
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2015 1

Automatic Shadow Detection and Removal from
a Single Image

S. H. Khan, M. Bennamoun, Member, IEEE , F. Sohel and R. Togneri, Senior Member, IEEE

Abstract—We present a framework to automatically detect and remove shadows in real world scenes from a single image. Previous
works on shadow detection put a lot of effort in designing shadow variant and invariant hand-crafted features. In contrast, our framework
automatically learns the most relevant features in a supervised manner using multiple convolutional deep neural networks (ConvNets).
The features are learned at the super-pixel level and along the dominant boundaries in the image. The predicted posteriors based on
the learned features are fed to a conditional random field model to generate smooth shadow masks. Using the detected shadow masks,
we propose a Bayesian formulation to accurately extract shadow matte and subsequently remove shadows. The Bayesian formulation
is based on a novel model which accurately models the shadow generation process in the umbra and penumbra regions. The model
parameters are efficiently estimated using an iterative optimization procedure. Our proposed framework consistently performed better
than the state-of-the-art on all major shadow databases collected under a variety of conditions.

Index Terms—Feature Learning; Bayesian shadow removal; Conditional Random Field; ConvNets; Shadow detection; Shadow matting
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1 INTRODUCTION

Shadows are a frequently occurring natural phe-
nomenon, whose detection and manipulation are im-
portant in many computer vision (e.g., visual scene
understanding) and computer graphics applications. As
early as the time of Da Vinci, the properties of shadows
were well studied [1]. Recently, shadows have been used
for tasks related to object shape [2, 3], size, movement
[4], number of light sources and illumination conditions
[5]. Shadows have a particular practical importance in
augmented reality applications, where the illumination
conditions in a scene can be used to seamlessly render
virtual objects and their casted shadows. Contrary to the
above mentioned assistive roles, shadows can also cause
complications in many fundamental computer vision
tasks. For instance, they can degrade the performance
of object recognition, stereo, shape reconstruction, image
segmentation and scene analysis. In digital photography,
information about shadows and their removal can help
to improve the visual quality of photographs. Shadows
are also a serious concern for aerial imaging and object
tracking in video sequences [6].

Despite the ambiguities generated by shadows, the
Human Visual System (HVS) does not face any real
difficulty in filtering out the degradations caused by
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shadows. We need to equip machines with such visual
comprehension abilities. Inspired by the hierarchical ar-
chitecture of the human visual cortex, many deep repre-
sentation learning architectures have been proposed in
the last decade. We draw our motivation from the recent
successes of these deep learning methods in many com-
puter vision tasks where learned features out-performed
hand-crafted features [7]. On that basis, we propose to
use multiple convolutional neural networks (ConvNets)
to learn useful feature representations for the task of
shadow detection. ConvNets are biologically inspired
deep network architectures based on Hubel and Wiesel’s
[8] work on the cat’s primary visual cortex. Once
shadows are detected, an automatic shadow removal
algorithm is proposed which encodes the detected infor-
mation in the likelihood and prior terms of the proposed
Bayesian formulation. Our formulation is based on a
generalized shadow generation model which models
both the umbra and penumbra regions. To the best of
our knowledge, we are the first to use ‘learned features’
in the context of shadow detection, as opposed to the
common carefully designed and hand-crafted features.
Moreover, the proposed approach detects and removes
shadows automatically without any human input (Fig.
1).

Our proposed shadow detection approach combines
local information at image patches with the local in-
formation across boundaries (Fig. 1). Since the regions
and the boundaries exhibit different types of features,
we split the detection procedure into two respective
portions. Separate ConvNets are consequently trained
for patches extracted around the scene boundaries and
the super-pixels. Predictions made by the ConvNets are
local and we therefore need to exploit the higher level
interactions between the neighboring pixels. For this
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Fig. 1: From left to right: Original image (a). Our framework first detects shadows (c) using the learned features along the
boundaries (top image in (b)) and the regions (bottom image in (b)). It then extracts the shadow matte (e) and removes it to
produce a shadow free image (d).

purpose, we incorporate local beliefs in a Conditional
Random Field (CRF) model which enforces the labeling
consistency over the nodes of a grid graph defined on
an image (Sec. 3). This removes isolated and spurious
labeling outcomes and encourages neighboring pixels to
adopt the same label.

Using the detected shadow mask, we identify the um-
bra (Latin meaning shadow), penumbra (Latin meaning
almost-shadow) and shadow-less regions and propose a
Bayesian formulation to automatically remove shadows.
We introduce a generalized shadow generation model
which separately defines the umbra and penumbra gen-
eration process. The resulting optimization problem
has a relatively large number of unknown parameters,
whose MAP estimates are efficiently computed by alter-
natively solving for the parameters (Eq. 26). The shadow
removal process also extracts smooth shadow matte that
can be used in applications such as shadow compositing
and editing (Sec. 4).

A preliminary version of this research (which solely fo-
cuses on shadow detection) appeared in [9]. In addition,
the current study includes: (1) a new approach to es-
timate shadow statistics, (2) automatic shadow removal
and shadow matte extraction, (3) a substantial number of
additional experiments, analysis and limitations, (4) pos-
sible applications in many computer vision and graphics
tasks.

2 RELATED WORK AND CONTRIBUTIONS

Shadow Detection: One of the most popular methods
to detect shadows is to use a variety of shadow variant
and invariant cues to capture the statistical and deter-
ministic characteristics of shadows [10, 11, 12, 13, 14].
The extracted features model the chromatic, textural
[10, 11, 13, 14] and illumination [12, 15] properties of
shadows to determine the illumination conditions in the
scene. Some works give more importance to features
computed across image boundaries, such as intensity
and color ratios across boundaries and the computation
of texton features on both sides of the edges [11, 16]. Al-
though these feature representations are useful, they are
based on assumptions that may not hold true in all cases.
As an example, chromatic cues assume that the texture
of the image regions remains the same across shadow

boundaries and only the illumination is different. This
approach fails when the image regions under shadows
are barely visible. Moreover, all of these methods involve
a considerable effort in the design of hand-crafted fea-
tures for shadow detection and feature selection (e.g.,
the use of ensemble learning methods to rank the best
features [10, 11]). Our data-driven framework is different
and unique: we propose to use deep feature learning
methods to ‘learn the most relevant features’ for shadow
detection.

Owing to the challenging nature of the shadow de-
tection problem, many simplistic assumptions are com-
monly adopted. Previous works made assumptions re-
lated to the illumination sources [5], the geometry of the
objects casting shadows and the material properties of
the surfaces on which shadows are cast. For example,
Salvador et al. [14] consider object cast shadows while
Lalonde et al. [11] only detect shadows that lie on
the ground. Some methods use synthetically generated
training data to detect shadows [17]. Techniques targeted
for video surveillance applications take advantage of
multiple images [18] or time-lapse sequences [19, 20]
to detect shadows. User assistance is also required by
many proposed techniques to achieve their attained
performances [21, 22]. In contrast, our shadow detection
method makes absolutely ‘no prior assumptions’ about
the scene, the shadow properties, the shape of objects,
the image capturing conditions and the surrounding
environments. Based on this premise, we tested our
proposed framework on all of the publicly available
databases for shadow detection from single images.
These databases contain common real world scenes with
artifacts such as noise, compression and color balancing
effects.

