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This article presents the text-independent speaker detection and track-
ing systems developed by the members of the ELISA Consortium for the
NIST’99 speaker recognition evaluation campaign. ELISA is a consortium
grouping researchers of several laboratories sharing software modules, re-
sources and experimental protocols. Each system is briefly described, and
comparative results on the NIST’99 evaluation tasks are discussed. (©2000
Academic Press
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1. INTRODUCTION

The ELISA Consortium was founded in 1997 by a group of European lab-
oratories, namely ENST (Ecole Nationale Supérieure des Télécommunications,
Paris - France), EPFL (Ecole Polytechnique Fédérale de Lausanne - Switzer-
land), IDIAP (Institut Dalle Molle d’Intelligence Artificielle Perceptive, Mar-
tigny - Switzerland), IRISA (Institut de Recherche en Informatique et Systémes

1The contributors to the ELISA Consortium, since its creation in 1997, have been (in al-
phabetical order) : Frédéric BIMBOT, Raphaél BLOUET, Jean-Frangois BONASTRE, Gilles
CALOZ, Jan CERNOCKY, Gérard CHOLLET, Geoffrey DUROU, Corinne FREDOUILLE,
Dominique GENOUD, Guillaume GRAVIER, Jean HENNEBERT, Jamal KHARROUBI,
Ivan MAGRIN-CHAGNOLLEAU, Téva MERLIN, Chafic MOKBEL, Bojan NEDIC, Dijana
PETROVSKA-DELACRETAZ, Stéphane PIGEON, Mouhamadou SECK, Patrick VERLINDE,
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Aléatoires, Rennes - France) and LIA (Laboratoire d’Informatique d’Avignon -
France), with the goal to build a common speaker recognition platform and par-
ticipate to the NIST campaigns. The first participation took place in 1998. More
recently, VUT (Vysoché Ucgeni Technické, Brno - Czech Republic), RMA (Royal
Military Academy, Brussels - Belgium), RICE University (Houston - USA) and
FPMS (Faculté Polytechnique de Mons - Belgium) joined the Consortium and
took part to the NIST’99 campaign.

The aim of the Consortium is to facilitate scientific communication and ex-
change in the field of text-independent speaker recognition and to share some
of the development effort needed to participate, on a regular basis, in the NIST
evaluation campaigns. A baseline modular software platform is maintained and
regularly updated in a concerted manner within the Consortium, which tends to
minimize useless duplication of software development. Nevertheless, the ELISA
approach preserves individuality, as the partners are encouraged to submit to the
NIST campaigns all kinds of variants of the ELISA baseline system, as primary
or secondary systems, in order to evaluate the impact of a particular module of
their own. ELISA also shares experimental protocols, which helps the partners
to compare their approaches in between NIST campaigns.

Sections 2 and 3 of this article, describe briefly the speaker detection and track-
ing systems developed by different partners within the ELISA Consortium for the
NIST’99 campaign [12]. The results obtained at the official evaluation are then
analyzed in section 4. The systems are not described in full details since most
of them are presented in articles specific to each site, published in this volume,
which will be refered to whenever necessary [4, 6, 10, 14, 15, 20]. This article
therefore concentrates on the contrastive comparison of the performances.

2. ONE-SPEAKER DETECTION

All ELISA one-speaker detection systems are based on a probabilistic frame-
work using Gaussian Mixture Models (GMM) for speaker and non-speaker mod-
eling, directly inspired from the state-of-the-art [17, 18, 19].

The ELISA systems can then be divided into two main categories (global vs
segmental) : the global frame-based systems which model the distribution of the
acoustic observations as a whole and the segmental systems which first proceed
to some segmentation and pre-classification of the speech frames and then use
specific distribution models for each class.

2.1. Global frame-based systems

Most of the ELISA’99 systems (ENST, IDIAP, IRISA, RIMO?, and VERE?)
use the GMM approach at the frame level. The differences between all these
systems lie in :

- the type of acoustic analysis,

- the GMM estimation algorithm,

- the background modeling,

- the score normalization technique.
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The IRISA system is based on Maximum A Posteriori (MAP) estimation, ap-
plied to a 256 component GMM [5] with diagonal covariance matrices, and a
gender-dependent background model. Log-likelihood ratios are computed for each
frame, z-normalized [7] at the frame level [20], and averaged over all frames to
give a final score.

