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This contribution formulates the decision fusion problem encountered in
the design of a multi-expert identity verification system. Logistic regression
is introduced as a particular case of the naive Bayesian classifier and is
applied to the fusion of all submitted data of the 1-speaker recognition
task, part of the NIST’99 campaign.
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0. INTRODUCTION

The automatic verification of a person’s identity is becoming an important task in
several applications, especially in the field of automatic access to restricted physical
or virtual environments. Passwords, personal magnetic cards and PIN-numbers are
already widely used in this context. Although they are quite convenient to use,
they can be forgotten, lost or stolen. Therefore, a new kind of method is emerging,
based on so-called biometric measures such as vocal (speech), visual (face, profile),
fingerprint or any other information that physically characterizes the person to
be identified. A system based on a particular set of biometric features is referred
to as an expert for that biometric feature set. In order to gain in robustness,
multimodal systems tend to combine several experts together, like the frontal, facial
and speech experts used in [10]. In our contribution, all experts which will be used
are taken among the NIST’99 evaluation campaign submissions, and thus refer to
the same speech modality. Although we cannot expect as much improvement by
fusing speech-related experts as compared to the fusion of independent biometrics,
it is interesting to see how fusion improves the overall system performance, even in
such a particular case as the one we are working with in this paper.

The first Section introduces the decision fusion framework adopted in this work.
Section 2 reminds the reader about the general Bayesian theory. Section 3 intro-
duces the independence hypothesis that will be used in order to derive the logistic
regression model presented in Section 4. Section 5 illustrates the influence of the a
priori probabilities that are inherent to the Bayesian approach. Section 6 presents
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the results of fusing all NIST’99 speech experts and, finally, Section 7 concludes
this work.

1. DECISION FUSION IN AN IDENTITY VERIFICATION
SYSTEM

The purpose of an identity verification system is to decide whether someone
claiming the identity of a registered user is indeed that client, or an impostor.
In a mono-modal system, this is done by comparing the score obtained for that
person with a decision threshold. Such a system can make two types of errors: (1)
reject a client (i.e. False Rejection — FR — or Miss) and (2) accept an impostor
(i.e. False Acceptance — FA — or False Alarm). The performance of a speaker
verification system is usually given in terms of global error rates computed during
tests, namely the False Rejection Rate (FRR — the number of FR divided by the
number of client claims) and the False Acceptance Rate (FAR — the number of FA
divided by the number of impostor claims) [1]. The Equal Error Rate (EER) stands
for the operating point in which the FAR and FRR are the same.

One possible and straightforward way of building a multi-modal verification sys-
tem from n such mono-modal systems is to input all n scores provided in parallel
into a fusion module which has to take the decision to accept or reject the claim.
This is a typical decision fusion approach, in which the fusion module receives as
input the decisions issued by the several individual experts, and typically has nei-
ther access to the input feature vectors of these experts (feature fusion), nor to the
original raw data streams (data fusion) [3]. Once the choice of a particular fusion
scheme has been made, two main alternatives still remain for the fusion module:
a global (i.e. the same for all persons) or a personal (i.e. tailored to the specific
characteristics of each authorized person) approach. For the sake of simplicity and
since the personal approach requires much more training data, we opted for a global
fusion module. As, in a verification system dealing with n modalities, the fusion
module has to realize a mapping from R"™ into the binary set {reject, accept}, this
can be seen as a multi-dimensional classification problem, splitting a n-dimensional
space into two classes. Bayesian classifiers will be introduced in the next section.

2. BAYESIAN FRAMEWORK FOR DECISION FUSION

In a number of references such as [4], a general overview of Bayesian decision
theory is presented in the case of the classification problem. We will give here
only a brief overview of the most important results in the specific case of a two-
class problem. These two classes will be denoted by C;, i=1,2; with C; and Cy
respectively denoting the clients (targets) and the impostors (non-targets).

Let X be a random observation coming from either classes. In the most general
case X will be a multi-dimensional feature vector constructed by the concatenation
of all feature vectors M‘Iﬂ given to all n experts (k = 1,...,n). The decision
problem is to correctly classify each observation in its respective class. To measure
the performance of a classifier we define a loss function l;;, which gives the cost of
classifying a class i observation into a class j event. As an example, we may opt



for the zero-one loss function defined by:
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which assigns no loss to correct classification and a unit loss to any error, regardless
of the class. Under such assumptions, it can be shown that the optimal classifier,
defined as the one that achieves the minimum classification error probability, is
the classifier that implements the mazimum a posteriori (MAP) decision rule, i.e.
maximizing P(C;|X), the conditional probability of C; given X. The minimum
error rate achieved by this optimal classifier is then called the Bayes risk. Using
Bayes rule, the a posteriori probability can be rewritten as:

