logic split
concept consistently. We established that, for the purposes of
efficiency and compliance, we want all of the calculations to be
executed in the Ruby model. So, in the case where we need a
“virtual column” as one of the fields of the data output, a Ruby
callback can be inserted into the data set.

In our example the Account_Balance method is used as a callback
in a more complex method, which returns several elements of the
loan summary. Most can be selected directly from the database,
except for account balance. The callback produces the required
value, and the whole data set is passed to the upper-level method
for further processing, then to the web application. Note that all
data elements can still be retrieved with a single SELECT, which
would not be possible within the standard ORM framework.

Figure 10. Using Account_Balance as a Callback

5. EXECUTION STATISTICS FOR NEW
METHODS
When we modified existing methods utilizing our “logic split”
methodology, we had to perform extended testing to make sure
the new methods would produce the same results. This is
especially important when money is involved. For most of the
new methods we conduct extended “dark testing”: for a
predefined percent of executions old and new methods are
executed simalteneously, and when the produced results are
different, the difference is logged. We usually run such testing for
a couple of weeks, and for each of the discrepancies we analyze
it’s cause. In some cases we where able to identify the problems
with new method implementation, but in the other cases the
business users would confirm, that new methods are more
accurate. Since our modified methods are more declarative, they

683

would allow us to avoid some issues, which resulted from the
imperative nature of original methods.

The same “dark testing” allowed us to obtain some valuable
execution statistics. When we started to test our first new method,
described in Section 3, we performed full parellel testing on a
smaller production database where we could afford the additional
load. Both old and new methods were always executed

synchroniously to make certain the inputs and outputs would
remain identical. This allowed us to measure the advantage of the
new method in terms of database load.

Figures 11 and 12 repersent the parts of the hourly execution logs
of a smaller database, which show the difference in the total
execution time:

Figure 11. Execution of the select statement from the original account_outstanding method

Figure 12. Execution of the select statements from the optimized account_outstanding method

These two screenshots show us that the optimized method has
improved efficiency, not because the SELECT execution is faster,
since – it is actually slightly slower - on average, but because the
number of executed SELECT statements is reduced.

We also compared the number of SELECT executions per method
invocation using our internal statistics-gathering program and
obtained similar results. We are getting approximately half of the
original number of database calls with the optimized method.
Note that the difference is not as large as it could be because our
application is caching the results of SELECT statements.

After our success with the simple rewriting, we proceeded with
implementing the logic split on a larger scale. We developed a
couple of classes, which used one or several database calls per
screen rendering. Specifically, we developed a method that returns
summaries of all loans for which a customer has applied. We then
ran our internal statistics gathering scripts to see the difference in
execution.

Table 1 presents the average count of database queries and
average total execution time required to retrieve loan summary
information for all loans for a specified customer. This
comparison shows that, in the old version of the application, both

684

of these numbers depend on a total number of loans per customer.
However, for the new version it takes approximately the same
time regardless of the number of loans. The graphs, presenting
this analysis are shown on Figures 13 and 14.

Table 1. Number of DB calls and DB time per customer based
on #loans

loans/
cust

New App
avg_calls

New App
avg_time

Old App
avg_calls

Old App
avg_time

1 4 0.685 121 1.962

2 4 0.399 196 2.72

3 4 0.435 373 5.227

4 4 0.455 449 6.001

5 4 0.393 632 4.994

6 4 0.464 765 5.624

7 4 0.462 819 6.87

8 4 0.458 923 6.52

9 4 0.481 1129 8.932

Figure 13. Average # of DB calls per customer

Figure 14. Average DB time per customer
Table 2 presents some production statistical data comparing the
execution of some controllers of old and new applications, which
perform similar functions. Note that these are not test run results

but actual production execution statistics over a 24 hour period.
We run statistical reports daily to ensure the new application is
performing well and to watch for the next possible areas of
improvement. The old application is still used by some of the
customer service representatives.

Table 2. Execution Statistics: Old App vs. New App by
Controller

Controller
action

Old Avg
DB
calls

New
Avg #
DB calls

Old Avg
Time
(sec)

New Avg
Time
(sec)

Customer
Summary

167 39 1.08 0.19

Loan
Summary

506 50 4.5 0.44

Loan
Payments

36 3 0.11 0.04

Installments 130 3 0.72 0.018

These statistics show that, even when the methods are not
completely optimized, applying the Logic Split consistently gives
us a significant performance improvement.

6. RELATED WORK
The problem of object-relational impedance mismatch is a
constant discussion topic when it comes to developing an efficient
application. In recent years multiple attempts were made to try to
resolve this issue. Many authors indicate that the ORIM is not a
single problem, but rather identify different types of ORIM. For
example, Ireland et al [18, 19] identify conceptual, representation,
emphasis, and instance impedance mismatches.