Shadow Removal and Matting: Almost all approaches
that are employed to either edit or remove shadows are
based on models that are derived from the image forma-
tion process. A popular choice is to physically model
the image into a decomposition of its intrinsic images
along with some parameters that are responsible for the
generation of shadows. As a result, the shadow removal
process is reduced to the estimation of the model param-
eters. Finlayson et al. [23, 24] addressed this problem by
nullifying the shadow edges and reintegrating the image,
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which results in the estimation of the additive scaling
factor. Since such global integration (which requires the
solution of a 2D Poisson equation [23, 25]) causes arti-
facts, the integration along a 1D Hamiltonian path [26] is
proposed for shadow removal. However, these and other
gradient based methods (such as [27, 28]) do not account
for the shadow variations inside the umbra region. To
address this shortcoming, Arbel and Hel-Or [29] treat
the illumination recovery problem as a 3D surface re-
construction and use a thin plate model to successfully
remove shadows lying on curved surfaces. Alternatively,
information theory based techniques are proposed in
[25, 30] and a bilateral filtering based approach is re-
cently proposed in [31] to recover intrinsic (illumination
and reflectance) images. However, these approaches ei-
ther require user assistance, calibrated imaging sensors,
careful parameter selection or considerable processing
times. To overcome these shortcomings, some reason-
ably fast and accurate approaches have been proposed
which aim to transfer the color statistics from the non-
shadow regions to the shadow regions (‘color transfer
based approaches’ e.g., [21, 32, 33, 34, 35]). Our proposed
shadow removal algorithm also belongs to the category
of color transfer based approaches. However, in contrast
to previous related works, we propose a generalized
image formation model which enables us to deal with
non-uniform umbra regions as well as soft shadows.
Color transfer is also made at multiple spatial levels,
which helps in the reduction of noise and color artifacts.
An added advantage of our approach is our ability to
separate smooth shadow matte from the actual image.

Several assumptions are made in the shadow removal
literature due to the ill-posed nature of recovering the
model parameters for each pixel. The camera sensor
parameters are needed in [23, 31]. Multiple narrow-
band sensor outputs for each scene are required in [31],
while [2] employs a sequence of images to recover the
intrinsic components. Lambertian surface and Planck-
ian lightening assumptions are made in [31]. Though
several approaches work just on a single image, they
require considerable user interaction to identify either
tri-maps [36], quad-maps [33, 34], gradients [37] or exact
shadow boundaries [27, 28]. Su and Chen [38] tried
to minimize the user effort by specifying the complete
shadow boundary from the user provided strokes. In
contrast, our framework does not require any form of
user interaction and makes no assumption regarding
the camera or scene properties (except that the object
surfaces are assumed to be Lambertian).

The key contributions of our work are outlined below:
• We propose a new approach for robust shadow

detection combining both regional and across-
boundary learned features in a probabilistic frame-
work involving CRFs (Sec. 3).

• Our proposed method automatically learns the most
relevant feature representations from raw pixel val-
ues using multiple ConvNets (Sec. 3).

• We propose a generalized shadow formation model

along with automatic color statistics modeling using
only detected shadow masks (Sec. 4.1 and 4.2).

• Our proposed Bayesian formulation for the shadow
removal problem integrates multi-level color trans-
fer and the resulting cost function is efficiently
optimized to give superior results (Sec. 4.3 and 4.4).

• We performed extensive quantitative evaluation to
prove that the proposed framework is robust, less-
constrained and generalisable across different types
of scenes (Sec. 5).

3 PROPOSED SHADOW DETECTION FRAME-
WORK

Given a single color image, we aim to detect and localize
shadows precisely at the pixel level (see block diagram
in Fig. 2). If y denotes the desired binary mask encoding
class relationships, we can model the shadow detection
problem as a conditional distribution:

P(y|x;w) =
1

Z(w)
exp(−E(y,x;w)) (1)

where, the parameter vector w includes the weights of
the model, the manifest variables are represented by x
where xi denotes the intensity of pixel i ∈ {pi}1×N and
Z(w) denotes the partition function. The energy function
is composed of two potentials; the unary potential ψi and
the pairwise potential ψij :

E(y,x;w) =
∑
i∈V

ψi(yi,x;wi) +
∑

(i,j)∈E

ψij(yij ,x;wij) (2)

In the following discussion, we will explain how we
model these potentials in a CRF framework.

3.1 Feature Learning for Unary Predictions
The unary potential in Eq. 2 considers the shadow
properties both at the regions and at the boundaries
inside an image.

ψi(yi,x;wi) =

region︷ ︸︸ ︷
φri (yi,x;wr

i ) +

boundary︷ ︸︸ ︷
φbi (yi,x;wb

i ) (3)

We define each of the boundary and regional potentials,
φr and φb respectively, in terms of probability estimates
from the two separate ConvNets,

φri (yi,x;wr
i ) = −wr

i logPcnn1(yi|xr)

φbi (yi,x;wb
i ) = −wb

i logPcnn2(yi|xb)
(4)

This is logical because the features to be estimated
at the boundaries are likely to be different from the
ones estimated inside the shadowed regions. Therefore,
we train two separate ConvNets, one for the regional
potentials and the other for the boundary potentials.

The ConvNet architecture used for feature learning
consists of alternating convolution and sub-sampling
layers (Fig. 3). Each convolutional layer in a ConvNet
consists of filter banks which are convolved with the
input feature maps. The sub-sampling layers pool the in-
coming features to derive invariant representations. This
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Preprocessing
(Sec. 3.1)
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Boundary Extraction 
(gPb) [40]

Window Extraction at 
Boundary Points
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Centroids of Superpixels

Imbalance Removal
(SMOTE) (Sec. 3.1)

Feature Learning 
(ConvNet-1) (Sec. 3.1)

Feature Learning 
(ConvNet-2) (Sec. 3.1)

Shadow Localization/ 
Posterior on UCMs

(Sec. 3.1)
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(Sec. 3.1, Eq. 3)

Pairwise Term 
(Sec. 3.2, Eq. 5)

CRF 
Model

(Sec. 3.3)

Edge Map
(Sec. 3.2, Eq. 7)

Input Image Shadow Map

Fig. 2: The proposed shadow detection framework. (Best viewed in color)

layered structure enables ConvNets to learn multilevel
hierarchies of features. The final layer of the network
is fully connected and comes just before the output
layer. This layer works as a traditional MLP with one
hidden layer followed by a logistic regression output
layer which provides a distribution over the classes.
Overall, after the network has been trained, it takes
an RGB patch as an input and processes it to give a
posterior distribution over binary classes.

ConvNets operate on equi-sized windows, so it is
required to extract patches around desired points of
interest. For the case of regional potentials, we extract
super-pixels by clustering the homogeneous pixels1. Af-
terwards, a patch (Ir) is extracted by centering a τs× τs
window at the centroid of each superpixel. Similarly
for boundary potentials, we first apply a Bilateral filter
and then extract boundaries using the gPb technique
[40]. We traverse each boundary with a stride λb and
extract a τs × τs patch at each step to incorporate local
context2. Therefore, ConvNets operate on sets of bound-
ary and super-pixel patches, xr = {Ir(i, j)}1×|Fslic(x)|
and xb = {Ib(i, j)}

1×
|FgPb(x)|

λb

respectively, where |.| is

the cardinality operator. Note that we include synthetic
data (generated by artificial linear transformations [41])
during the training process. This data augmentation is
important not only because it removes the skewed class
distribution of the shadowed regions but it also results in
an enhanced performance. Moreover, data augmentation
helps to reduce the overfitting problem in ConvNets
(e.g., in [42]) which results in the learning of more robust
feature representations.