P(X|C;).P(Cy)
P(Ci|X) = ———— 2
(€1X) = =555 )
where P(C;) and P(X) are the a priori probabilities of C; and X respectively.
Since P(X) does not depend on the class index, the MAP decision only depends
on the numerator of the right-hand side of the previous equation:

By assuming that the a priori probabilities are equal for both classes (this is a
strong assumption, which is going to be discussed later), the MAP decision rule
reduces to a maximum conditional probability (MCP) rule. P(X|C;) is often called
the likelihood of X given C; and a decision that maximizes P(X|C;) is hence also
called a mazimum likelihood (ML) decision.

MCP = ML = max P(X|C}) (4)

In a multi-expert decision fusion context, each expert k has access to a feature
vector My. As developed above, the final decision should be based on P(Cy|X) or,
by expanding explicitly X, on P(C’,;\]\Zl, . ,Mn) which implies the direct use of
the feature vectors. This might be burdensome to deal with or even impossible to
implement in some practical cases. This also means that we deny the pertinence
of the experts, by bypassing their opinion. As the theory states that the optimal
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classification should be based on P(C; \]\7[1, ..., M,), we nevertheless need a way to
obtain the best estimate of these probabilities. A brute force approach, in which one
tries to estimate directly the above probabilities using for instance Multi Layer Per-
ceptrons (MLPs), might be appealing because it could lead to the optimum decision
and it does not rely on any of the hypotheses that we will introduce in the next Sec-
tions. However, due to the limited amount of data available at training time, MPLs
(and other methods as well) often result in rough estimates of the real probabilities.
These estimates could be so bad that they would become useless. Therefore, one
usually prefers to approzimate the real probability functions first (e.g. the logistic
regression approximation introduced in Section 4), then find correct estimates for
these approximations. In other words, correctly estimating approximate probability
distributions often yields to better results than approximating exact distributions.



As mentioned in Section 1, the objective of this paper is to issue the best decision,
based on the (scalar) output scores s; of the available experts, and not on their
input feature vectors. If expert input measures are conditionally independent of the
class, the probabilities P(Ci|M1, . Mn) needed may be computed by combining
the n different P(C;|My). This implies that if the expert returns s, = f{P(C|Mj)}
where f{-} is any monotonic function, then no loss of information is introduced by
using the score s instead of the feature vector M, [5]. The reason why an expert
should return f{P(C|J\/:fk)} may be explained by considering the design goal of the
expert designer. Indeed, even if the development is not probabilistically driven, the
objective is usually to output higher degrees of confidence for higher probabilities.
If the above conditions are fulfilled, f{-} can be inverted to provide the desired
probabilities. This transformation is called the calibration of the expert [6]. In fact,
reality is more complicated than this, because the output of an expert is in general
corrupted by an estimation error.

The main advantage of the Bayesian approach is that it leads to the optimal
classifier, in the sense that it implements the lowest Bayes risk. There are however
a number of problems with this approach. The most important problem is that the
probability density functions (pdfs) have to be estimated correctly. This usually
implies the selection of a structure (i.e. a class of functions) for the approximator
first, and then the optimization of the free parameters to best fit the pdf. This
optimization is performed on a training set. The plasticity (i.e. degree of freedom)
of the approximator has to be chosen carefully. For highly plastic approximators,
quite general pdfs may be approached, but an important (often impossible to ob-
tain) number of samples is needed for performing the training. Furthermore, the
training set should be representative (which in general does not correspond to the
equal a priori probability hypothesis previously made) and over-training has to be
avoided to reach good generalization [2]. On the other hand, by using an approxi-
mator with limited plasticity (few parameters), fewer examples are needed but more
a priori knowledge is intrinsically encoded by limiting the possible solutions. Poor
a priori knowledge will lead to bad results. In practice, the best compromise should
be sought, but the true MAP or MCP decision rules can not be implemented most
of the time and the theoretical minimal Bayes risk remains an unachievable lower
bound. In Section 4, we will suppose that the probability distributions involved are
members of the exponential family with equal dispersion parameters (the logistic
regression model). The first step towards deriving this specific case is to intro-
duce the hypothesis of independence between experts. This transforms the general
Bayesian approach presented above into the so-called naive Bayes classifier [9],
introduced in the next Section.

