
1 

TWO-OPERAND ADDITION 
Chapter two… 

What’s the Deal?  

  All we want to do is add up a couple numbers… 
 Chapter one tells us that we can add signed numbers 

just by adding the mapped positive bit vectors  
(ZR=(XR+YR)modC) 



2 

Adder Bits 

Half Adder          Full Adder 

A B Cout S 
0 0 
0 1 
1 0 
1 1 

A B Cin Cout S 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Adder Bits 

Half Adder          Full Adder 

A B Cout S 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

A B Cin Cout S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 



3 

Big Problem (for speed) 

  Carry generation! 
 Carry at i depends on  
 Non-trivial to do fast – lots of inputs…  

Fast Adders 

  The primary objective is to speed up the generation 
of the carries!  
 Carry Propagate Adders –  

 Produce an answer in conventional fixed-radix NRS 

 Carry Save and Signed Digit adders –  
 Avoid carry propagation by producing sums in redundant 

notations 

 Hybrid Adders 
 Combine as many schemes as make sense…  



4 

Carry-Propagate Adders 

  Carry-Ripple 
  Switched Carry-Ripple (Manchester Carry) 
  Carry-Skip 
  Carry-Lookahead 
  Prefix Adders (Tree Adders) 
  Carry-Select (Conditional Sum) 
  Carry-Completion Sensing (self-timed) 

Redundant Adders 

  Carry-Save 
  Signed Digit 



5 

Basic Carry-Ripple Adder (CRA) 

Adder Bits (gates) 



6 

Adder Performance 

Adder Performance 

  Most standard cell libraries have a  
Full Adder cell as a single cell 
  Implements Full Adder function directly in nmos and 

pmos transistors 
 Delays should be smaller…  



7 

Adder Bits (CMOS) 

Figures from David Harris… 

Brute Force circuit…  

Mirror Adder 

 Factor S in terms of Cout 

 S = ABC + (A + B + C)(~Cout) 
 Critical path is usually Cin to Cout in ripple 

adder 

Figures from David Harris… 



8 

Connect for carry-ripple adder 

Inversions…  

 Critical path passes through majority gate 
  Built from minority + inverter 
  Eliminate inverter and use inverting full adder 



9 

Mirror Adder 

Figures from David Harris… 

Build a faster circuit?  



10 

Build a faster circuit?  

 Complementary Pass Transistor Logic 
(CPL) 
  Slightly faster, but more area 

Figures from David Harris… 

Build a faster circuit? 

 Dual-rail domino 
  Very fast, but large and power hungry 
  Used in very fast multipliers 

Figures from David Harris… 



11 

Build a faster carry chain?  

  Manchester Carry Chain 
 Use transmission gates to make carry “wire” 

Manchester Carry control 



12 

MCC 

Manchester Carry Chain 



13 

MCC 

Manchester Carry Delay 

   tsw is time to set all switches 
  tp is time to propagate through a switch 
  tbuf is a buffer – need restoring buffer every m bits 
  ts computes the sum based on the carries  

  This works well if tp is small…  



14 

Timing of MCC 

Slide from Mark Horowitz, Stanford 

Sizing MCC 

Slide from Mark Horowitz, Stanford 



15 

Sizing MCC 

Slide from Mark Horowitz, Stanford 

Buffered Carry Chains 

Slide from Mark Horowitz, Stanford 



16 

Timing MCC 

Slide from Mark Horowitz, Stanford 

Layout of MCC 

Slide from Mark Horowitz, Stanford 



17 

Back to Adder Bits 

  Revisit the full adder:  

Xi Yi Ci Ci+1 Si Comment 
0 0 0 0 0 Kill 
0 0 1 0 1 Kill 
0 1 0 0 1 Propagate 
0 1 1 1 0 Propagate 
1 0 0 0 1 Propagate 
1 0 1 1 0 Propagate 
1 1 0 1 0 Generate 
1 1 1 1 1 Generate 

Back to Adder Bits 

  Revisit the full adder:  

