
Applying Logisti Regression to the Fusion of theNIST'99 1-Speaker SubmissionsSt�ephane Pigeon, Pasal Druyts, Patrik VerlindeSIC Laboratory, Royal Military Aademy, Av. Renaissane 30, 1000 Brussels, Belgium.E-mail: fstephane.pigeon,pasal.druytsg�ele.rma.a.be; patrik.verlinde�tele.rma.a.beThis ontribution formulates the deision fusion problem enountered inthe design of a multi-expert identity veri�ation system. Logisti regressionis introdued as a partiular ase of the naive Bayesian lassi�er and isapplied to the fusion of all submitted data of the 1-speaker reognitiontask, part of the NIST'99 ampaign.Key Words: deision fusion; Bayes; logisti regression.0. INTRODUCTIONThe automati veri�ation of a person's identity is beoming an important task inseveral appliations, espeially in the �eld of automati aess to restrited physialor virtual environments. Passwords, personal magneti ards and PIN-numbers arealready widely used in this ontext. Although they are quite onvenient to use,they an be forgotten, lost or stolen. Therefore, a new kind of method is emerging,based on so-alled biometri measures suh as voal (speeh), visual (fae, pro�le),�ngerprint or any other information that physially haraterizes the person tobe identi�ed. A system based on a partiular set of biometri features is referredto as an expert for that biometri feature set. In order to gain in robustness,multimodal systems tend to ombine several experts together, like the frontal, faialand speeh experts used in [10℄. In our ontribution, all experts whih will be usedare taken among the NIST'99 evaluation ampaign submissions, and thus refer tothe same speeh modality. Although we annot expet as muh improvement byfusing speeh-related experts as ompared to the fusion of independent biometris,it is interesting to see how fusion improves the overall system performane, even insuh a partiular ase as the one we are working with in this paper.The �rst Setion introdues the deision fusion framework adopted in this work.Setion 2 reminds the reader about the general Bayesian theory. Setion 3 intro-dues the independene hypothesis that will be used in order to derive the logistiregression model presented in Setion 4. Setion 5 illustrates the inuene of the apriori probabilities that are inherent to the Bayesian approah. Setion 6 presents1



2 PIGEON, DRUYTS AND VERLINDEthe results of fusing all NIST'99 speeh experts and, �nally, Setion 7 onludesthis work.1. DECISION FUSION IN AN IDENTITY VERIFICATIONSYSTEMThe purpose of an identity veri�ation system is to deide whether someonelaiming the identity of a registered user is indeed that lient, or an impostor.In a mono-modal system, this is done by omparing the sore obtained for thatperson with a deision threshold. Suh a system an make two types of errors: (1)rejet a lient (i.e. False Rejetion { FR { or Miss) and (2) aept an impostor(i.e. False Aeptane { FA { or False Alarm). The performane of a speakerveri�ation system is usually given in terms of global error rates omputed duringtests, namely the False Rejetion Rate (FRR { the number of FR divided by thenumber of lient laims) and the False Aeptane Rate (FAR { the number of FAdivided by the number of impostor laims) [1℄. The Equal Error Rate (EER) standsfor the operating point in whih the FAR and FRR are the same.One possible and straightforward way of building a multi-modal veri�ation sys-tem from n suh mono-modal systems is to input all n sores provided in parallelinto a fusion module whih has to take the deision to aept or rejet the laim.This is a typial deision fusion approah, in whih the fusion module reeives asinput the deisions issued by the several individual experts, and typially has nei-ther aess to the input feature vetors of these experts (feature fusion), nor to theoriginal raw data streams (data fusion) [3℄. One the hoie of a partiular fusionsheme has been made, two main alternatives still remain for the fusion module:a global (i.e. the same for all persons) or a personal (i.e. tailored to the spei�harateristis of eah authorized person) approah. For