The Hybrid Object-Relational Architecture (HORA) approach
was first introduced in 1993 [20] and became a foundation for
multiple ORM-based systems; to name a few: Java Persistence
[21], ActiveJDBC [22], ADO.NET [23], and Ruby on Rails
ActiveRecord.

Hybernate [24] is a high-performance Object/Relational
persistence and query service. It is considered one of the most
flexible and powerful Object/Relational solutions on the market. It
takes care of the mapping from Java classes to database tables and
from Java data types to SQL data types. Hybernate definitely can
be credited for significantly reducing development time, allowing
application developers to concentrate on the business side of the
project.

The Hybernate developers claim that, in contrast to other
solutions, it does not hide “the power of SQL” from developers.
This claim is true in some sense since the solution indeed allows
us to write queries similar to SQL queries. However, creation of
complex queries using Hybernate is not an easy task. Similar to
other ORM systems, Hybernate prompts for solutions that seem
more natural for application developers.

Agile Data [25] technology acknowledges the existence of ORIM
and, what is more important, it also acknowledges a cultural
impedance mismatch, citing the major difference as: “The object-
oriented paradigm is based on proven software engineering
principles. The relational paradigm, however, is based on proven
mathematical principles.” While raising awareness of the
problem, the solutions proposed by Agile Data technology refer
mostly to database schema changes and/or more careful design

685

and data refactoring; it offers little in terms of dealing with
inefficient queries.

The AppSlueth [8] tool for application tuning is designed to
achieve a goal very similar to what we are trying to achieve. It
parses the application code and identifies “delinquent design
patterns”, such as fetching and/or processing one record at a time.
The tool helps to identify critical pieces of the code, which require
rewriting, but in general does not allow to stay within ORM, or to
reuse existing methods the way we are trying to reuse them with
the Logic Split methodology. This paper also provides a
comprehensive overview of different research in the field of
optimization.

SQLAlchemy [26] considers the database to be a relational
algebra engine, not just a collection of tables. Rows can be
selected from not only tables but also joins and other select
statements. Any of these units can be composed into a larger
structure. SQLAlchemy's expression language builds on this
concept from its core.

SQLAlchemy is most famous for its object-relational mapper
(ORM), an optional component, which provides the data mapper
pattern where classes can be mapped to the database in open
ended, multiple ways; allowing the object model and database
schema to develop in a cleanly decoupled way from the
beginning.

The only problem with this tool is that it implies that an
application developer is at the same time a database developer, is
aware of the best data access paths, and can divert from the OO
design standards.

The DBridge [27] project explores different methods of holistic
application optimization, including analysis of the source code,
suggesting some improvements of its structure. These possible
changes include pre-fetching and “loop splitting”. The latter
technique is similar to our logic split methodology but is limited
to only changing loop processing from “one by one” execution to
“batch” execution. Although it allows IF THEN ELSE constructs
within the loop and the nested loop, it does not appear to be able
to process loops which manifest themselves due to calling
methods from different classes.

7. CONCLUSION AND FUTURE WORK
After we had several successful use cases of our new
methodology, we pursued a larger task: rewriting a whole
application using our new methodology for splitting logic between
an application and a database.

At this time we are in the middle of this process. We are
developing a new version of one of our legacy applications;
carefully assembling new pieces while preserving the existing
functionality.
One of the most important problems we are facing is the large
amount of legacy code where most of the business logic is
embedded in Ruby classes. There are virtually no business
specifications, which means that we have to extract the business
logic from the existing code. On the other hand, the legacy
application is evolving and existing models are being modified all
the time. We also need to consider the human factor, i.e. to take
into account the current development practices.

Another problem started to emerge, when we made an effort to
extract the business logic from the existing legacy code. In some
cases our approach helped to clear some existing issues, thus
making our results “better” than legacy application results. This

lead to some compliance issues – all applications should display
the same values for the same objects (like account balance or
available credit). Which, in turn led to the necessity of closer
integration and simultaneous changes in different applications.

Having said this, our future work goes in two different but related
directions. First: we continue to rewrite the larger parts of our
applications, shooting for having only a couple of database
queries per screen rendering. Second: while doing this, we are
clarifying our technology, making it more transparent and easier
for application developers to use.

8. ACKNOWLEDGEMENTS
The authors would like to thank the Enova Tech Leadership Team
and all their co-workers for their continuous support, without
which this research and development would not be possible.

9. REFERENCES
[1] Papadomanolakis, S., Dash, D., Ailamaki, A., Efficient use

of the query optimizer for automated physical design. In
Proceedings of the 33th International Conference on Very
Large Data Bases (VLDB ‘07) (University of Vienna,
Austria, September 23 – 27, 2007). ACM Press, New York,
NY, 2008, pp 1093 – 1104.

