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 regression.0. INTRODUCTIONThe automati
 veri�
ation of a person's identity is be
oming an important task inseveral appli
ations, espe
ially in the �eld of automati
 a

ess to restri
ted physi
alor virtual environments. Passwords, personal magneti
 
ards and PIN-numbers arealready widely used in this 
ontext. Although they are quite 
onvenient to use,they 
an be forgotten, lost or stolen. Therefore, a new kind of method is emerging,based on so-
alled biometri
 measures su
h as vo
al (spee
h), visual (fa
e, pro�le),�ngerprint or any other information that physi
ally 
hara
terizes the person tobe identi�ed. A system based on a parti
ular set of biometri
 features is referredto as an expert for that biometri
 feature set. In order to gain in robustness,multimodal systems tend to 
ombine several experts together, like the frontal, fa
ialand spee
h experts used in [10℄. In our 
ontribution, all experts whi
h will be usedare taken among the NIST'99 evaluation 
ampaign submissions, and thus refer tothe same spee
h modality. Although we 
annot expe
t as mu
h improvement byfusing spee
h-related experts as 
ompared to the fusion of independent biometri
s,it is interesting to see how fusion improves the overall system performan
e, even insu
h a parti
ular 
ase as the one we are working with in this paper.The �rst Se
tion introdu
es the de
ision fusion framework adopted in this work.Se
tion 2 reminds the reader about the general Bayesian theory. Se
tion 3 intro-du
es the independen
e hypothesis that will be used in order to derive the logisti
regression model presented in Se
tion 4. Se
tion 5 illustrates the in
uen
e of the apriori probabilities that are inherent to the Bayesian approa
h. Se
tion 6 presents1



2 PIGEON, DRUYTS AND VERLINDEthe results of fusing all NIST'99 spee
h experts and, �nally, Se
tion 7 
on
ludesthis work.1. DECISION FUSION IN AN IDENTITY VERIFICATIONSYSTEMThe purpose of an identity veri�
ation system is to de
ide whether someone
laiming the identity of a registered user is indeed that 
lient, or an impostor.In a mono-modal system, this is done by 
omparing the s
ore obtained for thatperson with a de
ision threshold. Su
h a system 
an make two types of errors: (1)reje
t a 
lient (i.e. False Reje
tion { FR { or Miss) and (2) a

ept an impostor(i.e. False A

eptan
e { FA { or False Alarm). The performan
e of a speakerveri�
ation system is usually given in terms of global error rates 
omputed duringtests, namely the False Reje
tion Rate (FRR { the number of FR divided by thenumber of 
lient 
laims) and the False A

eptan
e Rate (FAR { the number of FAdivided by the number of impostor 
laims) [1℄. The Equal Error Rate (EER) standsfor the operating point in whi
h the FAR and FRR are the same.One possible and straightforward way of building a multi-modal veri�
ation sys-tem from n su
h mono-modal systems is to input all n s
ores provided in parallelinto a fusion module whi
h has to take the de
ision to a

ept or reje
t the 
laim.This is a typi
al de
ision fusion approa
h, in whi
h the fusion module re
eives asinput the de
isions issued by the several individual experts, and typi
ally has nei-ther a

ess to the input feature ve
tors of these experts (feature fusion), nor to theoriginal raw data streams (data fusion) [3℄. On
e the 
hoi
e of a parti
ular fusions
heme has been made, two main alternatives still remain for the fusion module:a global (i.e. the same for all persons) or a personal (i.e. tailored to the spe
i�

hara
teristi
s of ea
h authorized person) approa
h. For the sake of simpli
ity andsin
e the personal approa
h requires mu
h more training data, we opted for a globalfusion module. As, in a veri�
ation system dealing with n modalities, the fusionmodule has to realize a mapping from <n into the binary set freje
t; a

