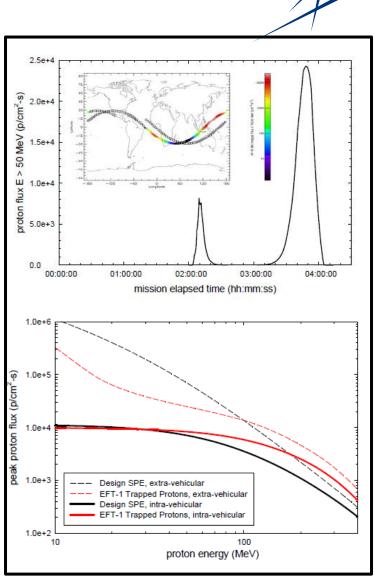
RADIATION MITIGATION TECHNOLOGIES

America's Future in Civil Space

David Murrow

Introduction

4


- Astronauts in deep space will experience greater radiation doses than in previous space missions
 - Not protected by Earth's Magnetic Field
 - Longer missions
- Current designs use vehicle shielding plus a 'storm shelter'
- Ongoing Research reduces uncertainty and offers new techniques for protection

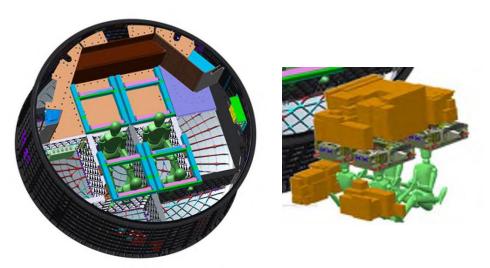
Deep Space Gateway – Built up during periodic extended stay Orion missions

Space Radiation

- Primarily high energy ions (vs. gamma or X-rays)
 - Low Z materials most effective in shielding
- Solar Particle Events (SPE) are episodic eruptions of energetic particles
 - Coronal Mass Ejections, Solar Magnetic activity
- Galactic Cosmic Radiation (GCR) is a continuous background
 - Higher energy than SPE
 - Varies inversely with Solar cycle
- Ongoing Research
 - Biological Responses: Central Nervous System, Cardiology, Lifetime Cancer risk
 - Environment: Timing of SPE's
 - Transport Modelling: Continuously improving flight validated models

Orion EFT-1 Flight Results

Reducing Radiation Exposure

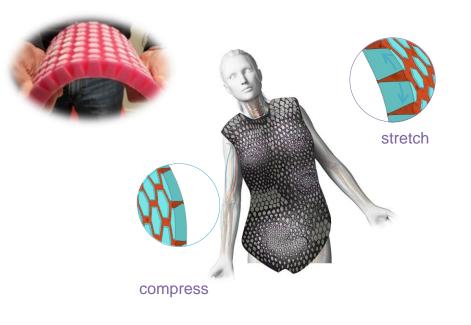


- Design and build into vehicles
- Nearly Eliminate Acute Effects
 - Early Warning, Operational Measures (e.g. EVA return-to-vehicle)
- Reduce uncertainty in biological and physics models
 - Tighten confidence intervals
 - Improve space weather understanding
- Reduce parasitic shielding mass
 - Use consumables, water or recycled plastics
- Ergonomic Personal Protection Equipment
- Crew Characteristics
- Apply ALARA

4

Radiation Protection

- Spacecraft structure shielding
- Internal Equipment shielding
- Hardened Electronics protected by shielding plus software
- Storm Shelter Reconfiguration
 - Water, food, equipment moved to optimize shielding
- Future Spacecraft Design
 - Configure for crew protection
 - Use recycled materials
 - Crew quarters surrounded by H20

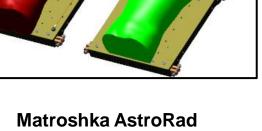


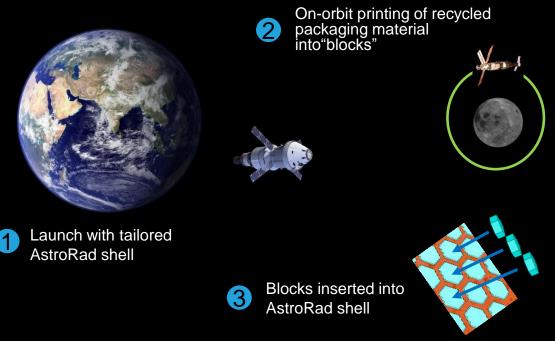
Orion Crew Cabin Reconfigured for Storm Shelter Protection

Historical Radiation Shielding for U.S. Human Spacecraft		
Spacecraft	Approximate Shielding	Notes
Apollo	3-5.5 g/cm ² Al	Limited duration habitability
Skylab	1.5-2 g/cm ² Al	Interior "vault" included for contingency storm shelter
ISS US Lab, Destiny	10-15 g/cm ² Al	Increased effective shielding due to interior equipment
Orion	15 g/cm² Al	Zero mass storm shelter obtained by reconfguration

Personal Protective Equipment

- Selective Shielding Based on Tissue Radiation Sensitivity
- Differentially protect Stem Cells
- The AstroRad developed by StemRad Ltd / LM team
 - Complements storm shelter during SPE
 - Contoured for preferential organ, stem cell shielding
 - Designed for comfort




Future Applications

- Orion EM-1 International Experiment (MARE)
 - Cis Lunar and Radiation Belt passage
 - Dosimetry inside DLR 'Matroshkas' with and without ISA Vest
- Cis-lunar and Mars Missions
 - Include recycled material to minimize parasitic mass

Matroshka AstroRad Radiation Experiment

Summary

- Orion and future vehicles are designed for radiation protection
- Research is reducing uncertainty in biological responses and Space Weather forecasting
- Ongoing work will further reduce crew risk