TWO-OPERAND ADDITION

Chapter two...

What's the Deal?
|

o All we want to do is add up a couple numbers...

o Chapter one tells us that we can add signed numbers
just by adding the mapped positive bit vectors
(Zz=(Xg+Yg)modC)

.’L’+y+cin=2ncaut+s

X Y R

nJ( ,,J[ l J s = (x+y+¢y) mod 27
Cour Cip  Cizl ¢
| APPER T o FA Lif (2 4y +cip) =20
,,J[ l Cout =10 otherwise

w 5 = [(z+vy+cn)/2"




Adder Bits

Half Adder . Full Adder

S = é S=
Cout
C, = C =

out s out
T OB A |B |C, |C.]S
5 1o o (o |o
E IE
T 1o o [1 o
1 1 0 1 1
1 o o
1 0 1
1 1 0
1 1 1
Adder Bits
Half Adder , _  Full Adder -
S=A®B . é S=A®B®C, Co&éc
C,.=AnB "N G, =MAI4B.C,) I
T B A |B |c, |c.,]s
5 o [0 To o [0 |o [o o
o 1 To I o o [1 o [4
T To 1o 11 o [1 o o [4
T o o [1 [1 [1 |o
1 o [o [o [
1 o [1 [1 Jo
1 |1 Jo [+ Jo
1 |1 |1 1




Big Problem (for speed)

o Carry generation!
Carry at i depends on J <1

Non-trivial to do fast — lots of inputs...

Step 1:
Obtain carries

I
oo e : Step 2:
Compute sum bits

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fast Adders

01 The primary objective is to speed up the generation

of the carries!
Carry Propagate Adders —
m Produce an answer in conventional fixed-radix NRS
Carry Save and Signed Digit adders —

m Avoid carry propagation by producing sums in redundant
notations

Hybrid Adders

m Combine as many schemes as make sense...




Carry-Propagate Adders

0 Carry-Ripple

o1 Switched Carry-Ripple (Manchester Carry)
0 Carry-Skip

o1 Carry-Lookahead

71 Prefix Adders (Tree Adders)

o1 Carry-Select (Conditional Sum)

o1 Carry-Completion Sensing (self-timed)

Redundant Adders

o Carry-Save

0 Signed Digit




- Basic Carry-Ripple Adder (CRA)
out “"A: FA e 6_1 FA ,p’_ .c_l FA 4—:—0 =c.
Figure 2.4: Carry-ripple adder.
Tera = (n— 1)t. + max (t.ts)
Adder Bits (gates)
e




Adder Performance

&
Ciyg

Tora = (n — Dt. + max (t.,t,)

Tepg =10 + 2(n—1)tNAND +max (27 .y p.t xor)

Adder Performance

1 Most standard cell libraries have a
Full Adder cell as a single cell

Implements Full Adder function directly in nmos and
pmos transistors

Delays should be smaller...




Adder Bits (CMOS)

S=A®B®C Brute Force circuit...
C,.=MAJ(4 B, C)

Figures from David Harris...

Mirror Adder

Factor S in terms of C_,
S=ABC + (A +B + C)(Ncout)

Critical path is usually C,, to C_,, in ripple
adder MINORITY
A ]
ol ——
T =
I 1
1 ] T
P W
L \ N N \ !

Figures from David Harris...




Connect for carry-ripple adder

Inversions...

¢+ Critical path passes through majority gate
= Built from minority + inverter

= Eliminate inverter and use inverting full adder




¢ Truth Table

Mirror Adder
[
T s
o Hw T 0 " ;E
Cou 1L s s
!—‘L'—\r' r \A " 1
P 1 |
Figures from David Harris...
Build a faster circuit?
[

2x1
Mux
A B C| Sum Carry
00 of o 0
00 1| 1 0 °
0 1 o] 1 0 2
01 1] o 1 .
10 of 1 0 .
10 1] 0 1 AhD— M
11 0] o 1 "
I B I 1
* When A®B = 0, SUM = (C, and Carry = B.
« When A®@B =1, SUM = C,and Carry = C.

* Using the 6T XOR, this full adder uses 18T.




Build a faster circuit?

¢ Complementary Pass Transistor Logic
(CPL)

= Slightly faster, but more area

Figures from David Harris...

Build a faster circuit?

¢ Dual-rail domino
= Very fast, but large and power hungry
= Used in very fast multipliers

c h_T# .> Couh c |4{¢AJ( Q> Cou!
A_H Al

S_| Qo ]}_CSE al>s_h

[
c_h—| I-c_h
B_h—] ﬁ F-B_h
A_h— - Al

A4

Figures from David Harris...
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Build a faster carry chain?

o Manchester Carry Chain

Use transmission gates to make carry “wire”

Yol Sur Vn2 Yno i X Y Y Yo Yo
| | | | | | | | |
[ cc 1[  cc 1] [ cc ] [ cc [ cc ]
B e B e R
in
v ' G \J v
Cout -1 Citl © €
V. X,
1 1
| B B A 1
! cc :
! (Chain Control) GKP 1
Lo ’
| k; p;
1 1
1 1
: s :
s wid B
] C/ :
' ]
! 1
1 1
1 1
L U P e e 1
- f:;
Cixl S
Y1 Xn1 Yn2 Xpo2 Yi X Vi X7 Yo o
| | | | | | | | | ]
[ cc 1 [ cc 1 [ cc 1 [ cc 1 [ cc ]
A v Ci A
Cout n-1 Civl 2 €7
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MCC

Switch-Logic:

* Implement propagate with pass gate

* Implement kill with a pull down transistor

* Implement generate with a pull up transistor

To reduce the logic needed, and the capacitance on
the carry chain use precharge switch logic. Precharge
the output high, and pull it low if needed. The inputs to
the gate can be outputs from other domino gates
(Carry is a monotonic function of P, C, K'

1. Need to be careful, since we will use a inverter to buffer the output before we use it. That is the reason that the switch

logic is generating C_b and not C. Switching G and K will generate C directly.

P_pv1

Manchester Carry Chain

Vbp
H| M| | | | |
¢
A
1 1 . 1 .

Gl G(T|: Gl—l: G{|: G3-|_
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MCC

The carry chain is only part of the adder. You need to generate the P, G signals
that the adder needs and to generate the sum at the end. In addition to the carry
chain, each bit cell needs the following gates:

Sl might not be needed
A
B P

A—d K
B — p
- o
Ci
A G
s -
* The gates that generate P, G, K can be precharge gates, since the inputs are

usually stable signals. This means that P, G, K can be domino _v signals, and
can drive the domino carry chain

* The final EXOR must be a static gate since it is not a monotonic function of its
inputs, and its inputs will be _v signals.

Manchester Carry Delay

T =t, +(n— l)tp + (n/m)tbuf +1,
t., is time to set all switches
t, is time to propagate through a switch
foui is a buffer — need restoring buffer every m bits
t, computes the sum based on the carries

o1 This works well if fp is small...

13



Timing of MCC

The good news is there is not a gate between stages.

The bad news is that the number of senes transistors increases with the number
of stages, so the delay will grow like n?

PO pv1 1y q' P1_pvi (bz_qq P2_pvi L
Go pv1—ii ?@ pv1—||i§62 pv1—|i

* Capacitance per stage (assuming all 4:2 devices, no diff sharing)

3 ndiff + pdiff + Cg + inv + bit-width of wire = 12fF + 4fF + 4fF + 8fF + 8fF (30)
= 36fF

* Resistance per-stage is 6.5K, so the delay is approximately .12ns * nZ, (RCn2/2)
where n is the number of stages directly tied together.