eptg, this
an be seen as a multi-dimensional 
lassi�
ation problem, splitting a n-dimensionalspa
e into two 
lasses. Bayesian 
lassi�ers will be introdu
ed in the next se
tion.2. BAYESIAN FRAMEWORK FOR DECISION FUSIONIn a number of referen
es su
h as [4℄, a general overview of Bayesian de
isiontheory is presented in the 
ase of the 
lassi�
ation problem. We will give hereonly a brief overview of the most important results in the spe
i�
 
ase of a two-
lass problem. These two 
lasses will be denoted by Ci, i=1,2; with C1 and C2respe
tively denoting the 
lients (targets) and the impostors (non-targets).Let X be a random observation 
oming from either 
lasses. In the most general
ase X will be a multi-dimensional feature ve
tor 
onstru
ted by the 
on
atenationof all feature ve
tors ~Mk, given to all n experts (k = 1; : : : ; n). The de
isionproblem is to 
orre
tly 
lassify ea
h observation in its respe
tive 
lass. To measurethe performan
e of a 
lassi�er we de�ne a loss fun
tion lji, whi
h gives the 
ost of
lassifying a 
lass i observation into a 
lass j event. As an example, we may opt



FUSING THE NIST'99 CAMPAIGN 3for the zero-one loss fun
tion de�ned by:lji = � 0 if i = j1 if i 6= j (1)whi
h assigns no loss to 
orre
t 
lassi�
ation and a unit loss to any error, regardlessof the 
lass. Under su
h assumptions, it 
an be shown that the optimal 
lassi�er,de�ned as the one that a
hieves the minimum 
lassi�
ation error probability, isthe 
lassi�er that implements the maximum a posteriori (MAP) de
ision rule, i.e.maximizing P (CijX), the 
onditional probability of Ci given X . The minimumerror rate a
hieved by this optimal 
lassi�er is then 
alled the Bayes risk. UsingBayes rule, the a posteriori probability 
an be rewritten as:P (CijX) = P (X jCi):P (Ci)P (X) (2)where P (Ci) and P (X) are the a priori probabilities of Ci and X respe
tively.Sin
e P (X) does not depend on the 
lass index, the MAP de
ision only dependson the numerator of the right-hand side of the previous equation:MAP = maxi P (X jCi):P (Ci) (3)By assuming that the a priori probabilities are equal for both 
lasses (this is astrong assumption, whi
h is going to be dis
ussed later), the MAP de
ision ruleredu
es to a maximum 
onditional probability (MCP) rule. P (X jCi) is often 
alledthe likelihood of X given Ci and a de
ision that maximizes P (X jCi) is hen
e also
alled a maximum likelihood (ML) de
ision.MCP = ML = maxi P (X jCi) (4)In a multi-expert de
ision fusion 
ontext, ea
h expert k has a

ess to a featureve
tor ~Mk. As developed above, the �nal de
ision should be based on P (CijX) or,by expanding expli
itly X , on P (Cij ~M1; : : : ; ~Mn) whi
h implies the dire
t use ofthe feature ve
tors. This might be burdensome to deal with or even impossible toimplement in some pra
ti
al 
ases. This also means that we deny the pertinen
eof the experts, by bypassing their opinion. As the theory states that the optimal
lassi�
ation should be based on P (Cij ~M1; : : : ; ~Mn), we nevertheless need a way toobtain the best estimate of these probabilities. A brute for
e approa
h, in whi
h onetries to estimate dire
tly the above probabilities using for instan
e Multi Layer Per-
eptrons (MLPs), might be appealing be
ause it 
ould lead to the optimum de
isionand it does not rely on any of the hypotheses that we will introdu
e in the next Se
-tions. However, due to the limited amount of data available at training time, MPLs(and other methods as well) often result in rough estimates of the real probabilities.These estimates 
ould be so bad that they would be
ome useless. Therefore, oneusually prefers to approximate the real probability fun
tions �rst (e.g. the logisti
regression approximation introdu
ed in Se
tion 4), then �nd 
orre
t estimates forthese approximations. In other words, 
orre
tly estimating approximate probabilitydistributions often yields to better results than approximating exa
t distributions.