During the training process, we use stochastic gradient
descent to automatically learn feature representations
in a supervised manner. The gradients are computed
using back-propagation to minimize the cross entropy
loss function [43]. We set the training parameters (e.g.,
momentum and weight decay) using a cross validation
process. The training samples are shuffled randomly
before training since the network can learn faster from
unexpected samples. The weights of the ConvNet were
initialized with randomly drawn samples from a Gaus-
sian distribution of zero mean and a variance that is

1. In our implementation we used SLIC [39], due to its efficiency.
2. the step size is λb = τs/4 to get partially overlapping windows.

Fig. 3: ConvNet Architecture used for Automatic Feature
Learning to Detect Shadows.

inversely proportional to the fan-in measure of neurons.
The number of epochs during the training of ConvNets
is set by an early stopping criterion based on a small
validation set. The initial learning rate is heuristically
chosen by selecting the largest rate which resulted in
the convergence of the training error. This rate is decre-
mented by a factor of υ = 0.5 after every 20 epochs.

The ConvNet trained on boundary patches learn
to separate shadow and reflectance edges while the
ConvNet trained on regions can differentiate between
shadow and non-shadow patches. For the case of the
regions, the posteriors predicted by ConvNet are as-
signed to each super pixel in an image. However, for
the boundaries, we first localize the probable shadow
location using the local contrast and then average the
predicted probabilities over each contour generated by
the Ultra-metric Contour Maps (UCM) [40].

3.2 Contrast Sensitive Pairwise Potential

The pairwise potential in Eq. 2 is defined as a combina-
tion of the class transition potential φp1 and the spatial
transition potential φp2 :

ψij(yij ,x;wij) = wijφp1(yi, yj)φp2(x). (5)

The class transition potential takes the form of an Ising
prior:

φp1(yi, yj) = α1yi 6=yj =

{
0 if yi = yj
α otherwise (6)
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Fig. 4: The Proposed Shadow Removal Framework: After the detection of the shadows in the image, we estimate the umbra,
penumbra and object-shadow boundary. Given this information, a multi-level color transfer is applied to obtain a crude estimate
of shadow-less image. This rough estimate is further improved using the proposed Bayesian formulation which estimates the
optimal shadow-less image along with the shadow model parameters.

The spatial transition potential captures the differences
in the adjacent pixel intensities:

φp2(x) = [exp(− ‖xi − xj‖2

βx〈‖xi − xj‖2〉
)] (7)

where, 〈·〉 denotes the average contrast in an image. The
parameters α and βx were derived using cross validation
on each database.

3.3 Shadow Contour Generation using CRF Model
We model the shadow contour generation in the form of
a two-class scene parsing problem where each pixel is
labeled either as a shadow or a non-shadow. This binary
classification problem takes probability estimates from
the supervised feature learning algorithm and incorpo-
rates them in a CRF model. The CRF model is defined
on a grid structured graph topology, where graph nodes
correspond to image pixels (Eq. 2). When making an
inference, the most likely labeling is found using the
Maximum a Posteriori (MAP) estimate (y∗) upon a set of
random variables y ∈ LN . This estimation turns out to
be an energy minimization problem since the partition
function Z(w) does not depend on y:

y∗ = argmax
y∈LN

P(y|x;w) = argmin
y∈LN

E(y,x;w) (8)

The CRF model proved to be an elegant source to enforce
label consistency and the local smoothness over the
pixels. However, the size of the training space (labeled
images) makes it intractable to compute the gradient
of the likelihood. Therefore the parameters of the CRF
cannot be found by simply maximizing the likelihood of
the hand labeled shadows. Hence, we use the ‘margin
rescaled algorithm’ to learn the parameters (w in Eq. 8)
of our proposed CRF model (see Fig 3 in [44] for details).
Because our proposed energies are sub-modular, we use
graph-cuts for making efficient inferences [45]. In the next
section, we describe the details of our shadow removal
and matting framework.

4 PROPOSED SHADOW REMOVAL AND MAT-
TING FRAMEWORK

Based on the detected shadows in the image, we propose
a novel automatic shadow removal approach. A block
diagram of the proposed approach is presented in Fig.
4. The first step is to identify the umbra, penumbra and

Fig. 5: Detection of Object and Shadow Boundary: We use the
gradient profile along the direction perpendicular to a bound-
ary point (four sample profiles are plotted on the anti-diagonal of
above figure) to separate the object-shadow boundary (shown
in red in lower right image).

the corresponding non-shadowed regions in an image.
We also need to identify the boundary where the actual
object and its shadow meet. This identification helps to
avoid any errors during the estimation of shadow/non-
shadow statistics (e.g., color distribution). In previous
works (such as [21, 29, 34]), this process has been carried
out manually through human interaction. We, however,
propose a simple procedure to automatically estimate
the umbra, penumbra regions and the object-shadow
boundary.

Heuristically, the object-shadow boundary is relatively
darker compared to other shadow boundaries where
differences in light intensity are significant. Therefore,
given a shadow mask, we calculate the boundary nor-
mals at each point. We cluster the boundary points
according to the direction of their normals. This results
in separate boundary segments which join to form the
boundary contour around the shadow. Then, the bound-
ary segments in the shadow contour with a minimum
relative change in intensity are classified to represent
the object-shadow boundary. If %cb denotes the mean
intensity change along the normal direction at a bound-
ary segment b of the shadow contour c, all boundary
segments s.t. %cb/%

c
max ≤ 0.5 are considered to correspond

to the segments which separate the object and its cast
shadow. This simple procedure performs reasonably well
for most of our test examples (Fig. 5). In the case where
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Fig. 6: Detection of Umbra and Penumbra Regions: With the detected shadow map (2nd image from left), we estimate the umbra
and penumbra regions (rightmost image) by analyzing the gradient profile (4th image from left) at the boundary points.
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Algorithm 4.1: ROUGHESTIMATION(S,N)

1: hS, hN ← Get histogram of color distribution
in S,N

2: gS, gN ← Fit GMM on hS, hN using EM algorithm
3: for each j ∈ [0, J ]

do



Channel wise color transfer between corresponding
Gaussians using Eqs. 9, 10.

Get probability of a pixel/super-pixel to belong to
a Gaussian component using Eq. 11.

Calculate overall transfer for each color channel
using Eq. 12.

4: Combine multiple transfers:
C∗(x, y) = 1

J+1

∑
j C

j(x, y)
5: Calculate probability of a pixel to be shadow
or non-shadow:

pS(x, y) =
∑K
k=1 ω

k
S

|DkN(x,y)|
|Dk

S
(x,y)|+|Dk

N
(x,y)|

6: Modify color transfer using Eq. 13
7: Improve result from above step using Eq. 14
return (Î(x, y))

the object shadow boundary is not visible, no boundary
portion is classified as an object shadow boundary and
the shadow-less statistics are taken from all around
the shadow region. In most cases, this does not affect
the removal performance as long as the object-shadow
boundary is not very large compared to the total shadow
boundary.