Xi Yi Ci Ci+1 Si Comment 
0 0 0 0 0 Kill 
0 0 1 0 1 Kill 
0 1 0 0 1 Propagate 
0 1 1 1 0 Propagate 
1 0 0 0 1 Propagate 
1 0 1 1 0 Propagate 
1 1 0 1 0 Generate 
1 1 1 1 1 Generate 



18 

Carry Chains 

  Two types 
 1-carry chain and 0-carry chain 
 1-carry always starts at gi=1 (or cin = 1), and 

propagates over consecutive positions pj=1 
 0-carries start at ki=1 position (or cin = 0)… 

Group Carries 

  Carry equation can be generalized to groups of 
bits 

 Combine subranges recursively  



19 

Group Carries 

Example (2.1) 

   find bit 13 of the following sum 

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 



20 

Example (2.1) 

   first compute pkg for each bit  

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 

Example (2.1) 

   now combine in groups  

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 



21 

Example (2.1) 

   extend groups  

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 

Example (2.1) 

   extend groups to whole range 

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 



22 

Example (2.1) 

   Now you can compute c13 

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 

Example (2.1) 

   With c13 you can compute s13  

 x = 0110|0010|1100|0011 
 y = 1011|1101|0001|1110 
             p|pppp|ppkp|ppgp 



23 

Carry Skip Adder 

  The idea is to reduce the number of cells the worst-
case carry must propagate through 
 Divide n-bit adder into groups of m-bits 
 Determine group propagate for each m-bits 
  If the entire group p is true, skip around it 

Carry Skip Adder 



24 

Carry Skip example 

=p 
=k 
=g 

Carry Skip worst case 

Carry travels through 
at most two groups:  
the initiating group 
and the terminating 
group.  



25 

Carry Skip delay 

  Worst case is when a carry is generated in the first 
bit of the adder 
 Then propagated through all bits up to but not 

including the high order bit 
 That is, skip all groups but the first and last 

Problem with clearing carries 

  Watch out – some books show an AND/OR version 
that doesn’t really work!  
 Problem is that carries might be left over from 

previous addition and have to dribble out… 



26 

Group Size 

  Previous delay analysis assumes all groups are the 
same size 
 This isn’t the best for speed…  
 Carries generated in the first group have to skip more 

groups!  
 For fixed size:  

Carry Skip with different m 

  If you vary the group size with the groups at the ends shorter than the groups in the middle, you can speed things up 

  N=60, tc=ts=tmux=δ 
  M=6, TCSK=21 δ 
  M=4,5,6,7,8,8,7,6,5,4, TCSK=17 δ 



27 

Carry Skip – Another View 

Slide from Mark Horowitz, Stanford 

Carry Skip – Another View 

Slide from Mark Horowitz, Stanford 



28 

Carry Skip - Layout 

Slide from Mark Horowitz, Stanford 

Carry Lookahead 

  General idea – find a way to compute all carries at 
the same time 
 Generate logic for all carries in terms of just the X, Y 

and Cin bits 

 This is a switching function of 2i+1 variables 



29 

Carry Lookahead 

Carry Lookahead equations 

  Remember: Ci = Gi + Pi Ci 

  C1 = G0 + P0 C0 

  C2 = G1 + P1 C1 
      = G1 + P1(G0 + P0 C0) 
      = G1 + P1 G0 + P1 P0 C0 

  C3 = G2 + P2G1 + P2P1G0 + P2P1P0C0 

  C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 
              + P3P2P1P0C0 

  Or C4 = G3 + P3(G2 +P2( G1 + P1(G0 + P0 C0))) 



30 

Carry Lookahead equations 

  Remember: Ci = Gi + Ai Ci 

  C1 = G0 + A0 C0 

  C2 = G1 + A1 C1 
      = G1 + A1(G0 + A0 C0) 
      = G1 + A1 G0 + A1 A0 C0 

  C3 = G2 + A2G1 + A2A1G0 + A2A1A0C0 

  C4 = G3 + A3G2 + A3A2G1 + A3A2A1G0 
              + A3A2A1A0C0 

  Or C4 = G3 + A3(G2 +A2( G1 + A1(G0 + A0 C0))) 

CLA-4 Module 



31 

                          CLG-4 Module 

Dynamic Logic for 4-bit CLG 

Motorola – 1u CMOS, 4.5ns for a 64-bit adder…  
Slide from Mark Horowitz, Stanford 



32 

Carries - Another View 

Carry Ripple revisited 



33 

Carry Ripple revisited 

Gi 
Pi Gi-1:0 

Gi:0 

Carry Skip revisited 



34 

Carry Skip revisited 

Fixed group size  
(4,4,4,4) 

Variable group size 
(2,3,4,4,3) 

Carry Lookahead revisited 

 Carry-lookahead adder computes Gi:0 for many bits in 
parallel. 

