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Couder & Fort (Phys. Rev. Lett., vol. 97, 2006, 154101) demonstrated that when
a droplet walking on the surface of a vibrating bath passes through a single
or a double slit, it is deflected due to the distortion of its guiding wave field.
Moreover, they suggested the build-up of statistical diffraction and interference
patterns similar to those arising for quantum particles. Recently, these results have
been revisited (Andersen et al., Phys. Rev. E, vol. 92 (1), 2015, 013006; Batelaan
et al., J. Phys.: Conf. Ser., vol. 701 (1), 2016, 012007) and contested (Andersen
et al. 2015; Bohr, Andersen & Lautrup, Recent Advances in Fluid Dynamics
with Environmental Applications, 2016, Springer, pp. 335–349). We revisit these
experiments with a refined experimental set-up that allows us to systematically
characterize the dependence of the dynamical and statistical behaviour on the system
parameters. The system behaviour is shown to depend strongly on the amplitude
of the vibrational forcing: as this forcing increases, a transition from repeatable to
unpredictable trajectories arises. In all cases considered, the system behaviour is
dominated by a wall effect, specifically the tendency for a drop to walk along a
path that makes a fixed angle relative to the plane of the slits. While the three
dominant central peaks apparent in the histograms of the deflection angle reported by
Couder & Fort (2006) are evident in some of the parameter regimes considered in
our study, the Fraunhofer-like dependence of the number of peaks on the slit width
is not recovered. In the double-slit geometry, the droplet is influenced by both slits
by virtue of the spatial extent of its guiding wave field. The experimental behaviour
is well captured by a recently developed theoretical model that allows for a robust
treatment of walking droplets interacting with boundaries. Our study underscores the
importance of experimental precision in obtaining reproducible data.

Key words: capillary waves, drops, Faraday waves

1. Introduction
Diffraction of light was first reported in the form of a light beam bending around

obstacles or through slits in a thin sheet (Grimaldi 1665). In the classical wave theory

† Email address for correspondence: bush@math.mit.edu
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Walking droplets interacting with single and double slits 1137

of light, the diffraction from a slit can be rationalized in terms of the Huygens–Fresnel
principle, according to which the diffraction pattern results from the superposition
of spherical wave sources placed along the slit width (Born & Wolf 2000). This
superposition results in interference between the waves, the net effect of which is the
creation of maxima and minima of intensity, the so-called diffraction fringes. For a
monochromatic plane wave of light of wavelength λ incident on a thin slit of width
L, the position of intensity peaks on a screen placed at a distance Ls � L2/λ (the
Fraunhofer limit) varies with the ratio λ/L. The overall intensity on the screen as a
function of the diffraction angle α measured with respect to the slit centreline takes
the form

I(α)= I0

(
sin(πL sin α/λ)

πL sin α/λ

)2

. (1.1)

In the double-slit geometry, wherein thin slits of width L are separated by a distance
d� Ls, interference results from the superposition of the wave fields emerging from
the two slits, and the position of the peaks varies with both λ/L and λ/d in the
Fraunhofer limit. The resulting intensity on a distant screen is given by

I(α)= I0

(
sin(πL sin α/λ)

πL sin α/λ
cos(πd sin α/λ)

)2

. (1.2)

Single-particle diffraction and interference have been experimentally challenging
problems since the introduction of the concept of light quanta by Planck (1901) and
Einstein (1905). In these experiments, microscopic particles are detected as localized
points on a screen, and their distribution on the screen after many realizations of the
same experiment is proportional to the intensity of an incident plane wave diffracted
by the same apparatus. Taylor (1909) showed that the diffraction pattern of light from
a needle is unaltered if its intensity is reduced to a few light quanta. A double-slit
experiment with single photons was first reported by Tsuchiya et al. (1985). The
build-up of an electron interference pattern with single electrons passing through an
electron biprism was first reported by Tonomura et al. (1989), and only recently in
a double-slit geometry by Bach et al. (2013). While quantum mechanics correctly
predicts the probability distribution of particles on the screen, corresponding to the
single-particle interference pattern, it does not provide any physical mechanism that
might account for the observed diffraction patterns. These conceptual difficulties,
which continue to motivate both experimental (Kocsis et al. 2011) and theoretical
(Aharonov et al. 2017) developments, were highlighted by Feynman in his discussion
of the double-slit experiment with electrons, ‘what is the machinery behind the law?
. . . We have no ideas about a more basic mechanism from which these results can
be deduced’ (Feynman, Leighton & Sands 1963).

One such mechanism was proposed by Louis de Broglie in the 1920s. De Broglie
(1924) hypothesized a wavelength for matter particles, on the basis of which he
predicted electron diffraction, as was confirmed experimentally by Davisson &
Germer (1927) and later by Jönsson (1961) for interference from multiple slits.
In his ‘double-solution theory’, de Broglie (1960, 1987) considered two waves: a
real pilot wave centred on the particle and the statistical wave of standard quantum
theory. He proposed that the pilot wave responsible for guiding the particle originates
from internal particle vibration characterized by an exchange between the particle rest
mass energy and wave energy. Another key feature of de Broglie’s mechanics was
the so-called ‘harmony of phases’, according to which the particle and wave remain
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in resonance: the internal vibration of the particle is synchronized with its pilot wave.
De Broglie imagined quantum particles propagating normal to planes of equal phase
of the pilot wave; thus, the slit-induced diffraction of the guiding wave provides a
framework for understanding fringes even in the case of single-particle interference
(de Broglie 1926). On the strength of its ability to rationalize single-particle diffraction
and interference, Bell (1987) said of de Broglie’s mechanics ‘it is a great mystery to
me that it was so generally ignored’.