Slide from Mark Horowitz, Stanford

Sizing MCC

Critical path is through the pass chain. Try to reduce this delay:
* Make P and G transistors 4x larger, and share diffusion’

PO_pv1 dT2_d P1_pv1 cb_Z_q P2_pv1 W_q

* Capacitance per stage:

2ndiff (16%) + pdiff + Cg + inv + bit-width of wire = 32fF + 4fF + 16fF + 8fF + 8fF

(30 ) = 68fF

* Resistance per-stage is 1.6K, delay is 0.054ns * n2.

1. Make G larger since it does not hurt (diffusion is shared, and since it will be important in faster adders)

Slide from Mark Horowitz, Stanford
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Sizing MCC

To limit the effect of the n? term, break carry chain into sections.
* Each section is about 4 stages long (3 stages might be better)
* Between sections the carry is buffered.

Cin

45'7— Carry HCarry HCarry HCarry —DO—I Cout

cO0 C1 C2 C3
* The buffering makes the delay linear with the number of bits

* But the carry stills needs to flow through all the carry chains.

Slide from Mark Horowitz, Stanford

Buffered Carry Chains

What is the ‘right’ number of stages?

Cin |=—— —_— |>
Carry |- —HC
y army Cout
__| 8x —

[]0) Cn-1
Assume first transistor is 8x min, and final inverter is minimum

Delay is the inverter delay (Cout rising) plus the delay of the chain including the
resistance of the initial 8x transistor.

Slide from Mark Horowitz, Stanford
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Timing MCC

stages | 533 | per o
T | 061 | 061
2 | 082 | 042
3 | 115 | 038
4 | 158 | 039
5 | 212 | 042
6 | 277 | 046

I8
N
L

@

So for these sizing, the optimal number in a stage is around 4, and the average
delay per bit is around 0.4 ns. This is not optimally sized (pMOS in final inverter

should be larger) but it is probably close.

Slide from Mark Horowitz, Stanford

Layout of MCC

Layout of a Manchester adder is not too bad, even with groups:

PGgen 4| C ¢

XOR$

PGgen | C ¢

XOR}

PGgen 4| C ¢

XOR$

PGgen || C*¢

XOR}

PGgen 4| C ¢

XOR$

PGgen | C ¢

XOR}

PGgen 4| C ¢

XOR$

PGgen || C*¢

XOR

P _pvi @2
_pJ_ _qq
G_pv1_|i
C
m‘
o o
c*

Slide from Mark Horowitz, Stanford
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Back to Adder Bits

Revisit the full adder:

Xi|Y;, |C|Cy.,|S | Comment
A 0 (0o |o]o |o [Kil
l l 0 |0 (110 1 [Kill
0 |1 ]0 |0 1 | Propagate
€1 EA € 0 |1 (1|1 |0 |Propagate
1 (0 [0 |O 1 | Propagate
1 (0 (1 |1 0 | Propagate
1 (1 (0 |1 0 | Generate
S.
! 101 |1 |1 1 | Generate
Back to Adder Bits
Revisit the full adder:
Case 1 (Kill): ki = 2ly, = (w; + ;) [X1 Y| Gi| Cis| S | Comment
Case 2 (Propagate): p; =a; & y; [0 [0 |0 [0 |0 [Kill
Case 3 (Generate): g; = x;y; 0|0 [1]0 [1|Kil
0|1 ]0 10 1 | Propagate
Cii=lg +pc|=xy+(x;®@y)cillo 1 [1 [+ |o Propagate
1 (0 [0 |O 1 | Propagate
Considera, = p, + g, 1 (0 [1 |1 |0 |Propagate
[note g, + p,c, =g, +(g,+ p,)c, 1|1 [1 |0 |1 |O |Generate
111 |1 (1 1 | Generate

then|c,,, = g, +a,c,




Carry Chains
e
o Two types
1-carry chain and O-carry chain
1-carry always starts at g.=1 (or c,, = 1), and
propagates over consecutive positions pi=]
O-carries start at k,=1 position (or c,, = 0)...
i |9 8 7 6 5 4 3 2 1 0
z; |1 0 1 0 1 1 1 1 0 0
y; |0 0 0 1 0 1 0 0 1 0
p k p p p g p p p k
a a a a a a a a
410 — 0 1 —~1 <1 <1 00«00
Group Carries
e

o1 Carry equation can be generalized to groups of
bits
Ci+1 = Y(.i) ¥ P(.i)Ci = G(ji) + A3j.i)Ci
Ci+1 = 9(;.0) * P(j.0)C0 = 9(j.0) * A(;,0)C0

Combine subranges recursively
9ifd) = Y(f.e) ¥ P(fe)de—1.d) = Y(f.e) ¥ A(fe)d(e—1.d)

A(fd) = Qf.e)Ye-1.d)
p(fd) - p(ff’)p(f’—ld)

18



Group Carries

GA

8(td) J J agd

Jird) = Gir.e) * Piredie=1d) = 9f.e) * Use)ie-14)
A(fd) = (fe)e-1d)
Pitd) = P(fe)Pe-14)

& 9 8r 4R

________________

Example (2.1)

o find bit 13 of the following sum

x=0110/0010]/1100|0011
y =1011[1101]0001|1110

19



Example (2.1)

first compute pkg for each bit

x =0110/0010[1100]|0011
y =1011[1101]0001[1110

P lpppp | PRkp | PPYP

Example (2.1)

now combine in groups

x=0110/0010]/1100|0011
y =1011[1101]0001|1110

plpppp | pprkp | PPYpP

Po=1 Pug=1 kyu=1

83-0) =

20



Example (2.1)

extend groups

x =0110/0010[1100]|0011
y =1011[1101]0001[1110

P lpppp | PRkp | PPYP

Po=l pug=1 kgy=1 gz=1

Pargy =1 Kooy =Ko gy + Pa_aykie) =1

Example (2.1)

extend groups to whole range

x=0110/0010]/1100|0011
y =1011[1101]0001|1110

plpppp | pprkp | PPYpP

Po=l Pug=1 kgy=1 gz4=1
Pz-s) =1 k(7—0) = k(7—4) + p(7—4)k(3_o) =1

k(12-0) = k(12—8) + P(lz-s)k(7-0) =1

21



Example (2.1)

Now you can compute ¢,

x =0110/0010[1100]|0011
y =1011[1101]0001[1110

P lpppp | PRkp | PPYP

k(12—0) = k(l2—8) + p(12—8)k(7—0) =1

€3 = 820y + Pi12-0yCin =0

Example (2.1)

With ¢, 5 you can compute s,

x=0110/0010]/1100|0011
y =1011[1101]0001|1110

plpppp | pprkp | PPYpP

k(12—0) = k(12—8) + p(12—8)k(7_0) =1
Ci3 = &(12-0) + P12-0)Cin =0
S13 = X3 ®y13 @013 =1®1®0=0




Carry Skip Adder

11 The idea is to reduce the number of cells the worst-

case carry must propa

gate through

Divide n-bit adder into groups of m-bits

Determine group propagate for each m-bits

If the entire group p is

true, skip around it

Carry Skip Adder

m-1

pY = ANDp
i=0 CSK-m adder

out (group j)

Cin | r - m-bit Carry-Ripple Adder
C(])
0

A

(a)
Module (n/m - 1) Module j Module 0
m + m + m ,* m + m /* m o{
CSK-m CSK-m CSK-m
— o o0 o LX) -+
ADDER ADDER ADDER

m i

m i

m i
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Carry Skip example

I:]=p | group 3 1 1 group 2 1 | grot
- X 01 10110010
=k Y 000100110 0
_ 0 ] | 0 1
-—g 1 8
! } position
€16 €7 €3 ¢
g €4 €52
€12 €9 €5
‘13 ‘10 4
€14 €11
€15 6 carry-skip path
carry-ripple path
¢ group sizem =4

Figure 2.8: Carry chains in carry-skip adder: A case with several carry chains.