 Uses higher-valency cells with more than two inputs 



35 

Higher Valency Cell 

Recall C3 = G3 + P3(G2 +P2( G1 + P1(G0 + P0 C0))) 

CLA/Manchester adder 



36 

Two-Level CLA 

  For large n, lots of groups so CLA can be slow 
 Apply CLA principle among groups 
 Compute G and A for groups 
 C(1) = G0+A0C0 

C(2) = G1+A1G0+A1A1C0 
etc…  

 Once the carries from the groups are produced, they are 
used by the first-level CLAs to produce the bit carries 
and sums 

Two-level CLA32 (n=p=4) 



37 

Three-level CLA 

  Extend to three or more levels by having lookahead 
between sections 
 First compute ai, pi, gi 

 L-1 level of CLA to compute As and Gs 
 n/mL CLGs connected in ripple to compute carries of 

bits 
 One level of XOR to compute the sum 

Three-level CLA (n=8, m=2) 



38 

CLA Critical Path 

Prefix Adders (Tree Adders) 

  More general form of carry lookahead tree 
 Built using different organizations of the same set of 

basic PG cells (PA cells) 
 All based on the fact that ci corresponds to the 

generate signal spanning bit positions (-1) to i-1 
 Prefix adder is an interconnection of cells that produce 

g(i-1,-1) for all i 
 Cells connected to produce g signals that span an 

increasing number of bits 



39 

PG (PA) cell 

Overlapping Ranges 

  Starting with g,a of each bit, first level generates 
g,a for two bits, then four, etc.  
  If right input spans bits [right2,right1] , and left spans 

[left2,left1], with right2+1 >= left1 

 Then output spans bits [left2,right1] 

 For example right[5,2] and left[8,4] means output 
spans bits [8,2] 



40 

PG (PA) Cells 

8-bit Prefix Adder 



41 

8-bit Prefix Adder 

Fanout can  
Be an issue… 

8-bit Prefix Adder 

Lower fanout 
Increase levels 



42 

8-bit prefix adder 

Max fanout 2 
Min levels 

Another View of Prefix Adders 

David Harris, Harvey Mudd 



43 

Brent-Kung  

David Harris, Harvey Mudd 

Sklansky Adder 

David Harris, Harvey Mudd 



44 

Kogge-Stone Adder 

David Harris, Harvey Mudd 

Tree Adder Taxonomy 

  Ideal N-bit tree adder would have 
  L = log N   logic levels 
  Fanout never exceeding 2 
  No more than one wiring track between levels 

 Describe adder with 3-D taxonomy (l, f, t) 
  Logic levels:   L + l 
  Fanout:  2f + 1 
  Wiring tracks: 2t 

 Known tree adders sit on plane defined by 
     l + f + t = L-1 



45 

Tree Adder Taxonomy 

David Harris, Harvey Mudd 

Tree Adder Taxonomy 

Sklansky 

Kogge-Stone 

Brent-Kung 

David Harris, Harvey Mudd 



46 

Han-Carlson 

David Harris, Harvey Mudd 

Knowles [2, 1, 1, 1] 

David Harris, Harvey Mudd 



47 

Ladner-Fischer 

David Harris, Harvey Mudd 

Taxonomy Revisitied 

Knowles 

Han-Carlson Kogge-Stone 

Sklansky 

Brent-Kung 

Ladner-Fischer 

David Harris, Harvey Mudd 



48 

Conditional Sum Adder 

  For each group 
 Compute the sum assuming that Cin is 0 and that Cin is 1 
 When you find out the right answer, use a MUX to 

select the correct result 

 Carry-select is 1-level select 
 Conditional Sum is a general case – up to max levels 