To estimate the umbra and penumbra regions, the
boundary is estimated at each point of the shadow
contour by fitting a curve and finding the corresponding
normal direction. This procedure is adopted to extract
accurate boundary estimates instead of local normals
which can result in erroneous outputs at times. We
propagate the boundaries along the estimated normal
directions until the intensity change becomes insignifi-
cant (Fig. 6). This results in an approximation of the
penumbra region. We then exclude this region from the
shadow mask and the remaining region is considered
as the umbra region. The region immediately adjacent
to the shadow region, with twice the width of the
penumbra region is treated as the non-shadow region.
Note that our approach is based on the assumption that
the texture remains approximately the same across the
shadow boundary.

4.1 Rough Estimation of Shadow-less Image by
Color-transfer
The rough shadow-less image estimation process is
based on the one adopted by the color transfer tech-
niques in [32] and [34]. As opposed to [32, 34], we
perform a multilevel color transfer and our method does
not require any user input. The color statistics of the
shadowed as well as the non-shadowed regions are mod-
eled using a Gaussian mixture model (GMM). For this
purpose, a continuous probability distribution function
is estimated from the histograms of both regions using
the Expectation-Maximization (EM) algorithm. The EM
algorithm is initialized using an unsupervised clustering
algorithm (k-means in our implementation) and the EM
iterations are carried out until convergence. We treat
each of the R, G and B channels separately and fit
mixture models to each of the respective histograms. It is
considered that the estimated Gaussians, in the shadow
and non-shadow regions, correspond to each other when
arranged according to their means. Therefore, the color
transfer is computed among the corresponding Gaus-
sians using the following pair of equations:

DkS (x, y) =
I(x, y)− µkS

σkS
(9)

Ck(x, y) = µkN + σkNDS(x, y) (10)

where D(·) measures the normalized deviation for each
pixel, S and N denote the shadow and non-shadow
regions respectively. The index k is in range [1,K], where
K denotes the total number of Gaussians used to approx-
imate the histogram of S. The probability that a pixel
(with coordinates x, y) belongs to a certain Gaussian
component can be represented in terms of its normalized
deviation:

pkG(x, y) =

(
|DkS (x, y)|

K∑
k=1

1

|DkS (x, y)|
+ ε

)−1

(11)

The overall transfer is calculated by taking the weighted
sum of transfers for all Gaussian components:

Cj=0(x, y) =

K∑
k=1

pkG(x, y)Ck(x, y). (12)

The color transfer performed at each pixel location
(i.e. at level j = 0) using Eq. 12 is local, and it thus,
does not accurately restore the image contrast in the
shadowed regions. Moreover, this local color transfer is
prone to noise and discontinuities in illumination. We

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2015.2462355

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2015 7

therefore resort to a hierarchical strategy which restores
color at multiple levels and combines all transfers which
results in a better estimation of the shadow-less image.
A graph based segmentation procedure [46] is used to
group the pixels. This clustering is performed at J levels,
which we set to 4 in the current work based on the
performance on a small validation set, where we noted
an over-smoothing and a low computational efficiency
when J ≥ 5. Since, the segment size is kept quite small,
it is highly unlikely that the differently colored pixels
will be grouped together. At each level j ∈ [1, J ], the
mean of each cluster is used in the color transfer process
(using Eqs. 9, 10) and the resulting estimate (Eq. 12) is
distributed to all pixels in the cluster. This gives multiple
color transfers Cj(x, y) at J different resolutions plus the
local color transfer i.e. Cj=0(x, y). At each level, a pixel or
a super-pixel is treated as a discrete unit during the color
transfer process. The resulting transfers are integrated to
produce the final outcome: C∗(x, y) = 1

J+1

∑J
j=0 Cj(x, y).

This process helps in reducing the noise. It also restores
a better texture and improves the quality of the restored
image. It should be noted that our hierarchical strategy
helps in successfully retaining the self shading patterns
in the recovered image compared to previous works (Sec.
5.3).

To avoid possible errors due to the small non-shadow
regions that may be present in the selected shadow
region S, we calculate the probability of a pixel to be
shadowed using: pS(x, y) =

∑K
k=1 ω

k
Sp
k
S(x, y), where ωkS

is the weight of Gaussians (learned by the EM algorithm)
and pkS(x, y) = |DkN|/(|DkS |+ |DkN|). The color transfer is
modified as:

C′(x, y) = (1− pS(x, y))IS(x, y) + pS(x, y)C∗(x, y) (13)

However, the penumbra region pixels will not get accu-
rate intensity values. To correct this anomaly, we define
a relation which measures the probability (in a naive
sense) of a pixel to belong to the penumbra region.
Since the penumbra region occurs around the shadow
boundary, we define it as: bS(x, y) = d(x, y)/dmax. The
penumbra region is recovered using the exemplar based
inpainting approach of Criminisi et al. [47]. The resulting
improved approximation of the shadow-less image is,

Î(x, y) = (1− bS(x, y))E(x, y) + bS(x, y)C′(x, y) (14)

where, E is the inpainted image.
In our approach, the crude estimate of a shadow-

less image (Eq. 14) is further improved using Bayesian
estimation (Sec. 4.3). But first we need to introduce
the proposed shadow generation model used in our
Bayesian formulation (Sec. 4.2).

4.2 Generalised Shadow Generation Model
Unlike previous works (such as [13, 21, 27, 34, 35]),
which do not differentiate between the umbra and the
penumbra regions during the shadow formation process,
we propose a model which treats both types of shadow

(a)

(b)

Original Image 
with a 

Selected Patch

Shadow 
Patch

Crude Estimate of 
Shadow-less Patch 
using Wu et al. [34]

Crude Estimate of 
Shadow-less Patch with 

Local Color Transfer 
(Sec. 4.1, Eq. 12)

Crude Estimate of 
Shadow-less Patch with 

Multi-level Color Transfer 
(Sec. 4.1, Eq. 14)

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

Fig. 7: Multi-level Color Transfer: (from left to right) (i) Two
example images (a and b), with selected shadow regions. (ii)
The recovered shadow-less patch using the technique of Wu
et al. [33]. To highlight the difference with the original patch,
we also show the difference image in color. (iii) The result
of the local color transfer and its difference with the original
patch. (iv) The result of the multi-level color transfer. Note that
the multi-level transfer removes noise and preserves the local
texture.

regions separately. It is important to make such distinc-
tion because the umbra and penumbra regions exhibit
distinct illumination characteristics and have a different
influence from the direct and indirect light (Fig. 6).