De Broglie’s pilot-wave theory has attracted attention from the fluid mechanics
community in the last decade, since Yves Couder and coworkers discovered that a
droplet bouncing on the surface of a vibrating fluid bath can self-propel through a
resonant interaction with its own wave field (Couder et al. 2005; Protière, Boudaoud
& Couder 2006). These walking droplets or ‘walkers’, comprising a droplet and its
guiding wave, have been shown to exhibit several features reminiscent of quantum
particles (Bush 2015), including quantized orbits (Fort et al. 2010; Harris & Bush
2014; Labousse et al. 2014, 2016a; Perrard et al. 2014; Oza et al. 2014a,b) and
orbital-level splitting (Eddi et al. 2012), tunnelling over submerged barriers (Eddi
et al. 2009; Carmigniani et al. 2014; Nachbin, Milewski & Bush 2017) and wavelike
statistics in confined geometries (Harris et al. 2013; Gilet 2014; Sáenz et al. 2017).
More recently, Filoux et al. (2017) have investigated the behaviour of walking droplets
in linear channels and proposed an analogy with waveguides.

The possibility of the walking droplet system as a hydrodynamic quantum analogue
was launched by the ingenious experiments of Couder & Fort (2006), who reported
that walkers exhibit single-particle diffraction and interference when passing through
apertures between submerged barriers (Couder & Fort 2006, 2012). They sent single
walkers towards a submerged barrier with openings on the scale of the guiding
wavelength (figure 2a). As the walker passed through the aperture, its trajectory was
deviated by an angle α due to the distortion of its pilot wave. The authors pointed out
that this deflection could be interpreted in terms of an effective position–momentum
uncertainty relation for the walkers: when confined spatially, the momentum in the
direction of confinement becomes uncertain due to the distortion of the guiding
wave. The impact parameter yi, defined as the location of the incident trajectory
of the walker relative to the centreline of the slit (figure 2), was varied so as to
uniformly span the slit, in order to best approximate an incident plane wave. The
main conclusions of Couder & Fort (2006) can be summarized as follows.

(i) The deflection angle α is independent of the impact parameter yi.
(ii) The emerging statistical pattern corresponds roughly to the amplitude (rather than

the intensity, as is the case in quantum mechanics) of the Fraunhofer diffraction
of a monochromatic plane wave impinging on the slits. Specifically, the amplitude
for the single slit was

f (α)= A
∣∣∣∣sin(πL sin α/λF)

πL sin α/λF

∣∣∣∣ , (1.3)

while for the double slit

f (α)= A
∣∣∣∣sin(πL sin α/λF)

πL sin α/λF
cos(πd sin α/λF)

∣∣∣∣ , (1.4)

where λF is the Faraday wavelength.
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Walking droplets interacting with single and double slits 1139

(iii) The wave passes through both slits and the interaction of the resulting waves
affects the trajectory of the walker.

The experimental results of Couder & Fort (2006) in the single-slit geometry were
roughly reproduced by numerical simulations in which the walls were modelled
by periodically spaced secondary wave sources. Details of this image system were
not specified. Key experimental parameters, such as the forcing amplitude and
the fluid depth above the barriers, were not reported; only an approximate drop
diameter D ≈ 1 mm was reported. Moreover, the system was not isolated from
ambient air currents. Their results have yet to be convincingly reproduced despite
several experimental (Andersen et al. 2015; Harris 2015; Batelaan et al. 2016) and
theoretical (Dubertrand et al. 2016) attempts.

The results of Couder & Fort (2006) have been contested by Andersen et al. (2015)
and Bohr, Andersen & Lautrup (2016) on the following grounds. First, they found
experimental results at odds with those of Couder & Fort. Specifically, they observed
a strong correlation between the diffraction angle α and the impact parameter yi, and
no clear diffraction or interference pattern was apparent. Second, they pointed out
that in the double-slit experiment of Couder & Fort (2006), the limited amount of
data (75 independent trajectories) was insufficient to conclude that an interference
pattern emerged: the fit with a Gaussian distribution was as good as that with the
amplitude of a Fraunhofer diffraction pattern (1.4). Third, their calculation of the
persistence time of waves in the bath suggested that it is comparable to the passage
time of the drop through a slit, casting doubt on the influence of the second slit in
the double-slit geometry. Fourth, they suggested a fundamental difference between
the walker and quantum systems on the basis of a double-slit thought experiment, in
which a splitter plate is placed ahead of the slits. They asserted that the quantum
system would maintain wave coherence in the presence of the splitter plate, and then
exhibit interference, while such would clearly not be the case for the walking droplet
system.

Since the original experiments of Couder & Fort (2006), our understanding of the
walker system has progressed considerably. In particular, it is now clear that the
walker dynamics is extremely sensitive to both the droplet size and the forcing
amplitude (Protière et al. 2006; Eddi et al. 2008; Wind-Willassen et al. 2013;
Moláček & Bush 2013a,b), neither of which was accurately reported by Couder
& Fort (2006). Several recent technical advances have allowed for more repeatable
experiments. First, Harris, Liu & Bush (2015) constructed a piezoelectric droplet
generator that allows for precise control of the droplet size. Second, Harris & Bush
(2015) designed a precision driver that provides spatially uniform vibration to the
bath, as is essential for repeatable investigations at high forcing acceleration. Recent
theoretical developments account effectively for the drop dynamics in the presence
of submerged boundaries (Faria 2017). The refined experimental set-up was recently
used in conjunction with the theoretical model of Faria (2017) to demonstrate that the
reflection of a walking droplet from a submerged barrier is non-specular. Specifically,
the angle of reflection differs from the angle of incidence, and the walkers tend to
be reflected at a fixed angle, between 60◦ and 80◦ with respect to the normal to the
barrier (Pucci et al. 2016).