the sake of simpliity andsine the personal approah requires muh more training data, we opted for a globalfusion module. As, in a veri�ation system dealing with n modalities, the fusionmodule has to realize a mapping from <n into the binary set frejet; aeptg, thisan be seen as a multi-dimensional lassi�ation problem, splitting a n-dimensionalspae into two lasses. Bayesian lassi�ers will be introdued in the next setion.2. BAYESIAN FRAMEWORK FOR DECISION FUSIONIn a number of referenes suh as [4℄, a general overview of Bayesian deisiontheory is presented in the ase of the lassi�ation problem. We will give hereonly a brief overview of the most important results in the spei� ase of a two-lass problem. These two lasses will be denoted by Ci, i=1,2; with C1 and C2respetively denoting the lients (targets) and the impostors (non-targets).Let X be a random observation oming from either lasses. In the most generalase X will be a multi-dimensional feature vetor onstruted by the onatenationof all feature vetors ~Mk, given to all n experts (k = 1; : : : ; n). The deisionproblem is to orretly lassify eah observation in its respetive lass. To measurethe performane of a lassi�er we de�ne a loss funtion lji, whih gives the ost oflassifying a lass i observation into a lass j event. As an example, we may opt



FUSING THE NIST'99 CAMPAIGN 3for the zero-one loss funtion de�ned by:lji = � 0 if i = j1 if i 6= j (1)whih assigns no loss to orret lassi�ation and a unit loss to any error, regardlessof the lass. Under suh assumptions, it an be shown that the optimal lassi�er,de�ned as the one that ahieves the minimum lassi�ation error probability, isthe lassi�er that implements the maximum a posteriori (MAP) deision rule, i.e.maximizing P (CijX), the onditional probability of Ci given X . The minimumerror rate ahieved by this optimal lassi�er is then alled the Bayes risk. UsingBayes rule, the a posteriori probability an be rewritten as:P (CijX) = P (X jCi):P (Ci)P (X) (2)where P (Ci) and P (X) are the a priori probabilities of Ci and X respetively.Sine P (X) does not depend on the lass index, the MAP deision only dependson the numerator of the right-hand side of the previous equation:MAP = maxi P (X jCi):P (Ci) (3)By assuming that the a priori probabilities are equal for both lasses (this is astrong assumption, whih is going to be disussed later), the MAP deision ruleredues to a maximum onditional probability (MCP) rule. P (X jCi) is often alledthe likelihood of X given Ci and a deision that maximizes P (X jCi) is hene alsoalled a maximum likelihood (ML) deision.MCP = ML = maxi P (X jCi) (4)In a multi-expert deision fusion ontext, eah expert k has aess to a featurevetor ~Mk. As developed above, the �nal deision should be based on P (CijX) or,by expanding expliitly X , on P (Cij ~M1; : : : ; ~Mn) whih implies the diret use ofthe feature vetors. This might be burdensome to deal with or even impossible toimplement in some pratial ases. This also means that we deny the pertineneof the experts, by bypassing their opinion. As the theory states that the optimallassi�ation should be based on P (Cij ~M1; : : : ; ~Mn), we nevertheless need a way toobtain the best estimate of these probabilities. A brute fore approah, in whih onetries to estimate diretly the above probabilities using for instane Multi Layer Per-eptrons (MLPs), might be appealing beause it ould lead to the optimum deisionand it does not rely on any of the hypotheses that we will introdue in the next Se-tions. However, due to the limited amount of data available at training time, MPLs(and other methods as well) often result in rough estimates of the real probabilities.These estimates ould be so bad that they would beome useless. Therefore, oneusually prefers to approximate the real probability funtions �rst (e.g. the logistiregression approximation introdued in Setion 4), then �nd orret estimates forthese approximations. In other words, orretly estimating approximate probabilitydistributions often yields to better results than approximating exat distributions.