4 PIGEON, DRUYTS AND VERLINDEAs mentioned in Se
tion 1, the obje
tive of this paper is to issue the best de
ision,based on the (s
alar) output s
ores sk of the available experts, and not on theirinput feature ve
tors. If expert input measures are 
onditionally independent of the
lass, the probabilities P (Cij ~M1; : : : ; ~Mn) needed may be 
omputed by 
ombiningthe n di�erent P (Cij ~Mk). This implies that if the expert returns sk = ffP (Cj ~Mk)gwhere ff�g is any monotoni
 fun
tion, then no loss of information is introdu
ed byusing the s
ore sk instead of the feature ve
tor ~Mk [5℄. The reason why an expertshould return ffP (Cj ~Mk)g may be explained by 
onsidering the design goal of theexpert designer. Indeed, even if the development is not probabilisti
ally driven, theobje
tive is usually to output higher degrees of 
on�den
e for higher probabilities.If the above 
onditions are ful�lled, ff�g 
an be inverted to provide the desiredprobabilities. This transformation is 
alled the 
alibration of the expert [6℄. In fa
t,reality is more 
ompli
ated than this, be
ause the output of an expert is in general
orrupted by an estimation error.The main advantage of the Bayesian approa
h is that it leads to the optimal
lassi�er, in the sense that it implements the lowest Bayes risk. There are howevera number of problems with this approa
h. The most important problem is that theprobability density fun
tions (pdfs) have to be estimated 
orre
tly. This usuallyimplies the sele
tion of a stru
ture (i.e. a 
lass of fun
tions) for the approximator�rst, and then the optimization of the free parameters to best �t the pdf. Thisoptimization is performed on a training set. The plasti
ity (i.e. degree of freedom)of the approximator has to be 
hosen 
arefully. For highly plasti
 approximators,quite general pdfs may be approa
hed, but an important (often impossible to ob-tain) number of samples is needed for performing the training. Furthermore, thetraining set should be representative (whi
h in general does not 
orrespond to theequal a priori probability hypothesis previously made) and over-training has to beavoided to rea
h good generalization [2℄. On the other hand, by using an approxi-mator with limited plasti
ity (few parameters), fewer examples are needed but morea priori knowledge is intrinsi
ally en
oded by limiting the possible solutions. Poora priori knowledge will lead to bad results. In pra
ti
e, the best 
ompromise shouldbe sought, but the true MAP or MCP de
ision rules 
an not be implemented mostof the time and the theoreti
al minimal Bayes risk remains an una
hievable lowerbound. In Se
tion 4, we will suppose that the probability distributions involved aremembers of the exponential family with equal dispersion parameters (the logisti
regression model). The �rst step towards deriving this spe
i�
 
ase is to intro-du
e the hypothesis of independen
e between experts. This transforms the generalBayesian approa
h presented above into the so-
alled naive Bayes 
lassi�er [9℄,introdu
ed in the next Se
tion.3. THE NAIVE BAYES CLASSIFIERFrom now on, we will suppose that the di�erent experts are independent fromea
h other. This 
an be formalized by the following hypotheses:h1 : P (s1; : : : ; snjC) = nYk=1P (skjC) (5)



FUSING THE NIST'99 CAMPAIGN 5h2 : P (s1; : : : ; snjI) = nYk=1P (skjI) (6)where C and I stand for the 
lient and the impostor 
lasses respe
tively.The �rst hypothesis may seem a bit 
ounter-intuitive and indeed s
ores are 
or-related, whi
h implies that P (s1; : : : ; sn) 6=Qnk=1 P (sk). This 
orrelation, however,is redu
ed when 
onditional probabilities are 
onsidered, like in h1. To illustratethis, one may imagine a 
ase where the s
ore sk varies between 0 (un
onditionalreje
tion) and 1 (un
onditional a