We here present a combined experimental and theoretical study of walking droplets
interacting with single and double slits. In § 2, we describe the experimental set-up
and explain our choice of experimental parameters. We demonstrate the importance
of isolating the system from ambient air currents and present our experimental results
in single- and double-slit geometries. We demonstrate that the interaction of walking
droplets with both single and double slits is dominated by a wall effect, similar to
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that arising when a walker is reflected from a planar submerged barrier (Pucci et al.
2016). In § 3, we summarize the theoretical model of Faria (2017) and present the
theoretical results for walker diffraction past a single slit, a double slit and an edge.
In § 4, we address the criticisms of the experiments of Couder & Fort (2006) raised
by Andersen et al. (2015), and point out the shortcomings of both studies in light of
our relatively comprehensive experimental and theoretical investigation.

2. Experiments
2.1. Experimental set-up

The bath and droplet are composed of pure 20 cSt silicone oil with density
ρ = 950 kg m−3 and surface tension σ = 20.6 dynes cm−1. The circular bath of
diameter 16 cm is surrounded by a shallow border of width 9 mm and depth 1.5 mm.
This shallow region serves to damp the waves generated by the oscillating meniscus
at the edge of the container, thereby minimizing wave reflection and so limiting the
range of influence of the outer boundary (Eddi et al. 2009; Harris & Bush 2014).
The bath is driven sinusoidally with frequency f = 80 Hz and peak acceleration
γ by an electromagnetic shaker guided by a linear air bearing which provides
vertical vibration that is spatially uniform to within 0.1 % (Harris & Bush 2015). The
forcing is maintained at a constant acceleration amplitude to within ±0.002g (where
g is the gravitational acceleration) using closed-loop feedback control. Above the
Faraday threshold, γF, subharmonic standing waves form spontaneously on the free
surface of the vibrating bath (Faraday 1831) with a typical wavelength determined
by the standard water-wave dispersion relation (Benjamin & Ursell 1954), here
λF = 4.75 mm.

The Faraday threshold is measured every 20 min as follows. We first set γ slightly
above γF, then decrease it by 0.005g every minute. When the waves disappear, as
visualized readily by a reflected light source, we take the Faraday threshold as the
last recorded value of the acceleration. This procedure yields an uncertainty in γF of
±0.005g. The sum of the relative errors of γ and γF gives a maximum uncertainty in
γ /γF of 0.002. In the experiments closest to the Faraday threshold, at γ /γF= 0.998±
0.002, we continuously checked that the bath was quiescent in the absence of a drop,
that the system was below the Faraday threshold at all times and throughout the bath.
We henceforth refer to the experimental control parameter γ /γF as the memory. (We
note that early theoretical formulations of the problem (Eddi et al. 2011; Moláček &
Bush 2013b) defined the characteristic decay time of the waves as the memory time
TM(γ ) = Td/(1 − γ /γF), where Td ∼ 1/νkF

2 is the viscous decay time of the waves
in the absence of forcing. These models approximate the waves as linear Faraday
waves damped exclusively by the action of viscosity. When γ→ γF (and TM diverges),
this approximation breaks down and nonlinear wave effects become significant. The
memory time TM appears nowhere in our theoretical formulation.) The threshold γF
is always in the range γF = (4.18 − 4.23)g, with the variation resulting from the
sensitivity of the fluid viscosity to temperature (Bechhoefer et al. 1995; Harris & Bush
2014).

We note an important point for future experimental investigations of the walking
droplet system. Curved trajectories in the absence of barriers may be taken as
an indication of air currents, non-uniform vibration, operating above the Faraday
threshold, or interactions with the cell boundaries. Thus, a simple but critical test is
to send the walker across the cell in the absence of barriers (i.e. with the slit barriers
removed) and check that it executes rectilinear motion. We verified this to be the
case in our system for all values of forcing considered.
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FIGURE 1. (a) Regime diagram indicating the dependence of the drop bouncing or
walking state on the forcing amplitude γ /g and the vibration number Ω = 2πf

√
ρD3/8σ

(Wind-Willassen et al. 2013; Bush 2015). In the (m, n) bouncing or walking mode,
the drop bounces n times in m driving periods. The range of walkers considered
in this work, of diameter D = 0.67 mm, is indicated by the white line as arising
entirely within the chaotic walking regime. (b) Visualization of the wave field of a
walker as it passes through the single slit (see supplementary movie 1 available at
https://doi.org/10.1017/jfm.2017.790). (c,d) Trajectories of a walking droplet of diameter
D = 0.80 mm passing through the slit. For both panels, the impact parameter and
experimental parameters are the same, the forcing amplitude is γ /γF = 0.95 and the free
speed of the walker is uo = 12 mm s−1. (c) Three trajectories deduced without isolating
the bath from ambient air currents. (d) Eight trajectories deduced after isolating the bath
from air currents with a lid.

To demonstrate the influence of air currents in the diffraction experiments, we
performed an experiment with a relatively large walker (D = 0.80 mm) with and
without the lid (figure 1c,d). Enhanced divergence of trajectories is clearly present
when the system is not isolated from air currents. For smaller droplets, D< 0.80 mm,
the walker in the absence of the lid is deviated even more strongly by air currents and
often reflected back from the barrier, so that it rarely passes through the aperture. The
sensitivity to ambient air currents is consistent with the fact that walking droplets are
neutrally stable to lateral perturbations (Oza, Rosales & Bush 2013): their direction
of motion can be readily altered. It is now evident that isolation from air currents is
a necessary requirement for repeatable experiments involving walkers interacting with
complex bounding geometries.