Carry Skip worst case

m-bit Carry-Ripple Adder

G . G
5 5
= = =
Sy1 (a)
Carry travels through grow 3 grow 2 growp ] growp 0
. 1 1 1 1
at most two groups: X 1110110010001001
o e . Yy 0001001101110111
the initiating group TR T R
: : ) post
and the terminating poster
1
group. o
2]
CS (‘5
€12 % S

-+ carry-skip path
——  carry-ripple path

group sizem =4

24



Carry Skip delay

n )
T(-‘S[\' = mic+ tpus + (E - Q)thI + (7'71 — 1)1LC + T4
; n
= (2771' - 1>t( + (E - 1>t7nu.z‘ + 15

T Worst case is when a carry is generated in the first
bit of the adder

Then propagated through all bits up to but not
including the high order bit

That is, skip all groups but the first and last

Problem with clearing carries

-1 Watch out — some books show an AND/OR version
that doesn’t really work!
Problem is that carries might be left over from
previous addition and have to dribble out...
G+1) c(gj[ )

€in m-bit Carry-Ripple Adder Cin
(group j)

Figure 2.10: Carry-skip adder using AND-OR for bypass




Group Size

71 Previous delay analysis assumes all groups are the
same size
This isn’'t the best for speed...
Carries generated in the first group have to skip more
groups!

For fixed size:

Mopr = (2220) 12 (minimum delay)

2t
Topt (Stmumtcn> 1/2

Q

Carry Skip with different m

If you vary the group size with the groups at the endis shorter than the groups in the middle, you can speed things up

N=60, 1.=t=1,,=8
M=6,Tey=21 8
M=4,5,67,8,87,6,54, Tese=17 &

Group size

Group i

M - number of groups

26



Carry Skip — Another View

Since we have divided the bits in the word into a number of groups.
* For each group check to see if all the P are true

* If so, then bypass the Cin to Cout of that group
¢ Otherwise, do the normal thing.

] S
Cin Carry HCarry HCarry HCarry ~[>o_|_{ Cout

Cco C1 Cc2 C3

Slide from Mark Horowitz, Stanford

Carry Skip — Another View

All groups can calculate Pg at the same time (in parallel)

Worse-case is when carry needs to propagate through all bits

¢ Since we precomputed Pg, that path is now much shorter
Hop around groups, rather than through them

* Critical path is now through one local carry chain, then through a number of
bypass gates, then back into a final local carry chain.

* This improvement did not cost much hardware.

Slide from Mark Horowitz, Stanford
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Carry Skip - Layout

Layout of a bypass adder is almost the same, C* gets a more stuff:

PG gen ¢ C f| XOR ¢ P pvi E—d
PGgen [ &]C ¢|XOR} L
«Q
PGgen t| 5| C $|XOR% G pv1_|
PGgen | c*4|xoR}
C
PG gen ¢ C f| XOR ¢
PGgen [ ] C ¢|xoR} L?
Q
PGgen t| 5| C $|XOR% G
Cout
PGgen | c*4|xor}| M '|[ ‘
Also have a few more wires to route. You need to C
generate Pg (a 4 input NAND gate in the PG gen c*
section, and you need to route Cin_b to C*

Slide from Mark Horowitz, Stanford

Carry Lookahead

11 General idea — find a way to compute all carries at
the same time

Generate logic for all carries in terms of just the X, Y
and Cin bits

i

x = 2)@2” c,=1if (x" "+ 4c))=2’
V=

This is a switching function of 2i+1 variables

28



Carry Lookahead

S('k'l) l.('k-l)

SO IR S Y

S [CA e CA | .. %[ cla %[ cla
k-1 j 1 0
m m m m
k=n/m T T T T
._S'(k.]) ._S'U) -_S(l) ;S(o)

T A

1-CLA — group 1

Carry Lookahead equations

o Remember: C. = G, + P, C.
0C, =G, +P,GC
0 C, =G, +P,C,

=G, + Py(Gy + Py Cp)

=G, P, Gy + Py Py G
O C3 = G2 + PQG] + PQP]GO + PQP]POCO
0 Cy =Gy + P3G, + P3P,G, + PyP,P Gy

+ P3P,PPoCo

0 OrC, =G, + Py(G, +P,( G, + P, (G, + P, Cy)))

29



Carry Lookahead equations

o1 Remember: C. = G, + A C.
0C, =G, + A, G,
0C, =G, +A,C

=Gy + AGy + Ay )

=G+ A Gyt A A G
0C; =G, +AG, + AAG, + AAAC,
0C, =G, + A6, + AAG, + AAA G

+ A3AA A,

0Or C, =G, + A (G, +A,( G, + A,(G, + Ay Cp)))

CLA-4 Module

g3|az| Pj3 &8s 4s| Py g9 Py gol 9| Po

CARRY LOOKAHEAD GENERATOR
¢ (CLG-4)

30



a,g m clg+ts CLG-4 MOCIUIG
&3 a, g, g a g %
CLG-4
| T T T
[TT T T
A
G

(e)

T8 Sl
- - _!_ _L p= = P _!Y_ _L _i_ = = | B S S S m—— P =
%_'U %.F ;-c
. _'F’ )
NaTaliy of LM, ol LT
A A
' = =}
i S i =
0 e A

Motorola — 1u CMOS, 4.5ns for a 64-bit adder...

Slide from Mark Horowitz, Stanford
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Carries - Another View

©
(=
S
o o
¢ ;
3 £
(5] 7]
Y
3| o
9]
2| O
o H
ol o
&H
2| &
& H
~——

1: Bitwise PG logic
T UOUOUT | & :
G, |P, G, |P, G, |P, G, |P, G, |P
I I I

Carry Ripple revisited

32



Carry Ripple revisited

tripplc

Tora

=1, +(N-Dt,, +t,

= (n—1)t.+ max (t.t,)

Bit Position

(5 14 13 12

1 10 9 8 7 6

5 4 3

o o
/\ g
N
N
Ed
B
l150140130120110100 90 80 7.0 6:0 50 4:0 3.0 220 1:0 0:0
Carry Skip revisited
group 3 group 2 group 1 group 0 (16 15 14 13 12 11 10 9 8 7 6 5 1 0)
11 1 1
X 1110110010001001
Yy 0001001101 110111 ﬁ

Cs Cs

€12 Co S

€16 €13 €10 €7
€14

€15

15 12 8 4 0
b position

carry-skip path
——  carry-ripple path
group sizem =4

B

T
Ed

i

|16:O15:0 14:013:012:011:010:0 9:0 80 7.0 6:0 5.0 4.0 3.0 2.0 1:0 0.0
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Carry Skip revisited

(16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0) (6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)
£ k == i i §‘§
E g Ed B Ed i} i ]
B Bl B e & e
T i i
T i
Ed Ed [16:015:0 14:0 13:0 12:0 11:010:0 9:0 8:0 7.0 60 50 4:0 30 20 1:0 0:0
E
[16:015:014:0 13:0 12:0 11:010:0 9:0 8:0 7:0 6:0 5:0 40 30 20 1:0 0:0]
Fixed group size Variable group size
(4,4,4,4) (2,3,4,4,3)

Carry Lookahead revisited

QCarry-lookahead adder computes G, for many bits in
parallel.