4 PIGEON, DRUYTS AND VERLINDEAs mentioned in Setion 1, the objetive of this paper is to issue the best deision,based on the (salar) output sores sk of the available experts, and not on theirinput feature vetors. If expert input measures are onditionally independent of thelass, the probabilities P (Cij ~M1; : : : ; ~Mn) needed may be omputed by ombiningthe n di�erent P (Cij ~Mk). This implies that if the expert returns sk = ffP (Cj ~Mk)gwhere ff�g is any monotoni funtion, then no loss of information is introdued byusing the sore sk instead of the feature vetor ~Mk [5℄. The reason why an expertshould return ffP (Cj ~Mk)g may be explained by onsidering the design goal of theexpert designer. Indeed, even if the development is not probabilistially driven, theobjetive is usually to output higher degrees of on�dene for higher probabilities.If the above onditions are ful�lled, ff�g an be inverted to provide the desiredprobabilities. This transformation is alled the alibration of the expert [6℄. In fat,reality is more ompliated than this, beause the output of an expert is in generalorrupted by an estimation error.The main advantage of the Bayesian approah is that it leads to the optimallassi�er, in the sense that it implements the lowest Bayes risk. There are howevera number of problems with this approah. The most important problem is that theprobability density funtions (pdfs) have to be estimated orretly. This usuallyimplies the seletion of a struture (i.e. a lass of funtions) for the approximator�rst, and then the optimization of the free parameters to best �t the pdf. Thisoptimization is performed on a training set. The plastiity (i.e. degree of freedom)of the approximator has to be hosen arefully. For highly plasti approximators,quite general pdfs may be approahed, but an important (often impossible to ob-tain) number of samples is needed for performing the training. Furthermore, thetraining set should be representative (whih in general does not orrespond to theequal a priori probability hypothesis previously made) and over-training has to beavoided to reah good generalization [2℄. On the other hand, by using an approxi-mator with limited plastiity (few parameters), fewer examples are needed but morea priori knowledge is intrinsially enoded by limiting the possible solutions. Poora priori knowledge will lead to bad results. In pratie, the best ompromise shouldbe sought, but the true MAP or MCP deision rules an not be implemented mostof the time and the theoretial minimal Bayes risk remains an unahievable lowerbound. In Setion 4, we will suppose that the probability distributions involved aremembers of the exponential family with equal dispersion parameters (the logistiregression model). The �rst step towards deriving this spei� ase is to intro-due the hypothesis of independene between experts. This transforms the generalBayesian approah presented above into the so-alled naive Bayes lassi�er [9℄,introdued in the next Setion.3. THE NAIVE BAYES CLASSIFIERFrom now on, we will suppose that the di�erent experts are independent fromeah other. This an be formalized by the following hypotheses:h1 : P (s1; : : : ; snjC) = nYk=1P (skjC) (5)



FUSING THE NIST'99 CAMPAIGN 5h2 : P (s1; : : : ; snjI) = nYk=1P (skjI) (6)where C and I stand for the lient and the impostor lasses respetively.The �rst hypothesis may seem a bit ounter-intuitive and indeed sores are or-related, whih implies that P (s1; : : : ; sn) 6=Qnk=1 P (sk). This orrelation, however,is redued when onditional probabilities are onsidered, like in h1. To illustratethis, one may imagine a ase where the sore sk varies between 0 (unonditionalrejetion) and 1 (unonditional aeptane). Suppose the sore obtained by a givenexpert is lose to one. If this �rst expert is a good expert, this means that theidentity laim has already a high probability of being true. Therefore the soresoming from the other experts will also be situated also in the viinity of one. Thisleads to a signi�ant orrelation. However, it is more reasonable to believe thatthe deviations from one prototype (sk for an impostor, 1 � sk for a lient) areunorrelated for the various experts.The justi�ation made for hypothesis h1 is not suÆient for h2. Indeed, for aspei� identity laim the lass of impostors ontains many persons whereas thelass of lients ontains only one person (the lient whom the person under testlaims to be). The sores provided by the experts ould give insight into theidentity of the impostor. In suh a ase, the sores would be highly orrelatedto the identity of the impostor and therefore orrelated for the di�erent experts.However, experts are usually designed to deide whether the person under test isa lient and don't are about the identity of a possible impostor. This makes h2more reasonable.Under these two hypotheses, it an be shown that [12℄P (Cjs1; : : : ; sn) = 11 + e�f(Pnk=1 xk)+x0g (7)where x0 = lnP (C)P (I) (8)xk = lnP (skjC)P (skjI) (9)with sk being the salar sore given by the k�th expert.4. THE LOGISTIC REGRESSION MODELA partiular instane of the general framework of Setion 2, an be obtained byassuming that for eah expert, probabilities are members of the exponential family:P (skjC) = f(sk):e(Ck:sk+Ck0) (10)P (skjI) = f(sk):e(Ik:sk+Ik0) (11)Using this, it is easy to see that equations (7), (8) and (9) redue toP (Cjs1; : : : ; sn) = 11 + e�g(s) = �(s) (12)