For the fluid and driving frequency considered, bouncing droplets may become
walkers if their diameter D is within the range 0.49–0.95 mm, leaving a significant
range of parameter space to explore. One of the key features of Couder & Fort
(2006)’s experiments was the reported independence of the deflection angle and the
impact parameter. For the bulk of the parameter regime considered in a preliminary
series of experiments, this independence was not observed and quantum-like
diffraction was not recovered. This independence only arose for a limited range
of parameter space, including a drop of diameter D = 0.67 mm. We thus focused
on drops of this size, which have chaotic bouncing dynamics (figure 1a): their
natural vertical motion is not periodic even in the absence of perturbations such
as those resulting from interaction with boundaries. Larger and smaller drops than
D = 0.67 mm exhibit qualitatively similar behaviour when interacting with slits, but
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b
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FIGURE 2. Experimental set-ups for single- and double-slit geometries. (a) Side view of
the submerged slit geometry. The depth above the barriers is h1 = 0.42 mm. (b) Plan
view. The droplet launcher (white) directs the drop towards the slit of width L and
breadth b with an impact parameter yi. The droplet is deflected by an angle α. The
solid blue curve is a sample trajectory. The dotted square indicates the cell size used in
the original single-slit experiments of Couder & Fort (2006). Trajectory reproducibility
and the reloading process are apparent in supplementary movie 2. (c) Side view of the
double-slit geometry. (d) Plan view. The solid blue curve is a sample trajectory. Here, d
is the separation between the slit centrelines.

notable differences. Larger drops are generally deflected less and smaller drops only
pass through the slit for a limited range of impact parameters |yi| < ymax. Therefore,
unless otherwise stated, silicone oil droplets of diameter D = 0.67 mm are used in
our study.

The drops are created using a piezoelectric droplet generator with repeatability in
diameter of 1 % (Harris et al. 2015). The droplets are deposited gently onto the bath
by letting them slide down a curved surface wetted with the same silicone oil (Gilet
& Bush 2012). After a droplet is deposited on the vibrating bath, the container is
sealed with a transparent lid to isolate the system from ambient air currents while
still allowing for clear visualization and tracking of the droplet position from above.
Care is taken to avoid vibrational excitation of the lid: its fundamental mode of
vibration has a frequency ∼1000 Hz, significantly higher than the bath vibration
frequency. The walker is filmed at 10 frames per second and tracked using a custom
particle-tracking algorithm implemented in MATLAB. Despite their chaotic bouncing
dynamics, these walking droplets execute rectilinear motion with a constant horizontal
speed u0, provided they are sufficiently far from boundaries.

If the container is to be sealed, the walker needs to be automatically and
continuously guided towards the slits. For this purpose, we designed a droplet
launcher, lying 1.2 mm beneath the free surface (figure 2a). It consists of a straight
channel that centres the droplet in the launcher and a diverging channel that gradually
reduces the confinement so that the walker is not deflected as it exits. The impact
parameter yi can then be varied by shifting the launcher. A sample trajectory is
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shown in figure 2(a). After passing through the slit, the trajectory of the walker is
deviated by an angle α, measured as the angle of the straightest consecutive 30 points
(corresponding to a time interval of approximately 3 s) along the trajectory (identified
as the segment with the maximum r2 value of a fitted line). The measured angle
is only weakly sensitive to the choice of the number of points, with an estimated
maximum measurement error of ±1◦. After passing through the slit, the walker
follows the outer boundary, re-enters the launcher and the process is repeated (see
supplementary movie 2). At extremely high memory, γ /γF = 0.998, the reloading
process can take several minutes because of the strong interaction of the walker with
the boundaries. We note that we could reduce the reloading time to 1–2 min by
temporarily decreasing the acceleration to γ /γF ' 0.99 during the reloading process.

In the single-slit experiment, two barriers of breadth b = 6 mm are bolted to an
aluminium base plate, the opening between them constituting the slit of width L =
14.7 mm= 3.1λF (figure 2a). The slit geometry is thus as close as possible to that of
Couder & Fort (2006), who used slit widths of 2.1λF and 3.1λF. We set the fluid depth
above the barriers to be h1 = 0.42 ± 0.02 mm, comparable to that used in previous
experiments on walking droplets confined to a circular corral (Harris et al. 2013). The
bath depth is ho= 7.4 mm. The wave field generated by a walker in a typical passage
of the slit is shown in figure 1(b).

In the double-slit experiment, three barriers of breadth b= 6 mm are bolted to the
aluminium base plate. The double-slit geometry is composed of two slits of width L=
14.7 mm= 3.1λF whose centrelines are separated by d= 20 mm= 4.21λF (figure 2b).
The two slits are chosen with width equal to the single-slit geometry in order to
directly compare the results. The bath depth is h0= 8.4 mm and the depth above the
barriers again h1= 0.42± 0.02 mm. The wave field generated by a walker in a typical
passage through the double-slit arrangement is shown in supplementary movie 3.

2.2. Experimental results
We begin by assessing whether the pilot-wave dynamics is sufficient to produce
chaotic trajectories in the single-slit experiment. We first span the possible range
of impact parameters for γ /γF = 0.985 and obtain the pattern shown in figure 3(a).
The incident ‘beam’ is clearly splayed by the spatial confinement. As the droplet
approaches the slit, it drifts slightly towards the nearest barrier before receiving a
lateral kick as it closes in. This pushes the droplet over the centreline, where it
receives another weaker kick as it approaches the opposite barrier. This process acts
to focus the incident walker towards the centre of the slit, crossing the centreline in
the process. There is only a narrow range of impact parameters (|yi| < 0.1L) where
the droplet is weakly deflected. Otherwise, the deflection angle tends to one of two
preferred angles, approximately ±55◦, relative to the normal. The maximum observed
deflection angle is 60◦. It should be noted also that the entire range of impact
parameters is not accessible in this experiment: for |yi|> 0.35L, the walker does not
pass through the slit, but is instead reflected back towards the launcher. When the
walker does pass through the slit, the deflection angle depends continuously on the
impact parameter, as evidenced in figure 3(b). By fitting a continuous curve to these
data, we can compute the corresponding probability density function by assuming a
uniform density of impact parameters (figure 3c). We proceed by examining the role
of memory on the system behaviour.