QUses higher-valency cells with more than two inputs

A B

16:13

16:13

34



Higher Valency Cell

(F;)i:k G
ik k-1:11-1:m m-1;j ik [5}
k-1
k-1:1
I-1:m

A9

-1:m

T

m-1;j

) P
I

0
I

m-1;j

Recall C; = G; + P4(G, +P,( G, + P,(G, + P, Cy)))

CLA/Manchester adder

e

I
|16:015:O14:013:012:011:010:0 9:0 80 7.0 6:0 50 4.0 3.0 2.0 1:0 0:0
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Two-Level CLA

o1 For large n, lots of groups so CLA can be slow
Apply CLA principle among groups
Compute G and A for groups
Cll = Gy+AC,
Cl2 = G,+A,G,+A,A,C,
etc...

Once the carries from the groups are produced, they are
used by the first-level CLAs to produce the bit carries
and sums

Two-level CLA32 (n=p=4)

carries from CLG-4 modules

c7=c, c“=c,, cV=c, cP=c;4 c¥=c, c?=c; cV=c,
£7 1J © Ll\s ‘_5{ o ‘All ‘3{5 _‘_J{l \_]l"\_”
* *
CLA~‘ CLA-4 CLA 4 CLA-4 CLA-4 CLA-4 CLA-4 —%
Zit 2i4 714 zi4 214 ] T ,zll”; 714
57 50 s st s s 50
G7 A7 GO' Ao. G5 A5 G4 A4 G3 A3 G;, _13 G] _ij GO Ao
1 I
CLG4 CLG-4
©_
€ = M= = c9=c Y= cP=c e@=c W=
28 24 20 16 12 8 4
critical path
* Carry-out is not used carries to CLA-4 modules n
Tv2—CLA - ta,g + tA,G + pmtclg + tclg + ts
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Three-level CLA

71 Extend to three or more levels by having lookahead
between sections
First compute a, p;, 9;
L-1 level of CLA to compute As and Gs
n/mt CLGs connected in ripple to compute carries of
bits
One level of XOR to compute the sum

n
Ty i = log T (L=-Dt, s+ Wtclg +(L- l)tclg +1

Three-level CLA (n=8, m=2)

)

c¥=c, c=c, c¥=c,
S T S O T o I O
Pl e e
Ed * * #*
| CLA-2 || CLA-2 CLA-2 || CLA2 —"

=]
-
D
D
-
]
= [
[ p——
o
[ )
-
o

* Carry-out is not used
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CLA Ciritical Path

PG

Carcy lnok:lhcad surm h ocks of
-l bits blocks generating:
GI.P*. and C | for the 2-5it
'\Iﬂ\.kc

Jhu\ senerating:
w Proand C ) for the
nddcrs

Carry-leokahead blocks of ‘

Group producing final

/
J carry O, end g

| Critical puth delay = 1A (Ter z,p, 112 %2 Allor G.P)113x2A (Tor €04 1XOR-A (for Sum) = apox. 12Aof delay |

Prefix Adders (Tree Adders)

o1 More general form of carry lookahead tree
Built using different organizations of the same set of
basic PG cells (PA cells)
All based on the fact that ¢, corresponds to the
generate signal spanning bit positions (-1) to i-1
Prefix adder is an interconnection of cells that produce
9(1,1) for all i
Cells connected to produce g signals that span an
increasing number of bits
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PG (PA) cell

/efr, Ilghf 5 /eﬁ 7 right,

&(left left)

a
(lefty left;) E(right, right,)

A(rightyright;)

GA

g(](’ﬁ:,l‘ighfj) i 2
A(left, right;)

(a)

Eout Dout

(b)

Figure 2.17: Composition of spans in computing (g, a) signals.

Overlapping Ranges

o Starting with g,a of each bit, first level generates

g,a for two bits, then four, etc.

If right input spans bits [right2,right1] , and left spans
[left2,left1], with right2+1 >= left]

Then output spans bits [left2,right1]

For example right[5,2] and left[8,4] means output

spans bits [8,2]
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PG (PA) Cells

(gL) aL) (gR, aR)
2t 4

O

Zt gOIlf:gL+ aL gR

Eout, Y our) —a, a
out, out aom_ LY

Eout

gouf aour

Tpy=t,,+ log, (n)t..;; + 10z

8-bit Prefix Adder

(&0,)  (€p9) (8,9,

(8,9) (8595 (8595) (8,9 (8393 b
. ¢
o o @ | from position
(-1)

[0}
1265 g3 g gw.-1)
U53) a3 ey}
[o] [o [ﬂ [é
£63) 85,3 L)) &,
6,3 a3
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Tpy = log* log, (n)t..;; +1x 0z
8-bit Prefix Add
€0, (859 (8505 (€49, (£33 (0, (€4 (€59,
‘o
o 0o o ® | from position
(-1)
’ 1863 gu3) go &w-1)
635 A3 a1
[o] [o [é [il
£6.3) 853 g0 &i,-
6,3 53
Fanout can
Be an issue...| ;.= ¢ S o <
r, r, 2, P, |71 %o
XOR XOR XOR
CS s7 S6 SJ s 4 53 SZ 31 s 0
8-bit Prefix Adder
(59, €59  (E595) (849 (€595 (8,95 (8,9, (8,9,
o
(o] o] (o] [ ]
s5) | 86,5 43 [E@3) o) e &-1)
[é [il
Lower fanout S0 |fa
Increase levels j
[o
a1 |86y
=1 (s
86-1) =7 &5-1)
[N c C C c 9
SN |Ps p 7s 7] |22 o O p
L] XOR XOR XOR XOR XOR XOR XOR
C& S, Sg S5 Sy S3 S, S; So

41



8-bit prefix adder

(8797) oo ©p9;) (o)
C
Max fanout 2 0
. [ o o ) o o . buffer
Min levels &76) &8ss |854 843 852 |82 &u0 &0-1)
7.6) ass) s g A4 3) a2 any 1,0)
I I I
) (8] [o) [o) (o) [®) [2] ¥ ¥
* &4 863 852 8an 50 &n-n &u-1
[o . V
E7.0)
* 5 c c, <
Py b, P, |P1 ‘Po
d XOR XOR XOR XOR| |XOR
&7-1) { [
Cs s, Ss 55 s, s, s, s; So

* ag,, not labeled

Another View of Prefix Adders

Black cell
ik k-1ij
iij
G,
P G
Gk-1:j
Pk-1:j o

(gl., aL) ng, aRl
2 2

a =8+ 98z
Eour, Your) a,.=%

Gray cell
ik k-13

Eou=8r+ 918z

Buffer
irj

David Harris, Harvey Mudd
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Brent-Kung

15:14 13:12 11:10 LSX+7/—KI77'6 L‘%+7/—XI732 "

11:8 7:4 3

y:f & B

[15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 50 4:0 3:0 2:0 1:0 00|

David Harris, Harvey Mudd

Sklansky Adder

|15:014:O13:O12:011:010:0 9:0 80 7:.0 6:0 50 4.0 3.0 20 1:.0 0.0

David Harris, Harvey Mudd
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Kogge-Stone Adder

|15:O14:013:O12:O11:010:0 9:0 80 7.0 6:0 50 4.0 3.0 2.0 1.0 0:O|

David Harris, Harvey Mudd

Tree Adder Taxonomy

Ideal N-bit tree adder would have
L =log N logic levels
Fanout never exceeding 2
No more than one wiring track between levels
Describe adder with 3-D taxonomy (I, f, 1)
Logic levels: L+1
Fanout: 2f + 1
Wiring tracks: 2!
Known tree adders sit on plane defined by
[+ f+t=L-1
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Tree Adder Taxonomy

>\< 2(4)
O\Q\O\(

David Harris, Harvey Mudd

Tree Adder Taxonomy

I (Logic Levels)

Sklanskya !