[2] Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A. J.,
Garcia-Arellano, C., and Fadden, S. DB2 Design Advisor:
Integrated automatic physical database design. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Francisco,
CA, 2004, pp 1110 – 1121.

[3] Agrawal, S., Chaudhuri, S., Narasayya, V. R. Automated
selection of materialized views and indexes in SQL
databases. In Proceedings of the 26nd International
Conference on Very Large Data Bases (VLDB’00) (Cairo,
Egypt, September 10 – 14, 2000). Morgan Kaufmann, San
Francisco, CA, 2000, pp 496 – 505.

[4] Surajit Chaudhuri, Vivek Narasayya, and Manoj Syamala,
Bridging the Application and DBMS Profiling Divide for
Database Application Developers, In Proceedings of the 33th
International Conference on Very Large Data Bases (VLDB
‘07) (University of Vienna, Austria, September 23 – 27,
2007). pp 1252-1262

[5] Oracle Corporation. Performance tuning using the SQL
Access Advisor. Oracle White Paper. (2007),
DOI=http://otn.oracle.com

[6] Microsoft Corporation. SQL Server 2005 books
online:Automating administrative tasks. SQL Server product
documentation. (September 2007), DOI
=http://msdn.microsoft.com/enus/library/ms187061(SQL.90)
.aspx.

[7] Quest Software. Toad: SQL Tuning, Database Development
& Administration Software. (2012), DOI =
http://www.quest.com/toad/, 2012

[8] AppSleuth: a Tool for Database Tuning at the Application
Level Wei Cao and Dennis Shasha. In Proceedings of
IBDT/ICDT ‘13

[9] The Committee for Advanced DBMS Function Corporate.
Third-generation Database System Manifesto, ACM
SIGMOD Record, 1990, vol. 19, no. 3, pp. 31–44

686

[10] Corporate Act-Net Consortium. The Active Database
Management System Manifesto: A Rulebase of ADBMS
Features, ACM SIGMOD Record, 1996, vol. 25, no. 3, 40–
49.

[11] Booch,G., Maksimchuk, R., Engel, M., Young, B.,
Conallen, J., Houston, K. Object Oriented Design with
Applications, Addison-Wesley, 2007

[12] Fowler, Martin. Patterns of enterprise application
architecture. Addison-Wesley, 2003 ISBN 978-0-321-
12742-6

[13] Ambler, S., Agile Database Techniques: Effective Strategies
for the Agile Software Developer, New-York: Wiley, 2003

[14] PG Open 2013 Conference Chicago IL September 16-18
2013; abstract at
http://postgresopen.org/2013/schedule/presentations/312/;
presentation at
http://www.youtube.com/watch?v=hamQIe9YZJw&feature=
youtu.be

[15] 4.Shasha, D. and Bonnet, Ph., Database Tuning: Principles,
Experiments, and Troubleshooting Techniques Morgan
Kaufmann, 2002.

[16] Celko, J., Thinking in Sets: Auxiliary, Temporal, and Virtual
Tables in SQL, The Morgan Kaufmann Series in Data
Management Systems, MK, 2008

[17] Ruby on Rails Guide
http://guides.rubyonrails.org/active_record_querying.html

[18] Ireland, C., Bowers, D., Newton, M., Waugh, K. A
Classification of Object-Relational Impedance Mismatch,

First International Conference on Advances in Databases,
Knowledge, and Data Applications DBKDA '09. (Gosier,
Guadeloupe/France, March 01-06, 2009), IEEE, 36- 43.
DOI= 10.1109/DBKDA.2009.11

[19] Ireland, C., Bowers, D., Newton, M., Waugh, K. Exploring
the Essence of an Object-Relational Impedance Mismatch -
A novel technique based on Equivalence in the context of a
Framework, The Third International Conference on
Advances in Databases, Knowledge, and Data Applications
DBKDA 201

[20] Sutherland, J., Pope, M., and Rugg, K., The Hybrid Object-
Relational Architecture (HORA): An Integration of Object-
Oriented and Relational Technology, Proc. of the 1993
ACM/SIGAPP Symp. on Applied Computing: States of the
Art and Practice, Indianapolis, 1993, 326–333

[21] Java Persistence
http://jcp.org/aboutJava/communityprocess/final/jsr317/inde
x.html

[22] ActiveJBDC https://code.google.com/p/activejdbc/
[23] ADO.NET http://msdn.microsoft.com/en-

us/library/aa286484.aspx
[24] Hybernate http://www.hibernate.org/about

[25] Agile:
http://www.agiledata.org/essays/culturalImpedanceMismatch
.html

[26] SQLAlchemy: http://www.sqlalchemy.org/
[27] Dbridge: http://www.cse.iitb.ac.in/dbms/dbridge/

687