The IDIAP, ENST and VERE systems are based on Maximum Likelihood
(ML) trained GMM speaker models, with diagonal covariance matrices. The
IDIAP system uses a 256 component model along with a handset-dependent
background model together with a h-normalization (i.e. a handset-dependent
z-normalization) [18], while the ENST system is based on a 128 component
GMM, a gender- and handset-dependent background model together with h-
normalization [6]. The VERE system is a multi-stream GMM with a 64 com-
ponent GMM for the cepstral coefficient, a second 64 component GMM for the
delta cepstral coefficients and a 16 component GMM for the delta energy. A
gender-dependent background model is used and the z-normalization is applied
to the likelihood ratio. Since the test segment length is not a priori known, VERE
uses a first order polynomial approximation to compute the mean and standard
deviation of the log likelihood ratio of the impostor scores from 3, 10 and 30 sec.
test segments [14].

The RIMO system is also a 128 component GMM with diagonal covariance
matrices, and uses a gender- and handset-independent background model. As
mentioned above, the specificity of this system relies on an acoustic analysis which
consists of time-frequency principal components computed from the output of a
24 channel Mel-frequency filter bank [9, 10]. All other ELISA systems use the
classical cepstral front-end analysis with long-term mean subtraction (estimated
over the whole utterance) and their first order derivatives.

A contrastive table (Table 1) summarizes the main differences between all the
ELISA one-speaker systems

TABLE 1
Summary of the ELISA one-speaker systems

system  category acoustic speaker background norma-
features model ¢ model lization
ENST global 16 LPCC+A+JE 128 — ML gender+handset  h-norm
IDIAP global 16 LPCC+A+4E 256 — ML handset h-norm
IRISA global 16 MFCC+A 128 - MAP gender Z-norm
LIA segmental 16 MFCC 16° — ML gender+handset ~ MAP
RIMO global TFPC 128 - ML - -
VERE global 16 LPCC+A+dE  2x64+16° — ML gender z-norm

% number of components — training method

b with full covariance matrices
¢ number of components are given for each streams.



For all the systems, the operating thresholds are tuned experimentally on a
development set composed of a subset of the NIST’98 evaluation data, which
is a distinct speaker population from the NIST’99 evaluation data. A speaker-
independent threshold is estimated in order to optimize the NIST’99 Decision
Cost Function (see section 4.1) on the development data, and then this threshold
is used for the evaluation.

2.2. Segmental systems

The LIA system (called AMIRAL) is based on partial scores calculated from
speech segments rather than based on the global distribution of the acoustic
frames. Fixed-length segments of 0.3 seconds are considered and the frame dis-
tribution for a segment is modeled by a 16 component GMM with full covariance
matrices. The score for each segment consists of a handset and gender dependent
likelihood ratio normalized using a MAP scheme that approximates the posterior
probability of a speaker given the segment score [3]. The normalization function
is learned on a subset of the NIST’98 evaluation data and does not require the
computation of any impostor score distribution using the NIST’99 data. The
segment scores are then averaged to give a final score on which the accept/reject
decision is made, by comparison to a threshold.

The primary LIA system is a full-band system but multi-band variants of this
system using dynamic information [2] rather than delta cepstral coefficients were
also proposed. Results for these alternative systems are not reported here but
can be found in [4].

As can be seen in Table 1, the LIA system is the only segmental system, within
the ELISA Consortium, which actually took part to the NIST’99 evaluation.
However, EPFL and VERE have also been working on segmental verification
systems based on Automatic Language Independent Speech Processing (ALISP)
techniques [1, 13]. The speech segmentation is obtained using Temporal Decom-
position (TD) followed by a quantization into 8 classes of the TD spectral targets.
GMM'’s are used for segmental speaker modeling. The client score for a frame
is calculated as a weighted sum of the class-dependent GMM scores, the weights
accounting for the probability that the frame belongs to a given class. This
approach was evaluated on a subset of the NIST’98 data and was judged disap-
pointing [21, 14] as compared to the segmental approaches based on Multi-Layer
Perceptron (MLP) speaker modeling [13].

2.3. Fusion experiments

A fusion of the results of the different systems described above was performed
by RMA, using logistic regression, a method which linearly combines the outputs
of the individual systems (experts) and maximizes a likelihood function based on
the logistic regression model.

Logistic regressions have been successfully used in the past for fusing several
image and speech experts together [22]. The approach is based on the assumption
that the individual experts are independent. Such an assumption is probably not
satisfied by the ELISA systems used as experts and their correlation can yield a
lower expectancy of the fusion gain.



In the experiments reported in this article, the coefficients of the logistic regres-
sion are learned on the male test population and are then used to combine the
scores of the various systems on the female test population. More comprehensive
results are given in [15].