6 PIGEON, DRUYTS AND VERLINDEwhere g(s) = �0 + �1:s1 + :::+ �n:sn; (13)�0 = nXk=1(Ck0 � Ik0) + lnP (C)P (I) ; (14)�k = Ck � Ik : (15)This funtion is known as the logisti regression (LR) model or logisti distributionfuntion [7, 13℄. Note that the lass of onditional probabilities, as de�ned byequations (10) and (11), is known as the exponential family with equal dispersionparameters for the lients and impostors [8℄. One partiular ase of this family isthe well-known Gaussian distribution with equal variane (the quadrati exponentis generated thanks to the f(sk) multiplier), whih transforms equations (10) and(11) into: P (skjC) = 1p2�:�k :e� (sk��Ck )22�2k (16)P (skjI) = 1p2�:�k :e� (sk��Ik)22�2k ; (17)where �Ck and �Ik represent the mean of respetively the lient and impostor lassesand �2k their ommon variane. In this partiular ase, equations (14) and (15) maybe rewritten as: �0 = nXk=1 (�Ik)2 � (�Ck )22�2k + lnP (C)P (I) ; (18)�k = �Ck � �Ik�2k ; (19)�k, the weight given to the k-th expert, is nothing else than the di�erene of themeans of the distributions for the two lasses for the k-th expert, divided by theirommon variane. This is in aordane with our intuition whih says that anexpert performs better when the distributions relative to the lients and impostorsare more separated and when their variane is smaller.It is also interesting to ontrast the exponential family with shared varianes tothe Gaussian ase with di�erent lient and impostor varianes. Stritly speaking,imposing the same variane for both lasses might be seen as a restrition omparedto the Gaussian approah. However, a fusion sheme based on the exponentialmodel appears to be more exible and robust [8℄. This improved exibility maybe explained by the fat that one does not speify a partiular distribution whenassuming that the lass-onditional pdfs are members of the (same) exponentialfamily. The inrease in robustness results from the fat that the approah basedon members of the exponential family with equal dispersion parameters requiresfewer parameters to be estimated ompared to the Gaussian ase: n+1 parametersinstead of 4n (�ik and �ik for eah lass i and for eah expert k) or 3n, if varianesare equal.



FUSING THE NIST'99 CAMPAIGN 7By minimizing the lassi�ation errors on the training data, one an estimatethe various �k parameters. During the test phase, an unknown test pattern will belassi�ed among the lients if �(s) is greater than the optimal theoretial threshold(0.5 or any other threshold if one wants to take into aount the e�ets of lij , P (C)and P (I)).One of the advantages of the LR is that the parameters �k are a diret measureof the relative importane of the expert k (assuming that all expert sores havebeen previously normalized to the same sale). This interesting property allows thedesigner to identify the most relevant experts very easily, without using PrinipalComponent Analysis or other less onvenient methods as suggested in [11℄.5. THE ISSUE OF THE A PRIORI PROBABILITIESWe have shown in Setion 2 that in the Bayesian framework, the optimal dei-sion is a funtion of the a priori probabilities. These probabilities may be fed inexpliitly (e.g. the MAP rule) or may be learned from a training database (e.g. LRmodel). The lient/impostor frequenies of ourrene faed during a system's op-erational deployment should ideally be used, but is often unknown. The frequenyestimated from the training database will often be biased as impostor laims aremore numerous than lient laims (for a p-person database, one usually deals withp lient tests and p(p� 1) impostor tests). Depending on the learning sheme, thepoorly represented lass will only have a week ontribution to the error funtionat training time. This may seriously bias the system if the a priori probabilitiesrelative to the training set are very di�erent from the operational ones.This argument is often used to ritiize the Bayesian approah and to promoteother methods whih do not require these probabilities. In our opinion, however,the optimal deision does depend to a greater or lesser extent on the a priori prob-ability. This may be illustrated by the following example. If a man has to lassifya person moving in the dark in his home using only visual information, he willprobably lassify the person as his partner, although no detail is visible. The apriori probability for a person