In figure 4, we illustrate the dependence on the forcing amplitude of trajectories
with a fixed impact parameter. Up to approximately γ /γF = 0.990, the behaviour is as
previously described: the impact parameter uniquely determines the deflection angle
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FIGURE 3. The interaction of a walking drop of diameter D= 0.67 mm with a single slit;
the free speed is u0= 6.7± 0.1 mm s−1 and the forcing is γ /γF= 0.985± 0.002. (a) Ne=

171 experimental trajectories. (b) Dependence of the deflection angle α on the impact
parameter yi. (c) The probability density function corresponds to the fitted curve in (b)
assuming uniform density of impact parameters over the accessible range |yi| < 0.35L.
(d–f ) Analogous theoretical results obtained from Nt = 600 trajectories. The probability
density function is obtained with [

√
Nt] bins, where [·] denotes the nearest integer.

(figure 4a,b), which tends to increase with memory (figure 4e). As the Faraday
threshold is approached, the behaviour changes dramatically. At γ /γF = 0.995
(figure 4c), the walker is still deflected by the slit, but the deflection angle is no longer
uniquely prescribed by the impact parameter. We henceforth refer to the associated
trajectories as chaotic to indicate their unpredictable nature. When γ /γF = 0.998
(figure 4d), deflection angles in the range −60◦ <α < 60◦ are obtained. The splaying
of the trajectories after the slit is preceded by a damped lateral oscillation in the
trajectory and visible disturbances to the vertical motion of the droplet. While the
form of the incident trajectories is relatively insensitive to the forcing amplitude,
the outgoing trajectories evidently change dramatically as the Faraday threshold is
approached. The reproducibility of trajectories and their dependence on memory is
examined in the Appendix.

At the highest memory considered (γ /γF = 0.998), the impact parameter is varied
uniformly over the accessible range to simulate a plane wave incident on the
slit. Again, we see that the incident ‘beam’ is deflected as a result of the spatial
confinement of the guiding wave of the walker (figure 5a). However, there is no
longer a simple relationship between the impact parameter and the deflection angle
(figure 5b). A limiting deflection angle still exists: deflection angles greater than
65◦ are never observed. Once again, not all impact parameters are accessible: for
|yi|> 0.35L, the walker does not pass through the slit.

The statistical behaviour of the walkers in this chaotic regime is shown in
figure 5(c). While some preferred angles do emerge, including a weak central peak,
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FIGURE 4. Trajectories of a walking droplet with diameter D= 0.67 mm passing through
the slit with fixed impact parameter yi = +0.17L, and with respective forcing and free
speed: (a) γ /γF=0.985, u0=6.4 mm s−1, (b) γ /γF=0.990, u0=6.6 mm s−1, (c) γ /γF=

0.995, u0 = 6.8 mm s−1 and (d) γ /γF = 0.998, u0 = 6.9 mm s−1. (e) Dependence of the
deflection angle α on the forcing γ /γF for yi =+0.17L.
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FIGURE 5. (a) Trajectories of a walking droplet of diameter D=0.67 mm passing through
the slit with forcing γ /γF=0.998±0.002 and free speed u0=6.8±0.2 mm s−1. The total
number of independent trajectories is Ne = 235. (b) Dependence of the deflection angle
α on the impact parameter yi/L. In this chaotic regime, α is evidently independent of
yi/L. (c) Probability density function obtained with [

√
Ne] bins. The curve is the far-field

intensity pattern of a deflected plane wave with wavelength λF impinging on a slit of
width L, corresponding to I(α) in (1.1).

there is a dominance of large deflection angles, |α| ∼ 60◦. Thus, in both the chaotic
and non-chaotic regimes, we observe a preference for large deflection angles near
55–60◦. We repeated the experiments with a reduced slit breadth (b = 2 mm) and
observed very similar behaviour; in particular, the same favoured angle dominates the
statistical distribution and a limiting deflection angle again exists. We also explored
the behaviour for different values of h1 and found that in the range h1= 0.04–1.0 mm,
the trajectories and angle distributions are qualitatively similar to those reported in
figure 5. We note that insensitivity to barrier depth was also reported by Pucci et al.
(2016) in their study of walkers reflecting off a planar barrier.
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FIGURE 6. (a) The green lines indicate the observed trajectories of a walker of diameter
D = 0.67 mm passing a single barrier or ‘edge’ (green) of breadth b = 2 mm. Here,
γ /γF = 0.990 ± 0.002 and uo = 6.8 ± 0.2 mm s−1. The grey background represents the
results from figure 5(a). (b) Theoretical trajectories deduced for a droplet walking past an
edge at γ /γF=0.995. (c) Computed deflection angle as a function of the impact parameter.
Trajectories far from the edge (with impact parameter yi> 10 λF) are essentially unaffected
by the presence of the barrier, while trajectories sufficiently close to the edge are drawn
towards α≈ 60◦. (d) Probability density function for a single slit of width 20 λF inferred
by symmetrizing the computed trajectories past an edge up to yi = 10 λF (Nt = 570 data
points and [

√
Nt] bins).

To gain further insight, we consider the case of diffraction from an edge of breadth
b = 2 mm (figure 6a). If released sufficiently far from the barrier edge, the walkers
continue along a straight path. However, if they approach within several λF, they are
deflected towards a preferred angle α. The emergence of the same preferred angle α∼
55–60◦ for the edge geometry suggests that this angle is a generic feature of walker–
wall interactions, including reflection (Pucci et al. 2016).