1(2)

[ ]

3@

Kogge-Stone

t(Wire Tracks)

David Harris, Harvey Mudd

45



Han-Carlson

15:14

15:12

|15:O14:013:012:O11:010:0 9:0 80 7.0 6:0 50 4.0 3.0 20 1.0 0:O|

David Harris, Harvey Mudd

Knowles [2, 1, 1, 1]

|15:O14:013:012:011:010:0 9:0 80 7.0 6:0 50 4.0 3.0 20 1:0 O:Ol

David Harris, Harvey Mudd
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Ladner-Fischer

(1514131211109 8 7

|15:O14:O13:O12:011:010:0 9:0 80 7:0 6:0 50 4.0 3.0 2.0 1:0 O:O|

David Harris, Harvey Mudd

Taxonomy Revisitied

@EmaETe % D B
IS4 04 SA 84 64 64 §, W
WY | WWY (WY | T O
'TICS gogg o S
F O ® 5 & L]
[F97407072011 970080 66 70 60 50 40 30 20 10 09] e SN 2R S SN AN
Sklansky o ... © -
Y o Ladner-Fischer
' ] (5 a7z 1o 7 [ D)
Mysywywywywyny Eh
O on rIEAN SR AN aEAN: 9
O "
4
O v Y | & Ty | &y
O ﬁvff TY Y Y Y Y
[f5574:613012011:010:0 5:0 80 7:0 60 50 40 30 20 10 00]
Knowles
- Brent-Kung
(c) Kogge-Stone 5 14 13 ) 3 D)
I - IS

LLLESNNAE
I)u
=

T Yy
i 5050 70 60 50 40 30 20 10 00

Kogge-Stone

B | | o | e
[5014013072011:0100 50 60 70 60 50 40 30 20 10 00]
Han-Carlson

David Harris, Harvey Mudd




Conditional Sum Adder

71 For each group

Compute the sum assuming that C, is O and that C,_is 1

When you find out the right answer, use a MUX to

select the correct result

Carry-select is 1-level select

Conditional Sum is a general case — up to max levels

Conditional Sum Adder

X )]

R "
Ymt omit COND ADDER !
1 1
1

. l :
: m-BIT 1 m-BIT 0
. ADDER [ ADDER [ :
1

1 m+]L m+]l :
LI R 1

1 1 0
(cm S (Cm ’ SO)

Two adders use shared circuits

(a)

m+]i m+]i

(6,1,,, s (cg,, %)

(b)
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Carry-Select Adder

0)

—cp

(k1) (k1) (i) (i) (D) L0
X y X y X y X y
k=n/m
+ m + m + m —I’ m + m + m + m + m
COND- COND- COND- m-BIT
ADDER ADDER ADDER ADDER
im+1 Fm+1 m+1 fm+l m+1 ym+l Tm
\ A\ \/ \4 A\
MUX — MUX - MUX
m+1 eee m+] *®® m+1
S
\
(k-1) (i) (1 (0)
S S S / S 4
TCSE = tadd,m + _1 tmux

Carry-Select — Another View

By using more parallelism, one can build even faster adders

While waiting for the carry input, why not calculate both possible answers
(answer if Cin is 0 and answer if Cin is 1)

When Cin is known, it is only a Mux delay to get Cout and all the Sums for th
group.

A[7:4]. B[7:4] A[3:0], B[3:0]

1

L
AR

2:1 Mux

TYvY

Sum[7:4]

Sum([3:0]

Slide from Mark Horowitz, Stanford

e
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Carry-Select - Layout

A larger adder would look something like this:

Cin =0

< < < <~ <~
XOR
e s - - —] Cin=1

XOR
Mux

N~

Notice that the PG logic can be shared with both carry chains
Critical path is first carry chain and then n mux delay

What is the optimal block size for a carry select adder? (Hint they are not all the
same)

Slide from Mark Horowitz, Stanford

Conditional Sum

Conditional principle is applied recursively
Each group is combined to double the number of bits

at the next level

Xy Yy X Yr
»\'71/’2 »\'n/} +n/2 %u/}
COND-ADDER COND-ADDER
p 1 51 n/2+1 0 w0 n/2+1 I n/2 n/2
c ) y
77 (CL’ ‘SL) ] 51 o0 50
I | R R R R
MUX = MUX |
n/2+1

n/2+1

n/2 n/2
ntl n+l1<]
A,

! 51 ©’ 59




16-bit Conditional Sum Adder

|
|
MUX MUX — :
|
|

74

76543210
Exqmple x 01011011¢=0
y 01010101
s'rofofofof1]1]1]0
Aol 1 0/1 070 0|1
- |/ /| Step1
Step 1: Compute all the Sgl1l1l1l11olol o
bit results AloTal ol 1T 1
11 0[10[1 1100
Step 2: Use the known Clox~o™No |1
results to select \ /| Step 2
the next groups... st1 N1 110 0
o 0 T
s/11010[0000
Ao 1
" Step 3
Teonp-sum =tadd—m+(10g2(_))tmux 1 1011
m c |0
s10110000
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Pipelined Adders

¢y +—— A < FA -1 FA - FA —-c
W - [atch l T T $

Figure 2.26: Pipelined carry-ripple adder (for group size of 1 and n = 4)

Variable Time Adder

o1 Carry Completion Sensing Adder
Encode the carry in a form that lets you tell when it’s finished
When all carry chains have finished, the add is finished

One choice — dual-rail encoding

Two carry signals:

c; zerocarry ;o one carry

with coding:
) ol i
0 0 |not determined (yet)
01 1
10 0
11 does not occur




sl L bl bl

n-1

STFA .oe STFA oo STFA STFA

STFA module expressions:

F
0 0.1 0 _ .1 0
Cop1 = ki(cj # ¢;) #picy = kic; + (pi + ki)c;
1 0. 1 1 0 1
Ciy1 = !/i((‘i + (‘1-) + PiC; = GiC; + (pi + !/i)(‘,-

N N |
S = Pi ¢

ki=xyl,  gi=wyi, pi=ri Dy
Addition time: based on actual delays, not worst-case

n—1
Toar—1 = ) tegi
i=0

Variable Time Adder

Ay 4 T

n n-1 1 0
CSFA CSFA c‘l’ CSFA

0 0 0

n l cn-l L I l co

CSFA - full-adder module with
carry completion sensing
F

n-1
F = AND(c} +c})
i=0

Figure 2.28: Variable-time adder: Type 2.

Carry chains initiated simultaneously
CSFA module expressions:

0 _ L O |
Copr = ki # pici, iy = gi+ pic




Variable Time Adder

+ <X
L = O
L O
[
o O O
0O = O
0 = O
0 O =
N O
0 = o
Q —= O
Q= O

11010
00110
d d d d e Prop.chains

Addition Time: proportional to log,(n)

For uniformly distributed numbers, length of longest
carry chain is approx log,(5n/4)

<
Q
=,
Q
o
®
=1
3
®
>
Q.
Q
®
®

Prop.chains

Addition Time: proportional to log,(n)

For uniformly distributed numbers, length of longest
carry chain is approx log,(5n/4)
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Aside — ALU Design

Once you have an adder, making an ALU is very simple
Two approaches:

Build a separate logic unit and mux together the outputs. This is probably
the fastest solution, since you don’t slow down the add critical path, but it
will take more area.