Let us suppose that we have a scene with illuminated
and shadowed regions. A normal illuminated image can
be represented in terms of two intrinsic images according
to the image formation model of Barrow et al. [48]:

I(x, y) = L(x, y)R(x, y) (15)

where L and R are the illumination and reflectance
respectively and x, y denote the pixel coordinates. The
illumination intrinsic image takes into account the il-
lumination differences such as shadows and shading.
We assume that a single source of light is casting the
shadows. The ambient light is assumed to be uniformly
distributed in the environment due to the indirect illu-
mination caused by reflections. Therefore,

I(x, y) = (Ld(x, y) + Li(x, y))R(x, y) (16)

A cast shadow is formed when the direct illumination
is blocked by some obstructing object resulting in an oc-
clusion. A cast shadow can be described as the combina-
tion of two regions created by two distinct phenomena,
umbra (U) and penumbra (P). Umbra is surrounded by
the penumbra region where the light intensity changes
sharply from dark to illuminated. The occlusion which
casts the shadow block all of the direct illumination and
parts of the indirect illumination to create the umbra
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Fig. 8: Shadow Removal Steps: (from left to right) (i) An original image with shadow. (ii) An initial estimate of the shadow-less
image using a multi-level color transfer strategy. (iii) Improved estimate along the boundaries using in-painting. (iv, v and vi)
The Bayesian formulation is optimized to solve for α (iv) and β matte (vi) and the final shadow-less image (v).

region. We can represent this as;

Iu(x, y) = β′(x, y)Li(x, y)R(x, y) ∀x, y ∈ U (17)

∵ Ld(x, y) ≈ 0 ∀x, y ∈ U

where, β′(x, y) is the scaling factor for the U region.
Using Eq. 16 and 17, we have;

I(x, y) =
Iu(x, y)

β′(x, y)
+ α(x, y) (18)

Iu = I(x, y)β′(x, y)− α(x, y)β′(x, y) (19)

where, α(x, y) = Ld(x, y)R(x, y).
For the case of the penumbra region, all direct light is

not blocked, rather its intensity decreases from a fully lit
region towards the umbra region. Since the major source
of change is the direct light, we can neglect the variation
caused by the indirect illumination in the penumbra
region. Therefore,

Ip(x, y) = (β′′(x, y)Ld(x, y) + Li(x, y))R(x, y) (20)

∵ ∆Li(x, y) ≈ 0 ∀x, y ∈ P

where, β′′(x, y) is the scaling factor for the P region.
Using Eq. 16 and 20, we have:

Ip(x, y) = I(x, y)− α(x, y)(1− β′′(x, y)). (21)

4.3 Bayesian Shadow Removal and Matting

Having formulated the shadow generation model, we
can now describe the estimation procedure of the model
parameters in probabilistic terms. We represent our prob-
lem in a well-defined Bayesian formulation and estimate
the required parameters using maximum a posteriori
estimate (MAP):

{α∗, β∗} = argmax
α,β

P(α, β |U,P,N) (22)

= argmax
α,β

P(U,P,N|α, β)P(α)P(β)

P(U,P,N)
(23)

= argmax
α,β

P`(U,P,N|α, β) + P`(α) + P`(β)− P`(U,P,N)

(24)
where, P` = logP(·) is the log likelihood and U,P and N

represent the umbra, penumbra and non-shadow regions
respectively. The last term in the above equation can be

neglected during optimization because it is independent
of the model parameters. Therefore:

= argmax
α,β

P`(U,P,N|α, β) + P`(α) + P`(β) (25)

Let Is(x, y) ∀x, y ∈ {U ∪ P} represent the complete
shadow region. Then, the first term in Eq. 25 can be
written as a function of Is since the parameters α and β
do not affect the region N, therefore:

= argmax
α,β

P`(Is|α, β) + P`(α) + P`(β) (26)

The first term in Eq. 26 can be modeled by the differ-
ence between the current pixel values and the estimated
pixel values, as follows:

P`(Is|α, β) = −
∑
{x,y}∈S

|Is(x, y)− Îs(x, y)|2

2σ2
Is

−
∑
{x,y}∈S

π(x, y)η(x, y)|I(x, y)− Î(x, y)|2

2σ2
I

(27)

where, η(x, y) = 1− λ(x,y)
λmax

and π is an indicator function
which switches on for the penumbra region pixels. λ(·)
is the distance metric which quantifies the shortest dis-
tance between a valid shadow boundary (i.e., excluding
the object-shadow boundary). The estimated shadowed
image (Îs) can be decomposed as follows using Eqs. 19
and 21.

Îs(x, y) =

{
(Î(x, y)− α(x, y))β′(x, y) ∀{x, y} ∈ U ⊂ S

Î(x, y)− α(x, y)(1− β′′(x, y)) ∀{x, y} ∈ P ⊂ S

It can be noted that P`(Is|α, β) models the error caused
by the estimated parameters and encourages the recov-
ered pixel values (Îs(x, y)) to lie close to (Is(x, y)) with
variance σ2

I following a Gaussian distribution. However,
in the above formulation, there are nine unknowns for
each pixel located inside the shadowed region. If we had
a smaller scale problem (e.g., finding the precise shadow
matte in the penumbra region by Chuang et al. [36]),
we could have directly solved for the unknowns. But in
our case, the large number of variables makes the like-
lihood calculation rather difficult and time consuming,
especially when the number of shadowed pixels is large.
We therefore resort to optimize the crude shadow-less
image (Î(x, y)) calculated in Sec. 4.1, Eq. 14.

The prior P`(β) can be modeled as a Gaussian prob-
ability distribution centered at the mean (β̄) of the
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neighboring pixels. This helps in estimating a smoothly
varying beta mask. So,

P`(β) = −
∑
{x,y}

|β(x, y)− β̄(x′, y′)|2

2σ2
β

, (x′, y′) ∈ N (x, y) (28)

The prior P`(α) can also be modeled in a similar
fashion. However, we require α to model the variations
in the penumbra region as well. Therefore, an additional
term (called the ‘image consistency term’) is introduced
in the prior P`(α) to smooth the estimated shadow-less
image along the boundaries and to incorporate feedback
from the previously estimated crude shadowless image.
Therefore,

P`(α) = −
∑
{x,y}

|α(x, y)− ᾱ(x′, y′)|2

2σ2
α

− 1

2σ2
I∑

{x,y}∈S

(1− λ(x, y)

λmax
)|I(x, y)− Î(x, y)|2, (x′, y′) ∈ N (x, y)

(29)

In the image consistency term (second term in Eq. 29),
I(x, y) will take different values according to Eqs. 19 and
21:

I(x, y) =

{
Iu/β′(x, y) + α(x, y) ∀{x, y} ∈ U

Ip(x, y) + α(x, y)(1− β′′(x, y)) ∀{x, y} ∈ P

4.4 Parameter Estimation

In spite of the crude shadow image estimation, it can be
seen from Eq. 27 that the objective function is not linear
or quadratic in term of the unknowns. To apply the gra-
dient based energy optimization procedure, we simplify
our problem by breaking it into two sub-optimization
problems and apply an iterative joint optimization as
follows:
For the umbra region,

β′(x, y) =
γ2
β β̄(x′, y′)− γ2

I [α(x, y)Is(x, y)− Î(x, y)Is(x, y)]

γ2
β − γ2

I [2 Î(x, y)α(x, y)− α2(x, y)− Î2(x, y)]
(30)

For the penumbra:

β′′(x, y) =
αγ2
Is [∆(x, y) + α] + γ2

β β̄
′′ + αγ2

Iη(x, y)[∆(x, y) + α]

α2γ2
Is + γ2

β + α2γ2
Iη(x, y)

(31)
where, γ = σ−1. To optimize α, the parameter β is held
constant and the first order partial derivative is taken
with respect to α and is set to zero. We get the following
set of equations:
For the umbra region:

α(x, y) =
γ2
αᾱ(x′, y′)− γ2

I [β′(x, y)Is(x, y)− Î(x, y)β′2(x, y)]

γ2
α + γ2

Iβ
′2(x, y)

(32)
For the penumbra:

α(x, y) =
−γ2
Is(1− β

′′)∆(x, y) + γ2
αᾱ− γ2

I(1− β′′)η(x, y)∆(x, y)

γ2
Is(1− β′′)2 + γ2

α + γ2
I(1− β′′)2η(x, y)

(33)

�

�

�




Algorithm 4.2: BAYESIANREMOVAL(U,P,N, Î)

β ← 1, α← 0, ε0 ← 10−3

while δ > ε0

do



for each {x, y} ∈ S

do



if {x, y} ∈ U

then
{

Approximate β∗ using Eq. 30
Approximate α∗ using Eq. 32

else if {x, y} ∈ P

then
{

Approximate β∗ using Eq. 31
Approximate α∗ using Eq. 33

δ ← α∗ − α+ β∗ − β
return (α, β)

where, ∆(x, y) = Is(x, y)−Î(x, y). We iteratively perform
this procedure on each pixel in the shadow region until
convergence.