moving in the house was high for the partner. Ifthe person was in reality a burglar, one ould easily be misled. On the other hand,that same man will have no diÆulties using only visual information by daylight tolassify a person moving in the house as a burglar, even if the a priori probability forthe partner is higher. This hypothetial example shows that if the measurementsare suÆiently disriminative, we do not need to rely on a priori probabilities. Onthe other hand, if the measurements are not disriminative enough, we do needthe a priori probabilities. This e�et may be understood mathematially by ana-lyzing equation (7). The disrimination power of the measures is represented byPk xk , whereas the a priori probabilities are represented by x0. It is only in thease that the �rst term is signi�antly bigger than the seond one that the a prioriprobabilities have no e�et on the global sum.6. NIST'99 FUSION EXPERIMENTSLR has been applied to the fusion of all NIST'99 1-Speaker submissions (12experts in total, all onditions mixed). In order to ensure distintive training andtesting sets, LR has been trained on the male subset of the expert test data (1311



8 PIGEON, DRUYTS AND VERLINDElient laims, 14617 impostor laims), while testing the logisti regression has beenperformed on the female subset (1846 lient laims, 19846 impostor laims). Attraining time, optimal � oeÆients (equation 14 and 15) are found by minimizingthe lassi�ation errors. This reverts to maximizing a log-likelihood funtion (llk)as the one desribed belowllk = Xlients log(�(s)) + Ximpostors log(1� �(s)) (20)where �(s) is given by equation (12). One the optimal � oeÆients are found,test samples are lassi�ed by omparing �(s) { the a posteriori probability of beinga lient { with a given threshold. By ontinuously varying this threshold, oneobtains a DET urve as represented in Figure 1. This �gure provides all ahievabletradeo�s between the FAR and FRR for both individual experts (dashed lines) andthe LR system (ontinuous line), in test onditions. The operating points relativeto the theoretial 0.5 threshold are marked by a "+" sign. These points are loatedrelatively low in FA and high in FR due to the nature of equation (20), whih doesnot ompensate for the (one magnitude) higher number of impostors ompared tothe lients. In other words, equation (20) impliitly optimizes the system taking intoaount the nearly ten times higher impostor a priori probability. This e�et may beoverome by dereasing the deision threshold below 0.5. As seen in Figure 1, evenunder these very unfavorable irumstanes (12 voal experts that are probablyhighly orrelated), LR improves the performane of the system by 30% around theEER operating point ompared to the performane ahieved by the best expert(EER=7% instead of EER=10% for the best expert).Moreover, Figure 2 provides the DET urves obtained when fusing the threemost unorrelated experts found among the twelve available (the orrelation isomputed from the training data), while Figure 3 shows the performane ahievedby the three best experts (i.e. the experts whih ahieved the best performaneat training time). As one an see, fusing the three best experts performs betterthan fusing the most unorrelated ones. This an be explained by the fat thatthe most unorrelated experts are made from the very best ontribution... and thetwo worst ones! Although being unorrelated, the worst ontributions annot addmuh (pertinent) information to the best one. To some extent, this may be similarto the ombination of a good expert with random sore generators. Although beingindependent from eah other, no fusion gain an be foreseen in suh a ase. In otherrespets, no one will ever get a good system by fusing random sore generators...This leads to the following remark: although orrelation between experts shouldbe as small as possible, it only makes sense when experts are haraterized by thesame performane level. Then, the lower the orrelation, the higher the fusion gain.On the other hand, when dealing with highly heterogeneous experts, fusion resultswill muh more depend on the performane level ahieved by the best expert, ratherthan on orrelation issues. 7. CONCLUSIONThis paper showed how to derive the logisti regression model from the generalBayesian theory and disussed the inuene of the a priori lass probabilities on
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FUSION − All NIST99 Submissions − Test F

FIG. 1. DET urve relative to the TEST ondition (Individual experts in dashed lines,fusion in solid, "+" signs refer to the 0.5 deision threshold).
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FIG. 2. DET urve relative to the fusion of the 3 less orrelated experts (Test ondition,Individual experts in dashed lines, fusion in solid, "+" signs refer to the 0.5 deision threshold).
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