eptan
e). Suppose the s
ore obtained by a givenexpert is 
lose to one. If this �rst expert is a good expert, this means that theidentity 
laim has already a high probability of being true. Therefore the s
ores
oming from the other experts will also be situated also in the vi
inity of one. Thisleads to a signi�
ant 
orrelation. However, it is more reasonable to believe thatthe deviations from one prototype (sk for an impostor, 1 � sk for a 
lient) areun
orrelated for the various experts.The justi�
ation made for hypothesis h1 is not suÆ
ient for h2. Indeed, for aspe
i�
 identity 
laim the 
lass of impostors 
ontains many persons whereas the
lass of 
lients 
ontains only one person (the 
lient whom the person under test
laims to be). The s
ores provided by the experts 
ould give insight into theidentity of the impostor. In su
h a 
ase, the s
ores would be highly 
orrelatedto the identity of the impostor and therefore 
orrelated for the di�erent experts.However, experts are usually designed to de
ide whether the person under test isa 
lient and don't 
are about the identity of a possible impostor. This makes h2more reasonable.Under these two hypotheses, it 
an be shown that [12℄P (Cjs1; : : : ; sn) = 11 + e�f(Pnk=1 xk)+x0g (7)where x0 = lnP (C)P (I) (8)xk = lnP (skjC)P (skjI) (9)with sk being the s
alar s
ore given by the k�th expert.4. THE LOGISTIC REGRESSION MODELA parti
ular instan
e of the general framework of Se
tion 2, 
an be obtained byassuming that for ea
h expert, probabilities are members of the exponential family:P (skjC) = f(sk):e(Ck:sk+Ck0) (10)P (skjI) = f(sk):e(Ik:sk+Ik0) (11)Using this, it is easy to see that equations (7), (8) and (9) redu
e toP (Cjs1; : : : ; sn) = 11 + e�g(s) = �(s) (12)



6 PIGEON, DRUYTS AND VERLINDEwhere g(s) = �0 + �1:s1 + :::+ �n:sn; (13)�0 = nXk=1(Ck0 � Ik0) + lnP (C)P (I) ; (14)�k = Ck � Ik : (15)This fun
tion is known as the logisti
 regression (LR) model or logisti
 distributionfun
tion [7, 13℄. Note that the 
lass of 
onditional probabilities, as de�ned byequations (10) and (11), is known as the exponential family with equal dispersionparameters for the 
lients and impostors [8℄. One parti
ular 
ase of this family isthe well-known Gaussian distribution with equal varian
e (the quadrati
 exponentis generated thanks to the f(sk) multiplier), whi
h transforms equations (10) and(11) into: P (skjC) = 1p2�:�k :e� (sk��Ck )22�2k (16)P (skjI) = 1p2�:�k :e� (sk��Ik)22�2k ; (17)where �Ck and �Ik represent the mean of respe
tively the 
lient and impostor 
lassesand �2k their 
ommon varian
e. In this parti
ular 
ase, equations (14) and (15) maybe rewritten as: �0 = nXk=1 (�Ik)2 � (�Ck )22�2k + lnP (C)P (I) ; (18)�k = �Ck � �Ik�2k ; (19)�k, the weight given to the k-th expert, is nothing else than the di�eren
e of themeans of the distributions for the two 
lasses for the k-th expert, divided by their
ommon varian
e. This is in a

ordan
e with our intuition whi
h says that anexpert performs better when the distributions relative to the 
lients and impostorsare more separated and when their varian
e is smaller.It is also interesting to 
ontrast the exponential family with shared varian
es tothe Gaussian 
ase with di�erent 
lient and impostor varian
es. Stri
tly speaking,imposing the same varian
e for both 
lasses might be seen as a restri
tion 
omparedto the Gaussian approa
h. However, a fusion s
heme based on the exponentialmodel appears to be more 
exible and robust [8℄. This improved 
exibility maybe explained by the fa
t that one does not spe
ify a parti
ular distribution whenassuming that the 
lass-
onditional pdfs are members of the (same) exponentialfamily. The in
rease in robustness results from the fa
t that the approa
h basedon members of the exponential family with equal dispersion parameters requiresfewer parameters to be estimated 
ompared to the Gaussian 
ase: n+1 parametersinstead of 4n (�ik and �ik for ea
h 
lass i and for ea
h expert k) or 3n, if varian
esare equal.



