Model Description

MiDaS computes relative inverse depth from a single image. The repository provides multiple models that cover different use cases ranging from a small, high-speed model to a very large model that provide the highest accuracy. The models have been trained on 10 distinct datasets using multi-objective optimization to ensure high quality on a wide range of inputs.

Dependencies

MiDaS depends on timm. Install with

pip install timm

Example Usage

Download an image from the PyTorch homepage

import cv2
import torch
import urllib.request

import matplotlib.pyplot as plt

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)

Load a model (see https://github.com/intel-isl/MiDaS/#Accuracy for an overview)

model_type = "DPT_Large"     # MiDaS v3 - Large     (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid"   # MiDaS v3 - Hybrid    (medium accuracy, medium inference speed)
#model_type = "MiDaS_small"  # MiDaS v2.1 - Small   (lowest accuracy, highest inference speed)

midas = torch.hub.load("intel-isl/MiDaS", model_type)

Move model to GPU if available

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()

Load transforms to resize and normalize the image for large or small model

midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
    transform = midas_transforms.dpt_transform
else:
    transform = midas_transforms.small_transform

Load image and apply transforms

img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

input_batch = transform(img).to(device)

Predict and resize to original resolution

with torch.no_grad():
    prediction = midas(input_batch)

    prediction = torch.nn.functional.interpolate(
        prediction.unsqueeze(1),
        size=img.shape[:2],
        mode="bicubic",
        align_corners=False,
    ).squeeze()

output = prediction.cpu().numpy()

Show result

plt.imshow(output)
# plt.show()

References

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer

Vision Transformers for Dense Prediction

Please cite our papers if you use our models:

@article{Ranftl2020,
	author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
	title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
	journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
	year      = {2020},
}
@article{Ranftl2021,
	author    = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
	title     = {Vision Transformers for Dense Prediction},
	journal   = {ArXiv preprint},
	year      = {2021},
}