Conditional Sum Adder 



49 

Carry-Select Adder 

Carry-Select – Another View 

Slide from Mark Horowitz, Stanford 



50 

Carry-Select - Layout 

Slide from Mark Horowitz, Stanford 

Conditional Sum 

  Conditional principle is applied recursively 
 Each group is combined to double the number of bits 

at the next level 



51 

16-bit Conditional Sum Adder 

Example 

Step 1: Compute all the 
            bit results 

Step 2: Use the known  
           results to select  
           the next groups… 



52 

Pipelined Adders 

Variable Time Adder 

  Carry Completion Sensing Adder 
  Encode the carry in a form that lets you tell when it’s finished 
 When all carry chains have finished, the add is finished 
 One choice – dual-rail encoding 



53 

Variable Time Adder 



54 

Variable Time Adder 

Addition Time: proportional to log2(n) 

For uniformly distributed numbers, length of longest 
carry chain is approx log2(5n/4)  

Variable Time Adder 

Addition Time: proportional to log2(n) 

For uniformly distributed numbers, length of longest 
carry chain is approx log2(5n/4)  



55 

Aside – ALU Design 

Aside – ALU +P function block 



56 

Aside – ALU +G function block 

Rest of the ALU 



57 

Redundant Digit Adders 

  Use a redundant digit set 
 Operands might be in conventional or in redundant 

form 
 Main idea is to reduce the carry propagation 
 But, increases number of bits in the result 
 Useful for things like accumulation,  

multi-operand addition, multiplication, etc.  

Carry Save Adder 

  Add three binary vectors 
 Using an array of one-bit adders (i.e. full adders) 

  But, don’t propagate the carries  ! 
 Output is two vectors: carry and pseudo-sum  

(or sum) 

 Several combinations of vc and vs represent the same 
result 



58 

Carry Save Adder 

  If you want to convert back to conventional numbers, 
add vs and vc 
 Because there two bits for every conventional sum bit, 

you can think of the answer in Carry Save form to be 
digits in the set {0,1,2} 

 Carry Save produces a reduction from three binary 
vectors to two, so it’s also called a 3-2 reduction 

 Adder is a [3:2] adder 

Carry Save Adder 



59 

Carry Save Example 

Carry Save Example 

Cin 

256  128   64     32      16       8       4       2        1 

        128 + 128  + 64  +16  +  0   + 8  +   2 = 346 

116 

  59 

170 
=345 

229 

117 



60 

Carry Save 

  What if two operands are both carry-save?  
 Then each operand is in Xs Xc form 
 So, you need a [4:2] adder instead of a [3:2] 
 Combine four vectors into two…  
 Still no carries!  
 Answer is still in redundant carry-save form 

Carry Save [4:2] 



61 

Carry Save [4:2] 

[4:2] Compressor Adder 

Note that even though it looks like carry is propagated,  
the Cout from each [4:2] cell is computed directly  
from the A and B inputs…  



62 

4:2 compressor cell 

Inputs Cin=0 Cin=1 Cout 
A B C D C S C S 
0 0 0 0 0 0 0 1 0 

0 0 0 1 

0 1 1 0 0 0 0 1 0 

0 1 0 0 

1 0 0 0 

0 0 1 1 

0 0 0 1 1 

0 1 1 0 

1 1 0 0 

0 1 0 1 

1 0 1 0 

1 0 0 1 

1 1 1 0 

0 1 1 0 1 
1 1 0 1 

1 0 1 1 

0 1 1 1 

1 1 1 1 1 0 1 1 1 

4:2 compressor cell 

Nagamatsu,  
Toshiba 



63 

[4:2] Compressor Cell 

Navi and Etiemble 

High Radix Carry Save  

  Regular carry-save doubles the  
number of bits 
 You can reduce the number of bits with  