FUSING THE NIST'99 CAMPAIGN 7By minimizing the 
lassi�
ation errors on the training data, one 
an estimatethe various �k parameters. During the test phase, an unknown test pattern will be
lassi�ed among the 
lients if �(s) is greater than the optimal theoreti
al threshold(0.5 or any other threshold if one wants to take into a

ount the e�e
ts of lij , P (C)and P (I)).One of the advantages of the LR is that the parameters �k are a dire
t measureof the relative importan
e of the expert k (assuming that all expert s
ores havebeen previously normalized to the same s
ale). This interesting property allows thedesigner to identify the most relevant experts very easily, without using Prin
ipalComponent Analysis or other less 
onvenient methods as suggested in [11℄.5. THE ISSUE OF THE A PRIORI PROBABILITIESWe have shown in Se
tion 2 that in the Bayesian framework, the optimal de
i-sion is a fun
tion of the a priori probabilities. These probabilities may be fed inexpli
itly (e.g. the MAP rule) or may be learned from a training database (e.g. LRmodel). The 
lient/impostor frequen
ies of o

urren
e fa
ed during a system's op-erational deployment should ideally be used, but is often unknown. The frequen
yestimated from the training database will often be biased as impostor 
laims aremore numerous than 
lient 
laims (for a p-person database, one usually deals withp 
lient tests and p(p� 1) impostor tests). Depending on the learning s
heme, thepoorly represented 
lass will only have a week 
ontribution to the error fun
tionat training time. This may seriously bias the system if the a priori probabilitiesrelative to the training set are very di�erent from the operational ones.This argument is often used to 
riti
ize the Bayesian approa
h and to promoteother methods whi
h do not require these probabilities. In our opinion, however,the optimal de
ision does depend to a greater or lesser extent on the a priori prob-ability. This may be illustrated by the following example. If a man has to 
lassifya person moving in the dark in his home using only visual information, he willprobably 
lassify the person as his partner, although no detail is visible. The apriori probability for a person moving in the house was high for the partner. Ifthe person was in reality a burglar, one 
ould easily be misled. On the other hand,that same man will have no diÆ
ulties using only visual information by daylight to
lassify a person moving in the house as a burglar, even if the a priori probability forthe partner is higher. This hypotheti
al example shows that if the measurementsare suÆ
iently dis
riminative, we do not need to rely on a priori probabilities. Onthe other hand, if the measurements are not dis
riminative enough, we do needthe a priori probabilities. This e�e
t may be understood mathemati
ally by ana-lyzing equation (7). The dis
rimination power of the measures is represented byPk xk , whereas the a priori probabilities are represented by x0. It is only in the
ase that the �rst term is signi�
antly bigger than the se
ond one that the a prioriprobabilities have no e�e
t on the global sum.6. NIST'99 FUSION EXPERIMENTSLR has been applied to the fusion of all NIST'99 1-Speaker submissions (12experts in total, all 
onditions mixed). In order to ensure distin
tive training andtesting sets, LR has been trained on the male subset of the expert test data (1311



8 PIGEON, DRUYTS AND VERLINDE
lient 
laims, 14617 impostor 
laims), while testing the logisti
 regression has beenperformed on the female subset (1846 
lient 
laims, 19846 impostor 
laims). Attraining time, optimal � 
oeÆ
ients (equation 14 and 15) are found by minimizingthe 
lassi�
ation errors. This reverts to maximizing a log-likelihood fun
tion (llk)as the one des
ribed belowllk = X
lients log(�(s)) + Ximpostors log(1� �(s)) (20)where �(s) is given by equation (12). On
e the optimal � 
oeÆ
ients are found,test samples are 
lassi�ed by 
omparing �(s) { the a posteriori probability of beinga 
lient { with a given threshold. By 
ontinuously varying this threshold, oneobtains a DET 
urve as represented in Figure 1. This �gure provides all a
hievabletradeo�s between the FAR and FRR for both individual experts (dashed lines) andthe LR system (
ontinuous line), in test 
onditions. The operating points relativeto the theoreti
al 0.5 threshold are marked by a "+" sign. These points are lo
atedrelatively low in FA and high in FR due to the nature of equation (20), whi
h doesnot 
ompensate for the (one magnitude) higher number of impostors 
ompared tothe 
lients. In other words, equation (20) impli
itly optimizes the system taking intoa