4.5 Boundary Enhancement in a Shadow-less Image

The resulting shadow-less image exhibits traces of
shadow boundaries in some cases. To remove these
artifacts, we divide the shadow boundary into a group
of segments, where each segment contains nearly similar
colored pixels. The boundary segments which belong to
the object shadow boundary are excluded from further
processing. For each non-object shadow boundary seg-
ment, we perform Poisson smoothing [49] to conceal the
shadow boundary artifacts.

5 EXPERIMENTS AND ANALYSIS

We evaluated our technique on three widely used and
publicly available datasets. For the qualitative compari-
son of shadow removal, we also evaluate our technique
on a set of commonly used images in the literature.

5.1 Datasets

UCF Shadow Dataset is a collection of 355 images
together with their manually labeled ground truths. Zhu
et al. have used a subset of 255/355 images for shadow
detection [10].
CMU Shadow Dataset consists of 135 consumer grade
images with labels for only those shadow edges which
lie on the ground plane [11]. Since our algorithm is not
restricted to ground shadows, we tested our approach on
the more challenging criterion of full shadow detection
which required the generation of new ground truths.
UIUC Shadow Dataset contains 108 images each of
which is paired with its corresponding shadow-free im-
age to generate a ground truth shadow mask [13].
Test/Train Split: For UCF and UIUC databases, we used
the split mentioned in [10, 13]. Since CMU database [11]
did not report the split, we therefore used even/odd
images for training/testing (following the procedure in
Jiang et al. [12]).
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Methods UCF Dataset CMU Dataset UIUC Dataset
BDT-BCRF (Zhu et al. [10]) 88.70% − −
BDT-CRF-Scene Layout (Lalonde et al. [11]) − 84.80% −
Unary SVM-Pairwise (Guo et al. [13]) 90.20% − 89.10%

T
his

paper

{ Bright Channel-MRF (Panagopoulos et al. [15]) 85.90% − −
Illumination Maps-BDT-CRF (Jiang et al. [12]) 83.50% 84.98% −
ConvNet(Boundary+Region) 89.31% 87.02% 92.31%
ConvNet(Boundary+Region)-CRF 90.65% 88.79% 93.16%

TABLE 1: Evaluation of the proposed shadow detection scheme; All performances are reported in terms of pixel-wise accuracies.

5.2 Evaluation of Shadow Detection

5.2.1 Results

We assessed our approach both quantitatively and qual-
itatively on all the major datasets for single image
shadow detection. We demonstrate the success of our
shadow detection framework on different types of scenes
including beaches, forests, street views, aerial images,
road scenes and buildings. The databases also contain
shadows under a variety of illumination conditions such
as sunny, cloudy and dark environments. For quan-
titative evaluation, we report the performance of our
framework when only the unary term (Eq. 3) was used
for shadow detection. Further, we also report the per-
pixel accuracy achieved using the CRF model on all
the datasets. This means that labels are predicted for
every pixel in each test image and are compared with
the ground-truth shadow masks. For the UCF and CMU
datasets, the initial learning rate of η0 = 0.1 was used,
for the UIUC dataset we set η0 = 0.01 based on the
performance on a small validation set. After every 20
epochs the learning rate was decreased by a small factor
β = 0.5 which resulted in a best performance.

Table 1 summarizes the overall results of our frame-
work and shows a comparison with several state-of-
the-art methods in shadow detection. It must be noted
that the accuracy of Jiang’s method [12] (on the CMU
database) is given by the Equal Error Rate (EER). All
other accuracies represent the highest detection rate
achieved, which may not necessarily be an EER. Using
the ConvNets and the CRF, we were able to get the best
performance on the UCF, CMU and UIUC databases
with a respective increase of 0.50%, 4.48% and 4.55%
compared to the previous best results3. For the case
of the UCF dataset, a gain of 0.5% accuracy may look
modest. But it should be noted that the previous best
methods of Zhu et al. [10] and Guo et al. [13] were only
evaluated on a subset (255/355 images). In contrast, we
report results on the complete dataset because the exact
subset used in [10, 13] is not known. Compared to Jiang
et al. [12], which is evaluated on the complete dataset, we
achieved a relative accuracy gain of 8.56%. On five sets
of 255 randomly selected images from the UCF dataset,
our method resulted in an accuracy of 91.4±4.2% which
is a relative gain of 1.3% over Guo et al. [13].

Table 2 shows the comparison of class-wise accura-
cies. The true positives (correctly classified shadows)

3. Relative increase in performance is calculated by: 100×(our accu-
racy − previous best)/previous best.

Methods/Datasets Shadows Non-Shadows
UCF Dataset
− BDT-BCRF (Zhu et al. [10]) 63.9% 93.4%
− Unary-Pairwise (Guo et al. [13]) 73.3% 93.7%
− Bright Channel-MRF 68.3% 89.4%

(Panagopoulos et al. [15])
− ConvNet(Boundary+Region) 72.5% 92.1%
− ConvNet(Boundary+Region)-CRF 78.0% 92.6%
CMU Dataset
− BDT-CRF-Scene Layout 73.1% 96.4%

(Lalonde et al. [11])
− ConvNet(Boundary+Region) 81.5% 90.5%
− ConvNet(Boundary+Region)-CRF 83.3% 90.9%
UIUC Dataset
− Unary-Pairwise (Guo et al. [13]) 71.6% 95.2%
− ConvNet(Boundary+Region) 83.6% 94.7%
− ConvNet(Boundary+Region)-CRF 84.7% 95.5%

TABLE 2: Class-wise accuracies of our proposed framework in
comparison with the state-of-the-art techniques. Our approach
gives the highest accuracy for the class ‘shadows’.

are reported as the number of predicted shadow pixels
which match with the ground-truth shadow mask. True
negative (correctly classified non-shadows) are reported
as the number of predicted non-shadow pixels which
match with the ground-truth non-shadow mask. It is
interesting to see that our framework has the highest
shadow detection performance on the UCF, CMU and
UIUC datasets. For the case of CMU dataset, our ap-
proach got a relatively lower non-shadow region detec-
tion accuracy of 90.9% compared to 96.4% of Lalonde et
al. [11]. This is due to the reason that [11] only consider
ground shadows and thus ignore many false negatives.
In contrast, our method is evaluated on more challenging
case of general shadow detection i.e. all types of shad-
ows. The ROC curve comparisons are shown in Fig. 10.
The plotted ROC curves represent the performance of
the unary detector since we cannot generate ROC curves
from the outcome of the CRF model. Our approach
achieves the highest AUC measures for all datasets (Fig.
10).