To complete our experimental investigation, we explore the behaviour of walkers in
the double-slit geometry at extremely high memory, γ /γF = 0.998 (figure 7), where
the statistical behaviour for the single slit is relatively rich. We see again that the
incident ‘beam’ is deflected as a result of the spatial confinement of the wave field
of the walker (figure 7a). Here, again, the behaviour and statistics are dominated by
large deflection angles α∼ 60◦ and not all of the impact parameters are accessible: for
|yi|> 0.4(L+ d/2), the walker does not pass through the slit. For the largest impact
parameters, yi = ±0.4(L + d/2), the droplet is strongly attracted by the second slit
after passing through the first; consequently, it reflects off the wall and may even loop
around its own wave field (Labousse et al. 2016b) (see figure 7a). Our experimental
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FIGURE 7. Double-slit experiments (a–c) and numerical simulations (d–f ). (a) Trajectories
of a walking droplet passing through the slits; the vibrational forcing is γ /γF = 0.998±
0.002 and the free speed is uo = 6.8 ± 0.2 mm s−1; the total number of independent
trajectories is Ne = 266. (b) Dependence of the deflection angle α on the impact
parameter yi. (c) The probability density function, as obtained with [

√
Ne] bins. The weak

asymmetry results in part from slight lateral asymmetries in the distribution of impact
parameters. The curve is the far-field intensity pattern of a deflected plane wave with
wavelength λF impinging on two slits of width L whose centrelines are separated by d,
corresponding to (1.2). (d) Numerical simulations of a walking droplet passing through the
slits with forcing γ /γF = 0.995; the number of trajectories is Nt = 416. (e) The computed
dependence of α on yi. ( f ) The computed probability density function with [

√
Nt] bins.

data are not perfectly symmetric because this anomalous behaviour arises for a narrow
range of impact parameters explored only for one of the two slits.

Chaotic trajectories emerge predominantly for relatively large impact parameters,
|yi|> 0.3(L + d/2) (figure 7b), in contrast to the single-slit geometry, where chaotic
trajectories arise for most impact parameters (figure 5b). Once again, the wall effect
dominates and most trajectories tend to the angles ∼60◦, substantially reducing
the chaotic behaviour and evidently suppressing the central peak (figure 7c). The
difference between these trajectories and those obtained with the single slit is
highlighted in figure 8. Our experiments underscore the fact that, while the drop
passes through one slit, it is influenced by both.

3. Theory
3.1. Theoretical model

We briefly review the theoretical model of Faria (2017), which will be used here
to investigate the dynamics of walkers passing through single and double slits.
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(a) (b)

FIGURE 8. Comparison between observed (a) single-slit and (b) double-slit trajectories,
with forcing γ /γF = 0.998 ± 0.002 and free walking speed uo = 6.8 ± 0.2 mm s−1. The
marked difference between the two indicates the influence of the second slit.

The model builds upon the quasipotential theory of Milewski et al. (2015) by making
the simplifying assumption that the waves are nearly monochromatic; therefore,
only waves with the Faraday frequency need to be considered. This approximation
yields simplified equations for the surface waves which consist essentially of damped
dispersive wave equations, given by

φt =−g(t)η+
σ

ρ
∇

2
⊥
η+ 2ν∗∇2

⊥
φ −

1
ρ

PD(x− xp(t), t), (3.1)

ηt =−∇⊥ · (b(x)∇⊥φ)+ 2ν∗∇2
⊥
η. (3.2)

Here η and φ denote the free-surface displacement and the velocity potential on the
free surface, x= (x, y) are the coordinates in the plane of the bath, ∇⊥ = (∂x, ∂y) is
the surface gradient operator and g(t) = g0(1 + γ cos(2πft − ϕ)). The parameter ν∗
is an effective kinematic viscosity, chosen to capture the correct instability threshold
γF. Finally, b(x) is an effective depth, chosen to ensure that the dispersion relation for
Faraday waves agrees precisely with that given by the quasipotential theory in regions
of constant depth (see Faria (2017) for further details). The source term PD represents
the effect of the drop on the surface and xp denotes the horizontal position of the drop,
which evolves according to the trajectory equation of Moláček & Bush (2013b),

m
d2xp

dt2
+

(
c4

√
ρR0

σ
F(t)+ 6πR0µair

)
dxp

dt
=−F(t)∇η|x=xp . (3.3)

The parameters m, R0, µair and c4 denote the drop mass, drop radius, air viscosity
and coefficient of tangential restitution, respectively (Moláček & Bush 2013b). The
function F(t) represents the reaction force exerted on the drop by the fluid bath. In
the context of our simplified model, according to which the vertical drop motion is
periodic, it can be shown that F(t)= mg0

∑
∞

n=0 δ((t− nTF)/TF), where the n denote
prior impacts.
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We note that all information concerning the bottom topography enters the model
through the term b(x), which is taken to be piecewise constant for the slit geometry
considered here. Thus, the main effect of the topography on the waves is to change the
local wave speed, allowing for reflection and transmission of waves respectively from
and across the boundaries. Because the effective depth is chosen such that the Faraday
waves are correctly modelled in both the deep and the shallow regions, the model
adequately captures the reflection and transmission properties of walkers interacting
with submerged barriers (Pucci et al. 2016).

A limitation of the model worth mentioning is its oversimplified treatment of the
vertical dynamics of the drop. By assuming that the drop bounces periodically with a
contact time infinitesimally small relative to the Faraday period, the vertical dynamics
is completely eliminated. Although such an assumption is reasonable for drops
bouncing in the periodic (2, 1)2 mode (Moláček & Bush (2013a,b); see figure 1a),
it is likely to have shortcomings in the chaotic walking regime considered here
(Wind-Willassen et al. 2013).