Merge the two designs together by changing the definition of P and G.
Since the output (Sum) is P XOR Cin, if G = 0, and Cin(to adder) =0
then Sum will equal P. Can do logical operations by using a general
function box for the P function.

The first is probably the preferable solution, but | will show the second, because it
is a little more clever (and the programmable P function unit is a perfect LU for the
first solution)

Aside — ALU +P function block

The block that generates the signal called P must be able to generate any
Boolean function of two variable. This is easy -- just use a mux. To reduce control
lines, | will use a precharge mux.

D2
- . :
4> By setting the right values

A IE ”:' on the control lines, this
block can generate any
A | logic function
I I
§+—|E| Exor=0110
B = | And =000 1
i i i \ Or =0111
These transistors can be shared
Co_q1 Cllals g1 C3_q1 for all the bit slices.
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Aside — ALU +G function block

This is similar to the P function block, but it does not need to be as complex. If we
only wanted to do addition and logic functions, then it would only need to generate

the functions (AND, 0). But we want to be able to do subtraction too.

* A-B=A+B + 1, where B is the ones complement of B, which is just the
complement of each bit.

* Since after the P, and G function block, no other part of the adder uses A B, we

can get subtract by redefining P and G, an setting Cin to be 1

* If we didn’t do this, we would need to add an explicit mux to invert one of the
inputs to adder in the case of subtraction.

* For addition:
P=AB+BA; G=AB
* For substraction:
P=AB+BA; G=AB

Rest of the ALU

Is basically the same as an adder:

* Need a fast carry chain

* Final static XOR gate

* Latch to hold the value (since the output of the ALU is _v1)

* Bus driver to drive the output of the latch on bus when the ALU result is nheeded
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Redundant Digit Adders

0 Use a redundant digit set

Operands might be in conventional or in redundant
form

Main idea is to reduce the carry propagation
But, increases number of bits in the result

Useful for things like accumulation,
multi-operand addition, multiplication, etc.

Carry Save Adder

01 Add three binary vectors
Using an array of one-bit adders (i.e. full adders)
0 But, don’t propagate the carries |

Output is two vectors: carry and pseudo-sum
(or sum)

X+y+z=vc+vz=vy

Several combinations of vc and vs represent the same
result
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Carry Save Adder

o If you want to convert back to conventional numbers,

add vs and vc

Because there two bits for every conventional sum bit,
you can think of the answer in Carry Save form to be
digits in the set {0,1,2}

Carry Save produces a reduction from three binary
vectors to two, so it’s also called a 3-2 reduction

Adder is a [3:2] adder

Carry Save Adder

Yl Yook Zner Nirn Virr Zivn N N 5 Yo Yo Zo

FA eee FA FA eee FA c.
l \'Sn_I l \'Si+1 l vsi l \'So l
ve =c Vei+2 VCitg Ve Ve

(b) Cour —] CSA le— Cin
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Carry Save Example

N

VS
(CQHM,-LIC7> 0

0
0
1
1
0
digit value 0 1

N H R/ ==
H P OO =K
O O Ok = O
N = = O O =
O OOl = O
N = RO = O

Carry Save Example

116

59

170
=345
in

0
1
0
17
1
2

N
== O O
RO O =
== = =
RO O

OO O = =
ol = O

229 VS
W (¢, VO) 0707171717071
digit value 0 1 22 1 0 2 0

256 128 64 32 16 8 4 2 1
NN N

128+ 128 +64 +16 + 0 +8 + 2=346

0
1
1
0

0

C
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Carry Save

7 What if two operands are both carry-save?
Then each operand is in Xs Xc form
So, you need a [4:2] adder instead of a [3:2]
Combine four vectors into two...
Still no carries!

Answer is still in redundant carry-save form

Carry Save [4:2]

Vi Wi 5

HEN Nl
FA FA

'iﬁ wiiy

FA FA




Carry Save [4:2]

i i Wi 5

[4:2] Compressor Adder

S bevv Vi L
I 42 |“_| 4:2 I‘Q— """""""""" 4—' |4—i
Sutu Caxt;, stn. atv Stn iw im

Note that even though it looks like carry is propagated,
the Cout from each [4:2] cell is computed directly
from the A and B inputs...
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4:2 compressor cell

Inputs Cin=0

C

S

Cout

0

0

ale|alalala]|a]e|=]|e|e|=|e|e|e|e|
slalo|a|alele|=a|=|a|o|e|=|o|e|e]|m
ala|aloalefa|o|e|a|a|o|o(a|ele A
alalalalo|a|lo|a|o|o|a|o|o|o|a|o|T

4:2 compressor cell

Nagamatsu,
Toshiba
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[4:2] Compressor Cell

i3 I iy ip

=,
Navi and Etiemble V

|

Cinl

O

out

&
~H

High Radix Carry Save

01 Regular carry-save doubles the
number of bits
You can reduce the number of bits with
high-radix carry-save
If ris the radix
m Vs is represented in radix r

u Vc has one bit per radix-r digit
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Radix-8 Carry Save

XS [101[101[100

XC 1 1 0

Y [010[/001[111

VS [000[L 11011
((‘Out,VC) 1 0 1 0

Radix-8 Carry Save
512 64 8 1
XS |10 1[101[100%
436

XC 1 1 0 0,

Y [010{001|1117 217

VS 000111011 13
(couVC) ] 0 o0

1%512 0 (7+1)*8 (3+0)*1 = 579




Radix-8 Carry Save

XS 101|/101/100
XC 1 1 0
Y 010/001|111
VS 000j1 111|011
(cou,VC) 1 0 1 0
Xs:
ol ]
¥
1 ‘| L]
3-bitadder — coe 3-bitadder |—
N ol
ve: v v

Figure 2.33: Radix-8 carry-save adder.

Signed Digit Adders

Another form of redundant digit representation

e Uses signed-digit representation (redundant)

with digit set

e Limits carry propagation to next position

e Addition algorithm:

Stepl: v 4+y=w+t
T+ Y = wi + 1t

Step2: s=w+1t
S; = w; + f,‘

e No carry produced in Step 2
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Signed Digit Adder

(@)

Xn1 Ynd Xg Yo
™ Step 1
t, Wl o Tar G | W 8| a4 (W t
ADD ADD ADD ADD | Step2
Sn Sp-1 Si Si1 So
(b)

Signed Digit Adder

Case A : two SD operands; result SD
Step 1:
(0, =+ ;) if —a+1<z+y <a-1

(Lowity—r) if ri+y 2a

(tigr, wi) = =
(=L zi+yi+r) if i +y; < —a

- algorithm modified for r» = 2
Case B : two conventional operands; result SD

Case C : one conventional, one SD; result SD




Signed Digit Adder

71 I’'m not going to spend more time on this one...

My sense is that it’s not as important in terms of actual
implementations as Carry Save

Reasonably complex stuff — multiple recodings

Summary

Scheme Delay Area
proportional to | proportional to

Linear structures:

Carry ripple n n
Carry lookahead (one level) n/m (kmm)(n/m) = kyn
Carry select (one level) n/m (km)(n/m) = kyn
Carry skip (one level) NG n

Logarithmic structures:

Carry lookahead (max. levels) |2log,, n (kmm)(n/m) = kyn
Prefix log,,, n ((kpm) log,, n)n
Conditional sum log,(n/m) (K + logy(n/m))n
Completion signal (avg. delay) | (log, 1) /m Emm(n/m) = kyn

Redundant const. n
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Case Study
=

71 Dec Alpha 21064 64-bit adder

5ns cycle time in a 0.75u CMOS process
Very high performance for the day!