3. TWO-SPEAKER DETECTION AND SPEAKER TRACKING
3.1. Two-speaker detection
IRISA and LIA extended their one-speaker systems in order to perform the two-
speaker detection task. Techniques similar to the ones used for the one-speaker
task are used to detect a speaker in a conversation. However, the following features
are specifically integrated for the two-speaker detection task :

- the LIA system computes the utterance score only from a subset of frames,
taking into account the histogram of the frame-based likelihood values and per-
forms short-term cepstral mean subtraction (using 3 second windows) in order to
adapt this channel compensation technique to the fact that the 2 handsets have
distinct transfer functions [4],

- the IRISA system uses ML estimates of the client models rather than MAP es-
timates, as was the case for the one-speaker task, and does not use z-normalisation [20].

In an experiment carried out after the end of the official campaign, IRISA
modified its system (refered to as IRISA2 in this article), including a step that
first estimates the proportion of the target speaker’s speech (based on the ML
mixture estimation of the target and background GMM models) and then uses
this estimate to score the utterance against the target speaker [20].

3.2. Speaker tracking

The ELISA speaker tracking systems are also based on frame scoring and use
additional smoothing techniques to obtain less noisy scores along the speech ut-
terance. Segmentation algorithms are then applied to locate the beginning and
the end of segments corresponding to the target speaker. IRISA, LIA, and RIMO
provided such systems.

The IRISA tracking system uses a smoothed log-likelihood ratio calculated on
blocks of 5 frames. The decision is taken for each block independently [20].

The LIA tracking system uses fixed-length blocks of frames and a two-pass
algorithm. During an initial pass, a score based on a likelihood ratio is calculated
on each block and a subset of these blocks are selected according to a statistical
criterion on the distribution of their score. A decision is then made on the presence
of the target speaker by comparing the average score of the selected blocks to a
first threshold. If the target speaker is detected, a second pass is carried out to
label each block as target or non-target, by comparison of the score to a second
threshold [4].



The RIMO speaker tracking system is based on TFPC analysis [10] and on a
sequential segmentation algorithm using multiple thresholds, inspired from [8§].

4. RESULTS AND DISCUSSION
4.1. Experimental setup

The NIST’99 evaluation corpus was extracted from the Switchboard II - Phase 3
corpus. The former contains 539 speakers (309 females and 230 males) and two
sessions of about 1 minute each were provided to estimate the speaker model pa-
rameters. The two training sessions were choosen so that the handset microphone
type is the same for the two telephone calls.

Each task is assessed using a detection cost function (DCF) given by :

DCF = Cfr -Ptarget Pfr + Cfa Pm Pfa

where Cj,. (resp. Cf, ) is the cost of a false rejection (resp. of a false acceptance)
and P,,.... (resp. Pozr) is the prior probability of a genuine speaker trial (resp.
an impostor trial). The costs were set to Cp. = 10 and Cp, = 1 while the prior
probabilties were P,,,... = 0.01 and Pgzr = 0.99.

Pp, and P, are the measured false rejection and false acceptance rates which,

for the speaker tracking task, were defined as :

number of true target frames labeled as non target

Pe. =
fr number of target frames

P number of non target frames labeled as true target
fa =

number of non target frames

In all cases, scores were also provided with each binary decision to compute the
detection error tradeoff (DET) curves [11], showing how false rejections may be
traded off against false acceptances as a function of the decision threshold.

A more detailed presentation of the database and of the evaluation measures
can be found in [12].

4.2. One-speaker detection

The DET curves obtained by the primary systems of the members of the ELISA
Consortium, for the one-speaker detection task are given in Figure 1. The plus
signs on the DET curves indicate the operating points for which the DCF is
minimal, while the circles indicate the actual operating points, i.e. the DCF
corresponding to the decisions that were actually made. Since the first eval-
uation campaigns pointed out the importance of channel (i.e. telephone lines)
and handset-type (i.e. carbon button vs electret microphones) normalization, the
DET curves present separately three test conditions. The first condition groups
together the segments for which the number of the caller and the handset type
are the same between the target speaker training segments and the test segment
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FIG.1. DET curves of the ELISA one-speaker systems, for different poolings : (a) SNST,
(b) DNST, (c) DNDT.

(SNST for Same Number Same Type)®. For the second condition, training seg-
ments and test segments are from different telephone lines but share the same
handset type (DNST for Different Number Same Type). Finally, both the chan-
nel and the handset type are different in the third condition (DNDT for Different
Number Different Type). In Figure 1, the (a), (b) and (c¢) curves respectively
correspond to the first, second and third condition.