3.2. Theoretical results
Simulations of single-slit, edge and double-slit deflection are considered for a
parameter regime similar to that explored experimentally. For all of the following
simulations, we consider a drop of diameter 0.67 mm and fix the bouncing phase
ϕ/(2π) = 0.28 so as to have a free walking speed consistent with that of the
experiments (≈6.8 mm s−1). The coefficient of tangential restitution is taken to be
c4 = 0.17, as was suggested by Moláček & Bush (2013b). A resolution of 512× 512
Fourier modes is used on a horizontal domain of size 64× 64 Faraday wavelengths.

Overall, the simulations of the single-slit geometry show good agreement in terms
of both dynamics and statistics (figure 3). A slight difference can be noted for
trajectories with small impact parameters. The transition to large deflection angles,
±55◦, is smoother in the simulations, where a larger number of weakly deflected
trajectories results in a central peak in the statistical distribution of deflection
angles (figure 3e, f ). Notably, this central peak is significantly smaller than those
corresponding to the larger wall-induced angles, ±55◦. Another difference is that in
the simulations the entire range of impact parameters yi is accessible, so that the
walker always crosses the slit (figure 3d,e). We note that some differences between
experimental and theoretical trajectories were also found in our study of reflection
from a planar wall (Pucci et al. 2016). In both cases, the attraction of the drop to
the barrier is less pronounced in the theoretical model than in experiments.

As previously noted, most of the trajectories through the single and double slits
settle onto an approximately constant angle which appears to be caused by a wall
effect. In figure 6(b,c), we observe that, as in the experiment reported in figure 6(a),
such is also the case for motion past an edge: most trajectories with impact parameters
smaller than 4λF deflect to an angle of approximately 60◦± 5◦. In order to investigate
the effect of the slit width on the trajectories, we show in figure 9 three different
geometries corresponding to single slits of width L= 4λF, 10λF, 20λF. The emergence
of a central peak becomes clear in figure 9( f ) and results from trajectories with impact
parameters, yi < 10λF, too far from either edge to feel the wall effect. By knowing
the deflection angle as a function of the impact parameter for trajectories past an
edge (figure 6c), we may infer, for sufficiently wide slits, the resulting probability
density function of the deflection angle α. Such a construction is shown in figure 6(d),
where we plot the predicted probability density function for drops passing a slit of
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FIGURE 9. (a,c,e) Computed trajectories of a drop of diameter D = 0.67 mm passing
through single slits of width L = 4λF, 10λF and 20λF (number of trajectories Nt = 548,
544, 570 respectively). (b,d, f ) The resulting probability density function of the deflection
angle α with [

√
Nt] bins. All simulations are at γ /γF = 0.99. We see that for sufficiently

wide slits (L & 10λF), a central peak emerges as trajectories passing near the centreline
are only weakly affected by the presence of the boundaries.

the same breadth and width, L= 20λF. The consistency between figures 6(d) and 9( f )
underscores the fact that the walker–wall interaction dominates the dynamics in the
single-slit geometry.

Finally, we use the model to explore the double-slit geometry at a very high
memory of γ /γF = 0.995 (see figure 7). We obtain satisfactory agreement with the
experiments reported in § 2.2 and note two salient effects. First, while the droplet
passes through only one slit, its trajectory is influenced by the presence of the second
slit. This is readily apparent from the lack of symmetry of trajectories emerging from
either slit (figure 8). Second, the distribution of trajectories is again dominated by
the wall effect and does not resemble wave diffraction.

4. Discussion and conclusion

We have demonstrated the sensitivity of the walker system to forcing acceleration,
drop size and boundary geometry. Reproducible experiments require accurate control
of all of these parameters. Another prerequisite for repeatable experiments is complete
isolation of the walkers from ambient air currents.

We have explored the role of memory on the diffraction of walking droplets, and
discovered a transition to chaotic trajectories as the Faraday threshold is approached.
In the low-memory regime, the deflection angle is uniquely prescribed by the impact
parameter and does not lead to quantum-like diffraction distributions. We focused
on a chaotic regime where α was not uniquely determined by yi (as was the case
in the experiments reported by Couder & Fort 2006): the deflection angle is then
unpredictable, with significant divergence of the trajectories after passage through the
slit. However, none of the resulting statistical patterns correspond to that expected for
the diffraction of an incident plane wave (figures 3c, f and 5c).
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In all of the configurations considered, including diffraction by a single edge, a
preferred angle dominates the behaviour, which is a generic feature of walker–planar-
boundary interactions. Indeed, a comparable preferred angle emerges when a walker
reflects off a planar barrier (Pucci et al. 2016). In figure 10, we show experimental
trajectories arising from reflection from a planar wall, deflection past an edge and
deflection by a slit, all of which yield similar deflection angles. Our results suggest
that the probability distribution function arising for walkers passing through a single or
double slit will generally have three dominant peaks. The two symmetric lateral peaks
arise due to walker–wall interactions. The relative magnitude of the third central peak
is expected to increase with the slit width and to depend on the droplet size. Unlike
the diffraction patterns arising in optics and quantum mechanics, the number of peaks
is not expected to depend on the relative magnitudes of the wavelength and the slit
width.

We now revisit the main conclusions of Couder & Fort (2006) in light of our
results.

(i) In our system, independence of α and yi is found only at extremely high memory,
γ /γF = 0.998. The chaotic trajectories in our experiments are qualitatively
different from those reported by Couder & Fort. Most notably, we observed
no significant divergence of trajectories before the slit, except when the walker
was exposed to ambient air currents or if operating slightly above the Faraday
threshold. Thus, in our case, the uncertainty in the deflection angle is due
entirely to the interaction with the complex wave field beyond the slit. Since key
experimental parameters were not reported by Couder & Fort (2006), it is not
possible to ascertain whether or not they were operating in the chaotic regime.

(ii) The three dominant central peaks apparent in the histograms presented by
Couder & Fort (2006) are expected to arise in some regions of parameter space.
However, the number and spacing of peaks arising for either the single- or
double-slit geometry are not found to depend on λF/L: statistical distributions of
the form prescribed by (1.3) and (1.4) are unlikely to be recovered.