A mix of multiple techniques!

Alpha 21064

0 In 8-bit chunks — Manchester carry chain

Chain was also tapered to reduce the load caused by
the remainder of the chain

Chain was pre-discharged at start of cycle
Three signals used: P, G, and K

Two Manchester chains:

m One assuming Cin=0

® One assuming Cin=1
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Alpha 21064

0 Carry Lookahead used on
least significant 32 bits
Implemented as distributed differential circuits
Provide carry that controls most significant 32
o1 Conditional Sum used for
most significant 32

Six 8-bit select switches used to implement conditional
sum on the 8-bit level

Alpha 21064

o Finally, Carry Select used to produce the most
significant 32 bits.

Final selection done using NMOS carry-select byte-
wide muxes
0 Also apparently pipelined with a row of latches
after the lookahead...
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Alpha 21064

Resi

ult Result Result

Result Result

Result Result Result

[Ca ]| l‘n\h || Lmh

| e T |

tach | [ taen ] [ Laa

I

I I

wn )y Xswi x\.x_l Ko ¥

! Switch ﬁ ! Switch ﬁ X witch

X E
Y

I)u |I [)u |I
«\\n\h \\mh

Dual
switch

Dual
switch

XX

[ Lawch & XOR |

| Latch & XOR |

[tatch & XOR | [ [Latch & XOR

Look

ahead

PGK

Lawch & XOR

cell PCK cell PGK cell

PGK cell

PGK cell

chain

iy

Carry Carry

chain

chain
PGK cell

Input operands

Byt

[ [T

Input operands

Input operands
e7 Byte 6 Byte §

Input operands

By

Input operands  Input

operands

I I I

Input operands

1ed Byte 3 Byte 2 Byte | Byte 0

Input operands

7 2-bit Pentium Il Adder

72-bit adder (Jason

Stinson)

* 0.35u process

+ Domino

+ Kogge-Stone
CLA+sumselect

Combines terms in
both domino and
CMOS stages

n

MAH

7'-0,|/A 7

o} B

P/G Generation

o F 1

u-o/l/ 5-9]/

6 bit CLA e ——— 6 bit CLA 6 bit CLA
TE____ Gowrg TSP D) 2
..... 7101
71 17} s 17104
12 bit CLA Conditional Sum Generation

72 bits

| Conditional Sums 7"0,‘
2

Carryouts
71664 -6 sob
65 : 5 -
6 bit Sum Sel.| | o o e |6 Dit Sum Sel. 6 bit Sum Sel.
CarryOut 7l'c/l’Sums

Slide from Mark Horowitz, Stanford
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Adder from Imagine

+ Part of Imagine

— A high-performance media processor designed at Stanford
+ 32-bit segmented integer adder

— Two-level tree to compute global carries

— Uses carry-select to compute final sums from global carries
+ Static CMOS logic

— Also pass gate logic
+ Design constraints

— Area

— Design complexity (modularity)

— Speed

Slide from Mark Horowitz, Stanford

Adder from Imagine

A[31] A24] A[23] A[16] A[15] Al8] Al7] A[0]
B[31] B[24] B[23] B[16] B[15] B[8] B[7] B[O]
Local Local Local Local
PGK's PGK's PGK's: PGK's:
Group PGK Group PGK Group PGK Group PGK
CouT <—| Global Carry Chain I__C|N

PGK's[31:24] PGK's[23:16] PGK's[15:8] PGK's[7:0]

—+ — — b

Conditional Sum -1 ° Conditional Sum - ’ Conditional Sum Sum f« CIN
SUM[31:24] SUM[23:16] SUM[15:8] SUMI[7:0]

Slide from Mark Horowitz, Stanford
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Adder from Imagine

+ Itis balancing design/logic complexity and speed
— It uses large groups which will ultimately limit performance

+ It does use some tree structures
— It does not ripple carries
— But the group generation is a little slow

+ Also uses large block sizes (8 bits)

— Does not move the carry select input to lower significance
— Need to worry about how outputs in block are generated

Slide from Mark Horowitz, Stanford

Adder from Imagine

+ Local PGK’s:
— Convert input operands into Propagate (P), Generate (G),
Kill(K)
+ Group PGK’s:
— Determine P,G K for groups of 8 bits
+ Global carry chain:
— Compute cin[8], cin[16], cin[24], cout(cin[32]) from group
PGK’s and cin
+ Conditional sums:

— Compute 8-bit sum for cin=0 and 8-bit sum for cin=1 as soon
as PGK’s are known

« Final Mux:
— Use cin’s from global carry chain to select conditional sums
Slide from Mark Horowitz, Stanford
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Local PGK Logic (Imagine)

* Pre-computation necessary to do fast carry computation

— P=a®
P =a®b QDP

- G=ab

B o o

+ Size gates to fan-out to four carry chains
* Note: To do A-B, use ~B here

Slide from Mark Horowitz, Stanford

Group PKG (Imagine)

Manchester Carry Chains.

* Usually dynamic, but still works with static logic

* Group PGK’s:
— GP = P[7].P[6].P[5].P[4].P[3].P[2].P[1].P[0]
- GG = G[7] + G[6].P[7] + G[5].P[6].P[7]+...
- GK=~(GG+GP)

* Use Carry chains

+ Example for GG (group generate):

P0]G_b[4] P[5]G_b[S]  peIG_bIE] p[7)G_bI7
I iR I [

1 1 1 e
K] 1& Kis] 1E Kie] -IE K] 1&

Slide from Mark Horowitz, Stanford
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Carry Chain Sizing

* Minimize size of transistors not on critical path
* Taper sizes along carry chain
— Reduces diffusion capacitance

Slide from Mark Horowitz, Stanford

Static Carry Chains

» Sizing is to reduce the parasitic delay

— This delay dominates in large fanin structures, since it grows
proportional to n?

— Using geometric sizing (reducing each transistor along the
chain by o) makes the parasitic delay linear

— But still does not make them fast
» Even though this chain is static logic
— Dirive the carry chain both up (K) and down (G)

— Output is degraded, since it uses nMOS only pass devices

+ Using CMOS transmission gates is usually slower because of
the added parasitic capacitors

Slide from Mark Horowitz, Stanford
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Global Carry Chain

*  Must fan out GCIN[3:1] to 8 muxes

— Added load capacitance slows down the chain
GG_b[0]  GG_b[1]  GG_b[2]  GG_b[3]

couT

GCIN[1] GCIN[2] GCIN[3]
Slide from Mark Horowitz, Stanford

Conditional Sums

* Use same carry chain
* Do two of these (one for cin=0, one for cin=1):

POJG-PIO]  pr1G_bI]  p2yG_bI2] P3G b[3
T IR R I
o L 1 1 1
ko1 K114 k21 ki3l

P[0] P[1] P[2] P[3]

SUMO[0]  SUMO[1]  SUMO[2]  SUMO[3] SUMO[]  SUMO[5]  SUMOE]  SUMO[7]

* Mux SUMQ[7:0] and SUM1[7:0] with output of global carry chain

Slide from Mark Horowitz, Stanford
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Arithmetic for Media Processing

+ Used in Media processing

— DSP’s, multimedia extensions to instruction set architectures
(MMX, VIS)

« Consider three variations of conventional arithmetic:
— Segmented Arithmetic
+ Break carry chain

— Arithmetic operations similar to add/subtract
« Example: 4 parallel 8-bit unsigned absolute differences

— Saturation
+ Don’t wraparound on overflow

Segmented Add Operation

* Support 32-bit, dual half-word, or quad byte ops

+ Example: 4 parallel byte additions

+ Treat each byte as a separate 2's complement number
+ Don'’t propagate the carries across byte boundaries