Several conclusions can be drawn from these results. It can be seen that in
the SNST match condition (curve (a)), most of the systems show comparable
performances. While the ENST and LIA systems show a slight advantage over
the others, the RIMO system performs significantly worse, which is probably due

5Tt must be stressed that the same number condition only applies to target speaker trials as
it never occurs, in the evaluation data, that an impostor uses the same telephone as the target
speaker.
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FIG. 2. DET curve for the fusion of the ELISA one-speaker systems (female only).
The solid line corresponds to the fusion DET curve while the dotted ones correspond to the
individual systems.

to an improper normalization as a result of the two likelihood functions operating
in different acoustic spaces.

For the DNST mismatch condition (curve (b)), the global performance decreases
significantly for all systems. The performance of the IDIAP, VERE and IRISA
systems are getting closer to the ENST system. On the contrary, the LIA system
performance degrades more than for the other systems. One explanation is that
the delta coefficients are not used in the LIA system and it is plausible that the
delta coeflicients are more robust to channel mismatch. Therefore they are more
useful in the DNST condition, and their absence penalises the LIA system for
that condition.

Finally, in the DNDT condition (curve (c)), the curves can roughly be pooled
into three groups. The main difference between the first group and the other
systems probably comes from the use of handset knowledge for the selection of
the background model and in the likelihood ratio normalization scheme. A study
on the influence of prior knowledge for normalization can be found in [6]. It
can also be seen that the performance of the LIA system is now similar to the
IRISA and VERE systems which was not the case for the DNST condition. This
suggests that the LIA system is more sensitive to channel mismatch than to
handset microphone mismatch.

The fusion results, depicted in Figure 2 show that the use of logistic regression
to combine the results of individual systems brings a clear benefit compared to
the performance of the best individual expert, with a 50% reduction of the false
acceptance, when keeping a false rejection level around 40%.

4.3. Speaker detection and tracking
Figure 3 (a) shows the DET curves for the official LIA and IRISA two-speaker
detection system, and the DET curve of the non-official IRISA system (labeled as
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FIG. 3. ELISA DET curves for the two-speaker detection (a) and the speaker tracking
(b) tasks.

IRISA 2). Figure 3 (b) depicts the DET curves for the speaker tracking systems
in the DNST condition, where both sides of the conversation are electret and both
speakers are of the same gender.

The LIA two-speaker tracking system clearly outperforms the official IRISA
system. This can certainly be explained by the fact that the likelihood score
of the TRISA system is computed over the whole utterance and therefore biased
by the second speaker’s speech, whereas the LIA system first selects a subset
of frames according to their target speaker likelihood, and scores the utterance
only on that subset. This origin of the weakness of the official IRISA system is
confirmed by the gain obtained with the non-official system, which better models
the fact that the utterance is composed of two speakers.

For the speaker tracking task, the IRISA system tends to outperform the other
ELISA systems.

5. CONCLUSION

In this article, several ELISA variants of one-speaker detection, two-speaker
detection and speaker tracking systems, were presented and compared on the
NIST’99 evaluation data.

The one-speaker detection results indicate that the most significant differences
in performance within these systems come from the normalization techniques.
The design of the speaker independent background model seems to be essential,
the second important factor being the likelihood ratio normalization scheme. In
particular, it is clear that the appropriate use of handset type knowledge is ben-
eficial to the performance.

The ELISA platform for one-speaker detection was extended in several direc-
tions in order to perform the two-speaker detection and speaker tracking tasks.
The NIST’99 campaign has helped identifying a number of factors that influence
the performance for these two new tasks, but efforts are required to consolidate
these initial trends.



6. PROPOSITIONS AND PERSPECTIVES

For the forthcoming evaluations, the ELISA Consortium has put forward a few
proposals :

- to introduce a fraction of non (american) english data, so that language de-
pendence and cross-language mismatch can be studied, as well as the impact of
language mismatch on LVCSR based systems,

- to define several DCF functions in the evaluation plan, and to disclose only
after the results are returned by the participants, which of the DCF is the primary
one; this would prevent systems from becoming tuned to a particular operating
point, and certainly stimulate research on the issue of decision threshold setting,

- to release the keys for the evaluation database in two steps, corresponding
to two distinct subsets of target speakers, so that some participants can return,
between the two releases, fusion results on the second part of the eval data base
obtained from systems trained on the first part.

In the long-term, the ELISA Consortium intends to continue participating on
a regular basis in the NIST speaker recognition evaluation campaigns. Its multi-
site structure is a favorable factor for scientific progress and against fluctuations
in local conjonctures. However, such a working structure also requires specific
procedures for collective software engineering and internal quality control.
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