Some representative qualitative results are shown in
Fig. 9 and Fig. 11. The proposed framework successfully
detects shadows in dark environments (Fig. 9: 1st row,
middle image) and distinguishes between dark non-
shadow regions and shadow regions (Fig. 9: 2nd row,
2nd and 5th image from left). It performs equally well on
satellite images (Fig. 9: last column) and outdoor scenes
with street views (Fig. 9: 1st row, 3rd and 5th images; 2nd

row, middle image), buildings (Fig. 9: 1st column) and
shadows of animals and humans (Fig. 9: 2nd column).
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Fig. 9: Examples of our results; Images (1st, 3rd row) and shadow masks (2nd, 4th row); Shadows are in white.

(a) UCF Shadow Dataset (b) CMU Shadow Dataset (c) UIUC Shadow Dataset

Fig. 10: ROC curve comparisons of proposed framework with previous works.

Tested on Trained on
UCF CMU UIUC

UCF − 80.3% 80.5%
CMU 77.7% − 76.8%
UIUC 82.8% 81.5% −

TABLE 3: Results when ConvNets
were trained and tested across dif-
ferent datasets.

5.2.2 Discussion
The previously proposed methods (e.g., Zhu et al. [10],
Lalonde et al. [11]) that use a large number of hand-
crafted features, not only require a lot of effort in their
design but also require long training times when ensem-
ble learning methods are used for feature selection. As
an example, Zhu et al. [10] extracted different shadow
variant and invariant features alongside an additional
40 classification results from the Boosted Decision Tree
(BDT) for each pixel as their features. Their approach re-
quired a huge amount of memory (∼9GB for 125 training
images of average size of approximately 480×320). Even
after parallelization and training on multiple processors,
they reported 10 hours of training with 125 images.
Lalonde et al. [11] used 48 dimensional feature vectors
extracted at each pixel and fed these to a boosted deci-
sion tree in a similar manner as Zhu et al. [10]. Jiang et al.
included illumination features on top of the features that
are used by Lalonde et al. [11]. Although, enriching the
feature set in this manner improves the performance, it
not only takes much more effort to design such features
but it also slows down the detection procedure. In con-
trast, our feature learning procedure is fully automatic
and requires only ∼1GB memory and approximately one
hour training for each of the UCF, CMU and UIUC
databases. The proposed approach is also efficient at
test time because the ConvNet feature extraction and
unary potential computation take an average of 1.3±0.35
sec per image on the UCF, CMU and UIUC databases.

Fig. 11: Examples of Ambiguous Cases: (From left to right) Our
framework misclassified a dark non-shadow region, texture-
less black window glass, very thin shadow region and trees
due to complex self shading patterns. (Best viewed in color)

The graph-cut inference step used for the CRF energy
minimization is also fast and takes 0.21 ± 0.03 sec per
image on average. Overall, our technique takes 2.8±0.81
sec per image for shadow detection. In comparison, the
method by Guo et al. [13] takes 40.05±10 sec per image
for shadow detection.

We extensively evaluated our approach on all avail-
able databases and our proposed framework turned out
to be fairly generic and robust to variations. It achieved
the best results on all the single image shadow databases
known to us. In contrast, previous techniques were only
tested on a portion of database [11], one [10] or at
most two databases [13]. Another interesting observation
was that the proposed framework performed reasonably
well when our ConvNets were trained on one dataset
and tested on another dataset. Table 3 summarizes the
results of cross-dataset evaluation experiments. These
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Fig. 12: Qualitative Evaluation: Shadow recovery on sample images from UIUC, UCF databases and other images used in
literature. Given a original image with shadow mask (first row), our method is able to extract exact shadows (second row) and
to automatically recover the shadow-less images (third row). (Best viewed in color)

performance levels show that the feature representations
learned by the ConvNets across the different datasets
were common to a large extent. This observation further
supports our claim regarding the generalization ability
of the proposed framework.

In our experiments, objects with dark albedo turned
out to be a difficult case for shadow detection. More-
over, some ambiguities were caused by the complex self
shading patterns created by tree leaves. There were some
inconsistencies in the manually labeled ground-truths,
in which a shadow mask was sometimes missing for
an attached shadow. Narrow shadowy regions caused
by structures like poles and pipes also proved to be a
challenging case for shadow detection. Examples of the
above mentioned failure cases are shown in Fig. 11.

5.3 Evaluation of Shadow Removal

For a quantitative evaluation of our shadow removal
framework, we used all images from the UIUC Shadow
dataset which come with their corresponding shadow-
free ground truths [13]. The qualitative results of our
method are evaluated against the common evaluation
images used in the literature for a fair comparison.
To further illustrate the performance of our algorithm,
we also included qualitative results on some example
images from UIUC, UCF and CMU shadow datasets.

5.3.1 Quantitative Evaluation
Table 4 presents the per pixel root mean square error
(RMSE) for the UIUC dataset, calculated in LAB color
space [13]. The first row gives the actual error between
the same image, with and without shadow. The dif-
ference between the two versions of the same image
is calculated for both the shadow and the lit regions.
Note that the error is large for the shadowed region (as
expected), but it is not zero for the lit regions for two
reasons: the shadow masks are not perfect and there
is a little difference in the light intensity due to the
change in the ambient light for the lit regions when

Methods Shadow Lit All
Reg. Reg. Reg.

− Actual Error 42.0 4.6 13.7
1a. Removal (Wu et al. [34]) with 28.2 7.6 12.6

Automatic Shadow Detection
1b. Removal (Wu et al. [34]) using GT 21.3 5.9 9.7
2a. Removal (Guo et al. [13]) 13.9 5.4 7.4

This
paper


2b. Removal using GT (Guo et al. [13]) 11.8 4.7 6.4
3a. Removal without Bayesian Refinement 15.2 5.5 7.9
3b. Removal with Bayesian Refinement 12.1 5.1 6.8
3c. Removal using GT 10.5 4.7 6.1

TABLE 4: Quantitative Evaluation: RMSE per pixel for the
UIUC Subset of Images. (The smaller RMSE the better)

the object casting shadow is present. We achieved an
average RMSE error of 6.8 compared to 7.4 and 12.6
achieved by the methods of Guo et al. [13] and Wu et
al. [34], respectively. Following Guo et al. [13], we also
include the removal performance when the ground truth
(GT) shadow masks are used for removal. This gives a
more precise estimate of the performance of the recovery
algorithm. When we evaluated our method using GT
masks, our method achieved an error of 6.1 compared
to 6.4 and 9.7 reported by [13] and [34] respectively. We
also tested the removal results without the Bayesian opti-
mization, which resulted in an RMSE error of 7.9. This is
high compared to the results achieved after optimization.
In summary, our method achieved a reduction in error
of 8.1% (removal using the detected masks) and 4.6%
(removal using ground truths) compared to the approach
of Guo et al. in [13].

5.3.2 Qualitative Evaluation

For the qualitative evaluation, we show some example
images and their corresponding recovered images along
with the shadow masks in Fig. 12. It can be seen that our
method works well under different settings e.g., outdoor
images (first five images from the left) and indoor images
(first two images from the right). The complex texture
in the shadow regions is preserved and the arbitrary
shadow matte are precisely recovered. Note that while
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Fig. 13: Comparison with Automatic/Semi-Automatic Methods: Recovered shadow-less images are compared with the state-of-
the-art shadow removal methods which are either automatic [13, 23] or require minimal user input [21, 35]. We compare our
work with: (from left to right) Finlayson et al. [23], Shor and Lischinski [21], Xiao et al. [35] and Guo et al. [13] respectively. The
results achieved using our method (second column from right) are comparable or better than the previous best results (columns
1-5 from left). Additionally, our method works without any user input and provides shadow matte (last column) which can be
used to generate composite images. (Best viewed in color and enlarged)

our method can remove hard and smooth shadows (e.g.,
1st, 5th and 6th image from left), it also works well for the
soft and variable shadows (e.g., 2nd, 3rd and 4th image
from left). Overall, the results are visually pleasing and
the extracted shadow matte are smooth and accurate.