ount the nearly ten times higher impostor a priori probability. This e�e
t may beover
ome by de
reasing the de
ision threshold below 0.5. As seen in Figure 1, evenunder these very unfavorable 
ir
umstan
es (12 vo
al experts that are probablyhighly 
orrelated), LR improves the performan
e of the system by 30% around theEER operating point 
ompared to the performan
e a
hieved by the best expert(EER=7% instead of EER=10% for the best expert).Moreover, Figure 2 provides the DET 
urves obtained when fusing the threemost un
orrelated experts found among the twelve available (the 
orrelation is
omputed from the training data), while Figure 3 shows the performan
e a
hievedby the three best experts (i.e. the experts whi
h a
hieved the best performan
eat training time). As one 
an see, fusing the three best experts performs betterthan fusing the most un
orrelated ones. This 
an be explained by the fa
t thatthe most un
orrelated experts are made from the very best 
ontribution... and thetwo worst ones! Although being un
orrelated, the worst 
ontributions 
annot addmu
h (pertinent) information to the best one. To some extent, this may be similarto the 
ombination of a good expert with random s
ore generators. Although beingindependent from ea
h other, no fusion gain 
an be foreseen in su
h a 
ase. In otherrespe
ts, no one will ever get a good system by fusing random s
ore generators...This leads to the following remark: although 
orrelation between experts shouldbe as small as possible, it only makes sense when experts are 
hara
terized by thesame performan
e level. Then, the lower the 
orrelation, the higher the fusion gain.On the other hand, when dealing with highly heterogeneous experts, fusion resultswill mu
h more depend on the performan
e level a
hieved by the best expert, ratherthan on 
orrelation issues. 7. CONCLUSIONThis paper showed how to derive the logisti
 regression model from the generalBayesian theory and dis
ussed the in
uen
e of the a priori 
lass probabilities on



FUSING THE NIST'99 CAMPAIGN 9

0.1 0.2 0.5  1  2  5 10 20 40 

0.1

0.2

0.5

 1 

 2 

 5 

10 

20 

40 

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

FUSION − All NIST99 Submissions − Test F

FIG. 1. DET 
urve relative to the TEST 
ondition (Individual experts in dashed lines,fusion in solid, "+" signs refer to the 0.5 de
ision threshold).

0.1 0.2 0.5  1  2  5 10 20 40 

0.1

0.2

0.5

 1 

 2 

 5 

10 

20 

40 

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

FUSION − 3 Less Correlated NIST99 Submissions − Test F

FIG. 2. DET 
urve relative to the fusion of the 3 less 
orrelated experts (Test 
ondition,Individual experts in dashed lines, fusion in solid, "+" signs refer to the 0.5 de
ision threshold).



10 PIGEON, DRUYTS AND VERLINDE

0.1 0.2 0.5  1  2  5 10 20 40 

0.1

0.2

0.5

 1 

 2 

 5 

10 

20 

40 

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

FUSION − 3 Best NIST99 Submissions − Test F

FIG. 3. DET 
urve relative to the fusion of the 3 best experts (Test 
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ision threshold. The logisti
 regression approa
h is based on an indepen-den
e hypothesis between experts, and has been su

essfully used in the past forfusing several image and spee
h experts together [13℄. Sin
e the NIST submis-sions used here are all spee
h related and thus strongly 
orrelated, one 
ould fearthat the suggested method would not �t this parti
ular 
ase. Nevertheless, logisti
regression showed a non-negligible improvement 
ompared to the best individualspee
h expert, despite the non-optimal working 
onditions. Thanks to a ratherstraightforward implementation, logisti
 regression may be thus re
ommended asan easy-to-implement and yet eÆ
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