(iii) In the double-slit experiment, the droplet trajectory is influenced by both slits:
trajectories in the single- and double-slit geometries with the same initial
conditions can be markedly different (figure 8). As pointed out by Andersen
et al. (2015), this influence does not necessarily mean that the wave passes
through both slits and then affects the drop motion. Rather, it results from the
spatial extent of the pilot-wave field, which allows the walker to be influenced
by both slits (A. Andersen, private communication).

As Couder & Fort (2006) did not report drop size or memory, we cannot say
definitively that their distributions might not be achievable in some corner of
parameter space. However, our relatively comprehensive exploration of parameter
space suggests that quantum-like diffraction is not possible with slits of the form
considered. Our study has, moreover, brought to light two shortcomings of their
original experiments. First, they used a significantly smaller container for their
experiments. In figure 2(b), we show an outline of the geometry of the container
used in the experiments of Couder & Fort (2006). The sample trajectory demonstrates
that the walker only settles into its rectilinear free motion outside this domain. This
suggests that their measurements were probably influenced by interactions with the
container boundaries. We note that the same criticism applies to the experiments
of Andersen et al. (2015). Second, Couder & Fort (2006) did not isolate their
system from the environment, which suggests that some of the observed randomness,
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Removed for edge

FIGURE 10. Comparison of trajectories obtained from reflection from a planar wall
(green), deflection past an edge (red) and deflection through a slit (blue). It should be
noted that the three geometries yield similar final angles. The barrier breadth is b= 2 mm,
the slit width is L = 3.1λF, the wall depth is h1 = 0.42 mm, D= 0.67 mm and γ /γF =

0.990± 0.002.

specifically the independence of α and yi, might be attributable to the influence of
air currents. The same criticism applies to the experiments of Andersen et al. (2015)
and Batelaan et al. (2016), as is evident from the curved trajectories reported in
their papers. Andersen et al.’s use of an external box was evidently insufficient to
provide complete isolation from air currents. We note that this shortcoming has been
addressed in their most recent experiments (A. Andersen, private communication).

Andersen et al. (2015) point out that the study of Couder & Fort suffered from
insufficient data. While the number of data points N ∼ 250 in our single- and double-
slit experiments is significantly larger than that reported in Couder & Fort (2006),
our study might be criticized along similar lines. However, our study has indicated
a physical process dominated by wall effects that accounts for the observed statistical
behaviour.

It is noteworthy that one system parameter is not controlled in our experiments,
namely the phase of bouncing of the droplet as it enters the slit, or alternatively
the locations of its impact points along its path. These locations will certainly vary
between realizations, particularly for the chaotically bouncing droplets considered here.
We note that this variation in impact phase is not captured by the simulations, as
the vertical motion is assumed to remain periodic, a limitation that may account for
some of the shortcomings of our model in the chaotic regime. However, the fact that
the model performs relatively well even in the chaotic regime is consistent with the
inference that even chaotic walkers are, on average, resonant with the Faraday wave
field.

Our work demonstrates both experimentally and theoretically that the interaction of
walking droplets with slits is dominated by the walker–wall interaction, as arises
during the reflection of a walker from a planar wall (Pucci et al. 2016). The
slit-induced deflection patterns are markedly different from quantum particles in
similar geometries. In particular, the number of peaks does not depend on the
slit geometry. Nevertheless, we note that our results do not close the door on the
quest for diffraction and interference of walking droplets, only for the specific
boundary conditions considered here, for which the system behaviour is dominated
by walker–wall interactions. Quantum particles also exhibit diffraction in the absence
of boundaries: in the Kapitza–Dirac effect, electrons are diffracted by a standing
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0.960
0.970
0.975
0.980
0.985
0.990
0.995

(a) (b)

FIGURE 11. (a) Experimental trajectories obtained with a droplet of diameter D =
0.67 mm and speed u0 = 6.8 ± 0.2 mm s−1 at memory γ /γF = 0.990 ± 0.002 for three
different impact parameters (red, green and blue dashed lines). Here, h1 = 0.42 mm, slit
width L = 3.1λF, slit breadth b = 6 mm. The solid curves correspond to averages over
10 trajectories. (b) Dependence of the average trajectories on memory at fixed impact
parameter yi =+0.31L for the same droplet and geometry as in (a). Ten trajectories are
averaged for each curve.

electromagnetic wave (Kapitza & Dirac 1933). A walker system analogous to
Kapitza–Dirac diffraction, wherein walker–boundary interaction is avoided, is currently
under investigation.

Finally, we note that in the quantum double-slit interference experiments, there is
a significant disparity in scales between the slit width and the de Broglie wavelength
of the particle (λdB/L ∼ 10−3) (Bach et al. 2013). While a comparable geometry
in which the slit width greatly exceeds the Faraday wavelength is not practical
experimentally with the walker system, it might be profitably explored with existing
theoretical models (Fort et al. 2010; Oza et al. 2013; Moláček & Bush 2013b;
Labousse et al. 2014; Milewski et al. 2015; Blanchette 2016; Dubertrand et al. 2016;
Durey & Milewski 2017; Faria 2017), all of which have been inspired by the seminal
experiments of Couder & Fort (2006).
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Appendix
In figure 11(a), we examine the reproducibility of trajectories and their dependence

on memory. At the onset of the chaotic regime, γ /γF = 0.990, for fixed impact
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parameter, deflection angles vary only by a few degrees (see figure 4e). This
small variation allows us to define average trajectories (figure 11a) and to study
their dependence on memory, γ /γF (see figure 11b). For a fixed off-centre impact
parameter, the average deflection angle increases monotonically with memory, reaching
|α| ∼ 60◦ at γ /γF = 0.995 (figure 11b).
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