high-radix carry-save 
  If r is the radix 

 Vs is represented in radix r 
 Vc has one bit per radix-r digit 



64 

Radix-8 Carry Save  

Radix-8 Carry Save  

64 8 1 512 

436 

217 

579 

48 

02 

78 

138 

(3+0)*1    =  (7+1)*8 0 1*512 



65 

Radix-8 Carry Save 

Signed Digit Adders 

 Another form of redundant digit representation  



66 

Signed Digit Adder 

Signed Digit Adder 



67 

Signed Digit Adder 

  I’m not going to spend more time on this one…  
 My sense is that it’s not as important in terms of actual 

implementations as Carry Save 
 Reasonably complex stuff – multiple recodings 

Summary 



68 

Case Study 

  Dec Alpha 21064 64-bit adder 
 5ns cycle time in a 0.75u CMOS process 
 Very high performance for the day! 
 A mix of multiple techniques!  

Alpha 21064 

  In 8-bit chunks – Manchester carry chain 
 Chain was also tapered to reduce the load caused by 

the remainder of the chain 
 Chain was pre-discharged at start of cycle 
 Three signals used: P, G, and K 
 Two Manchester chains:  

 One assuming Cin=0 
 One assuming Cin=1 



69 

Alpha 21064 

  Carry Lookahead used on  
least significant 32 bits 
  Implemented as distributed differential circuits 
 Provide carry that controls most significant 32 

  Conditional Sum used for  
most significant 32 
 Six 8-bit select switches used to implement conditional 

sum on the 8-bit level 

Alpha 21064 

  Finally, Carry Select used to produce the most 
significant 32 bits.  
 Final selection done using NMOS carry-select byte-

wide muxes  

  Also apparently pipelined with a row of latches 
after the lookahead…  



70 

Alpha 21064 

72-bit Pentium II Adder 

Slide from Mark Horowitz, Stanford 



71 

Adder from Imagine 

Slide from Mark Horowitz, Stanford 

Adder from Imagine 

Slide from Mark Horowitz, Stanford 



72 

Adder from Imagine 

Slide from Mark Horowitz, Stanford 

Adder from Imagine 

Slide from Mark Horowitz, Stanford 



73 

Local PGK Logic (Imagine) 

Slide from Mark Horowitz, Stanford 

Group PKG (Imagine) 

Manchester Carry Chains.  

Slide from Mark Horowitz, Stanford 



74 

Carry Chain Sizing 

Slide from Mark Horowitz, Stanford 

Static Carry Chains 

Slide from Mark Horowitz, Stanford 



75 

Global Carry Chain 

Slide from Mark Horowitz, Stanford 

Conditional Sums 

Slide from Mark Horowitz, Stanford 



76 

Arithmetic for Media Processing 

Segmented Add Operation 

Slide from Mark Horowitz, Stanford 



77 

Modify for Segmentation 

Slide from Mark Horowitz, Stanford 

Global Carry w/ Segment  

Slide from Mark Horowitz, Stanford 



78 

Absolute Difference 

Slide from Mark Horowitz, Stanford 

Absolute Difference 

Slide from Mark Horowitz, Stanford 



79 

Sum of Absolute Differences 

Slide from Mark Horowitz, Stanford 

Saturation 

Slide from Mark Horowitz, Stanford 



80 

Hardware Support for Saturation 

Slide from Mark Horowitz, Stanford 

Simulated Performance 

Slide from Mark Horowitz, Stanford 



81 

Adder Layout 

Slide from Mark Horowitz, Stanford 

Related Results 

Slide from Mark Horowitz, Stanford 



82 

Summary (from Harris/Weste) 

  If they’re fast enough, use ripple-carry 
 Compact, simple 

  Carry skip and carry select work well for small bit 
sizes (8-16) 
 Hybrids combining techniques are popular 

  At 32, 64, and beyond, tree adders are much 
faster 
 Again, hybrids are common 

Adder Summary 



83 

Synthesized Adders (Harris/Weste) 
  Similar to my experiment 

 But with 0.18u library, Synopsys DesignWare 
 Synopsys can map “+” to carry-ripple, carry-select, 

carry-lookahead, and some prefix adders 
 Fastest are tree adders with (prelayout) speeds of 7.0 

and 8.5 FO4 delays for 32 and 64 bit adders 

Area vs. Delay,  Synthesized Adders 