5.3.3 Comparisons
We provide a qualitative comparison with two dis-
tinct categories of shadow removal methods. First, we
show comparisons (see Fig. 13) with the state-of-the-
art shadow removal methods which are either fully
automatic (e.g., [13, 23]) or require minimal user input
(e.g., [21, 35]). From left to right we show the original
image along with the results from Finlayson et al. [23],
Shor and Lischinski [21], Xiao et al. [35], Guo et al.
[13] and our technique. In comparison to the previous
automatic and semi-automatic (requiring minimal user
input) methods, our approach produces cleaner recov-
ered images (second column from the right) along with
an accurate shadow matte (right most column).

Since, there are only very few automatic shadow re-
moval methods in the literature, we also compare our
approach with the most popular approaches but which
require user input (see Fig. 14). From left to right, we
show our recovered images (bottom row) along with the
results from Wu et al. [34], Liu and Gleicher [27], Arbel
and Hel-Or [29], Vicente and Samaras [50], Fredembach
and Finlayson [26] and Kwatra et al. [30]. For the ’puzzled
child’ image, it can be seen that the contrast of the recov-
ered region is much better than the one recovered by Wu
et al. [34]. The shadow-less image has no trace of strong
shadow boundaries and the recovery in the penumbra
region is smooth due to introduction of α in the model
and the exclusion of the spatial affinity term [34] or

boundary nullification [33] during the rough shadow-
less image estimation process. Similar effects can be seen
with the other images; e.g., in 3rd image from the left, the
result of Arbel and Hel-Or [29] has a high contrast while
our result is smooth and successfully retains texture.
Similarly, for the case of the 4th, 5th and 6th images from
the left, our shadow removal result is visually pleasing
and considerably better than the recent state-of-the-art
methods. Note however that the recovery result of the
2nd image from the left has an over-smoothing effect,
probably because the color distributions of differently
colored shadowed regions could not be separated during
the Gaussian fitting process. Overall, the results are
quite reasonable considering that the algorithm does not
require any user assistance and it does not make any
prior assumptions such as a Planckian light source or a
narrow-band camera.

5.3.4 Failure Cases and Limitations

Our shadow removal technique does not perform well
on curved surfaces and in the case of highly non-uniform
shadows (e.g., Fig. 15: 1st and 3rd image from left). Since,
we apply a multi-level color transfer scheme, very fine
texture details of image regions with similar appearance
can be removed during this transfer process (e.g., Fig.
15: 2nd image from left). For the cases of shadows in
dark environments, our method appears to increase the
contrast of the recovered region. These limitations are
due to the constraints imposed on the shadow genera-
tion model, where the higher order statistics are ignored
during the shadow generation process (Eqs. 19 and 21).
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Fig. 14: Comparison with Methods Requiring User Interaction: Recovered shadow-less images are compared with the state-of-
the-art shadow removal methods (which require considerable amount of user input). We compare our work with: (from left to
right in the second row) Wu et al. [34], Liu and Gleicher [27], Arbel and Hel-Or [29], Vicente and Samaras [50], Fredembach
and Finlayson [26] and Kwatra et al. [30] respectively. The results achieved by our method (last row) are comparable or better
than the previous best results (second row). Additionally, our method works without any user input and provides shadow matte
(third row) which can be used to generate composite images. (Best viewed in color and enlarged)

5.3.5 Discussion
Our method does not require any user input and it
automatically removes shadow after its detection. The
proposed shadow removal approach makes compara-
tively fewer assumptions about the scene type, the type
of light source or camera. The only assumptions are that
of Lambertian surfaces and the correspondence between
the shadow and the non-shadow region color distribu-
tions. The shadow removal method of [33, 34] cannot
separate the shadow from shading. With the inclusion of
the image consistency term in P`(Is|α, β), we are able to
deal with the shading by introducing a penalty on the
distribution of the shadow effect through the parameters
β and α. The proposed shadow removal approach takes
82.2± 25 sec for each image on the UIUC database. The
main overhead during the shadow removal process is
the Bayesian refinement step (which is required mainly
for shadow matting). It takes 73.6±20 sec out of 82.2±25
sec per image on the UIUC database. In comparison, the
method by Guo et al. [13] takes 104.7±18 sec for shadow
removal. The main overhead in their removal process is
also due to Levin et al.’s matting algorithm [51] which
takes around 91.4± 11 sec per image.

5.4 Applications

Shadow detection, removal and matting have a number
of applications. A direct application is the generation

Fig. 15: Examples of Failure Cases: Our technique does not
perfectly remove shadows on curved surfaces, highly non-
uniform shadows and shadows in dark environments. (Best
viewed in color and enlarged)

of visually appealing photographs and the removal of
unwanted shadows. Some other applications include:

Shadow Compositing: Fig. 16(a) shows examples of
shadow compositing. The extracted shadow matte can
be used to depict a realistic image compositing. For
example, the first image from the left did not originally
contain the flying bird and its shadow. If we had added
just the bird, it would have looked unrealistic. With the
addition of a texture-free shadow matte, the photograph
looks natural and realistic. In the remaining three im-
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(a) Shadow Compositing

(b) Image Editing

(c) Image Parsing

(d) Boundary Detection

Fig. 16: Different Applications of Shadow Detection, Removal
and Matting. (Best viewed in color and enlarged)

ages, we combine extracted shadows with the original
images to create fake effects.

Image Editing: Fig. 16(b) shows how a detected
shadow can be edited to create fake effects. For example,
shadow direction/length can be modified to give a fake
impression of illumination source or time of day.

Image Parsing: Fig. 16(c) shows how shadow removal
can increase the accuracy of segmentation methods (e.g.,
[52, 53]). The segmentations are computed using the
graph based technique of [46] (we used a minimum
region size of 600). It can be seen that shadows change
the appearance of a class (e.g., ground in this case) and
thus can introduce errors in the segmentation process.

Boundary Detection: We tested a recently proposed
boundary detector [54] on the original and recovered
image (Fig. 16(d)). The boundaries identified in the re-
covered image are more accurate. Since shadows do not
constitute an object class, the recovered image can help
in achieving more accurate object detection proposals
and consequently a higher recognition performance.

6 CONCLUSION

We presented a data-driven approach to learn the most
relevant features for the detection of shadows from a
single image. We demonstrated that our framework per-
forms the best on a number of databases regardless of the
shape of objects casting shadows, the environment and
the type of scene. We also proposed a shadow removal
framework which extracts the shadow matte along with
the recovered image. A Bayesian formulation constitutes
the basis of our shadow removal procedure and thereby
makes use of an improved shadow generation model.
Our shadow detection results show that a combination

of boundary and region ConvNets incorporated in the
CRF model provides the best performance. For shadow
removal, the multi-level color transfer followed by the
Bayesian refinement performs well on unconstrained
images. The proposed framework has a number of appli-
cations including image editing and enhancement tasks.
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