14 |02 | FF|FF
FE|J]o2]o1 |02
1204 [ 00| 01

Slide from Mark Horowitz, "Starford
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Modify for Segmentation

* Only modify carry propagation in global carry chain

A[31] Al24] A[23] Al16] Al15] Al8] Al7] A[0]
B[31] B[24] B[23] B[16] B[15] B[8] B[7] B[0]
Local Local Local Local
PGK's PGK's PGK's: PGK's:
Group PGK Group PGK Group PGK Group PGK
COouT <—| Global Carry Chain |<— CIN
PGK’S[3J 24] PGK’S[Z?Z 16] PGK's[15:8] PGK's[7:0]
— — !
Conditional Sum Conditional Sum |1 ’ Conditional Sum S Sum < CIN
SUM[31:24] SUM[23:16] SUM[15:8] SUM[7:0]

Slide from Mark Horowitz, Stanford

Global Carry w/ Segment

« This method adds mux to critical path

GG_b2]

+  We can improve on this
— Possible to move off critical path
— By moving to start of adder

GG_b0]  GG_b[1]  GG_b[2

GP[0] GP[1] GP[2]
L L L
ond 1 1 1

Ko el | ek CIN

« If the op type is known early
— For cells at start of segment

» Change P, G definition
» Change Cin to local carry chains

GCIN[3]

GCIN[2)
CIN

GCIN[1]
CIN

vy

Slide from Mark Horowitz, Stanford
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Absolute Difference

+ Example: 4 parallel byte absolute differences
— Important in MPEG encoding algorithm

+ Algorithm:
— Take two unsigned 8-bit numbers (between 0 and 255)
— Compute |a-b|
— Result is unsigned (between 0 and 255)

Slide from Mark Horowitz, Stanford

Absolute Difference

+ How do we compute |a-b|?
— We need to compute a-b and b-a and take the positive one
— Remember that in 2's complement, -x = ~x + 1
— The carry-select adder will compute a+~b+1 and a+~b
a+~b+1 =a-b
at~b=a-b-1
— Note that
~b-a)+1=a-b
SO
~b-a)=a-b-1
or
b-a=~(a-b-1)
+ So, to compute |a-b], just choose between SUM1 or ~SUMO
depending on the sign bit

Slide from Mark Horowitz, Stanford
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Sum of Absolute Differences

— Must do conditional sum for lower 8 bits

— Must further modify global carry chain to look at sign bits
+ If positive, choose SUM1; If negative, choose ~SUMO

A[31] A[24] A[23] A[16] Al15] Al8] Al7] Al0]
B[31] B[24] B[23] B[16] B[15] B[8] B[7] B[0]
Local Local Local Local
PGK's PGK's PGK's: PGK's:
Group PGK Group PGK Group PGK Group PGK
couT | Global Carry Chain o
PGK's[3 ; 24] PGK's[23:16] PGK's[15:8] PGK's[7:0]
— — — —
Conditional Sum -1 ¢ Conditional Sum |1 ¢ Conditional Sum  [—1 ° Conditional Sum  |—1 °

| \ | |
MAR l l EE 371 Lectur¥T l A—l—%

SUMI31-24] SUME23:16] SIS ide from MarkH&r3witz, Stanford

Saturation

« Often in media and signal processors, saturating arithmetic is
supported:

— Don’t wraparound on overflow
— Result should be largest (or smallest) value possible

+ Examples:
— 32-bit saturating integer add:
+ |IADDS32(0x7FFFFFFF,0X00000001)=0x7FFFFFFF
— 8-bit saturating unsigned subtract:
+ USUBS8(0x02FEO02FE,0x03FE01FF)=0x00000100

Slide from Mark Horowitz, Stanford
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Hardware Support for Saturation

+ Overflow detection
— Example: signed addition
» Can look at sign bits of inputs and outputs
» Or can compute using ovf = cinmsb@®coutmsb
+ Overflow propagation

— Similar to segmented, global carry chain, except for
overflows

+  Output muxing

— Need a many-to-one mux for each byte to choose between:
0xff,0x00,0x7f,0x80 and the unsaturated value

+ Methods for speeding up saturation
— Could probably do “carry-select saturation detection”

Slide from Mark Horowitz, Stanford

Simulated Performance

+ Two implementations:

— Custom circuits (using circuits from these slides)

+ 15.1 FO4 delays through integer adder

+ 9.3 FO4 delays through overflow detection and saturation

+ ~3000A x 500A for adder only (excluding ovf det and saturation)
— Standard cell implementation

+ ~23.5 FO4 delays through integer adder

+ ~10 FO4 delays through overflow detection and saturation

+ ~8000A x 800A for adder only (excluding ovf det and saturation)
— Significant room for speed improvement through any of the

following techniques:
+ Domino circuits

+ Faster carry-chain structures
- e.g. carry-select on upper half of carry chains within each group pgk

Slide from Mark Horowitz, Stanford
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Adder Layout
- 323 um

-0.25 pm
process

EE 371 Lecture 7 Slide from Mark Horowitz, Stanford

Related Results
o

+ 8 bit Manchester carry chains are slow, no matter how you size
them. If you are going to use 8 bit groups, you probably need
look-ahead in that group

+ Using dynamic gates is much faster than static gates but

— Need to worry a lot more about clock skew and noise margin
issues. You also need to think about power

« ltis possible to move segment overhead off the critical path

+ Saturation is a pain since you need to know overflow condition
before you can select the correct sum

— But you can calculate overflow early if you spend hardware
Slide from Mark Horowitz, Stanford
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Summary (from Harris/Weste)

o1 If they’re fast enough, use ripple-carry
Compact, simple
o1 Carry skip and carry select work well for small bit
sizes (8-16)
Hybrids combining techniques are popular
11 At 32, 64, and beyond, tree adders are much
faster

Again, hybrids are common

Adder Summary

Table 10.3 | Comparison of adder architectures

Architecture Classification Logic Levels Max Fanout Tracks Cells
Carry-Ripple N-1 1 1 N
Carry-Skip ( = 4) Ni4+5 2 1 125N
Carry-Increment N/4+2 4 1 2N

(n=4)

Carry-Increment 1 2N

(vall:Zble group) JZ_N ‘/2—N

Brent-Kung (L-1,0,0) 2log, N-1 2 1 2N
Sklansky (0,L-1,0) log, N N2+1 1 0.5 Nlog, N
Kogge-Stone (0,0,L-1) log, N 2 N/2 Nlog, N
Han-Carlson (1,0,L-2) log, N+1 2 N/4 0.5 Nlog, N
Ladner Fischer (/= 1) | (1, L-2,0) log, N+ 1 N/4+1 1 0.25 Nlog, N
Knowles [2,1,...,1] 0,1, 1-2) log, N 3 N/4 Nlog, N
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. Synthesized Adders (Harris/Weste)

0 Similar to my experiment
But with 0.18u library, Synopsys DesignWare
Synopsys can map “+” to carry-ripple, carry-select,
carry-lookahead, and some prefix adders

Fastest are tree adders with (prelayout) speeds of 7.0
and 8.5 FO4 delays for 32 and 64 bit adders

_Areq vs. Delay, Synthesized Adders

6

— Prefix Tree

5
/ Carry Lookahead

4

s [ | / Carry Select & 32-bit
m 64-bit

. Rlpple Carry
2
<
1 ®
20 60 80 100
Delay (FO4)

Area (MA?)

MY Area vs. delay of synthesized adders
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