3. THE NAIVE BAYES CLASSIFIER

From now on, we will suppose that the different experts are independent from
each other. This can be formalized by the following hypotheses:

hl:P(s1,...,s,|C) = HP(SHC) (5)
k=1



n
h2: P(s1,...,snlI) = [ P(silT) (6)
k=1
where C' and I stand for the client and the impostor classes respectively.

The first hypothesis may seem a bit, counter-intuitive and indeed scores are cor-
related, which implies that P(s1,...,sn) # [14—, P(sx). This correlation, however,
is reduced when conditional probabilities are considered, like in h1. To illustrate
this, one may imagine a case where the score sy varies between 0 (unconditional
rejection) and 1 (unconditional acceptance). Suppose the score obtained by a given
expert is close to one. If this first expert is a good expert, this means that the
identity claim has already a high probability of being true. Therefore the scores
coming from the other experts will also be situated also in the vicinity of one. This
leads to a significant correlation. However, it is more reasonable to believe that
the deviations from one prototype (si for an impostor, 1 — s, for a client) are
uncorrelated for the various experts.

The justification made for hypothesis k1 is not sufficient for h2. Indeed, for a
specific identity claim the class of impostors contains many persons whereas the
class of clients contains only one person (the client whom the person under test
claims to be). The scores provided by the experts could give insight into the
identity of the impostor. In such a case, the scores would be highly correlated
to the identity of the impostor and therefore correlated for the different experts.
However, experts are usually designed to decide whether the person under test is
a client and don’t care about the identity of a possible impostor. This makes h2
more reasonable.

Under these two hypotheses, it can be shown that [12]
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with sg being the scalar score given by the k—th expert.

4. THE LOGISTIC REGRESSION MODEL

A particular instance of the general framework of Section 2, can be obtained by
assuming that for each expert, probabilities are members of the exponential family:

P(sk|C) = f(sg).elTr-"rFC0) (10)
P(sg|T) f(sp).efesntlro) (11)

Using this, it is easy to see that equations (7), (8) and (9) reduce to
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where

g(s) = Bo+Bi-s1+ ...+ Bn-sn, (13)
= 30l (1)
Br = Cr — I. (15)

This function is known as the logistic regression (LR) model or logistic distribution

function [7, 13]. Note that the class of conditional probabilities, as defined by
equations (10) and (11), is known as the exponential family with equal dispersion
parameters for the clients and impostors [8]. One particular case of this family is
the well-known Gaussian distribution with equal variance (the quadratic exponent
is generated thanks to the f(s;) multiplier), which transforms equations (10) and
(11) into:

1 (spmng)?

P(Sk|c) = m.e 27k (16)
Ok
1 (spmnp)?

P(spl) = ——e i (17)
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where ukc and le represent the mean of respectively the client and impostor classes
and o} their common variance. In this particular case, equations (14) and (15) may
be rewritten as:

e (D) = (m))? P(C)
By = ; 27 +1In 0k (18)
c I
B, = He Pk (19)
O}

Bk, the weight given to the k-th expert, is nothing else than the difference of the
means of the distributions for the two classes for the k-th expert, divided by their
common variance. This is in accordance with our intuition which says that an
expert performs better when the distributions relative to the clients and impostors
are more separated and when their variance is smaller.

It is also interesting to contrast the exponential family with shared variances to
the Gaussian case with different client and impostor variances. Strictly speaking,
imposing the same variance for both classes might be seen as a restriction compared
to the Gaussian approach. However, a fusion scheme based on the exponential
model appears to be more flexible and robust [8]. This improved flexibility may
be explained by the fact that one does not specify a particular distribution when
assuming that the class-conditional pdfs are members of the (same) exponential
family. The increase in robustness results from the fact that the approach based
on members of the exponential family with equal dispersion parameters requires
fewer parameters to be estimated compared to the Gaussian case: n+ 1 parameters
instead of 4n (ui and o} for each class i and for each expert k) or 3n, if variances
are equal.



By minimizing the classification errors on the training data, one can estimate
the various By parameters. During the test phase, an unknown test pattern will be
classified among the clients if 7(s) is greater than the optimal theoretical threshold
(0.5 or any other threshold if one wants to take into account the effects of 1;;, P(C)
and P(I)).

One of the advantages of the LR is that the parameters §; are a direct measure
of the relative importance of the expert k (assuming that all expert scores have
been previously normalized to the same scale). This interesting property allows the
designer to identify the most relevant experts very easily, without using Principal
Component Analysis or other less convenient methods as suggested in [11].

5. THE ISSUE OF THE A PRIORI PROBABILITIES

We have shown in Section 2 that in the Bayesian framework, the optimal deci-
sion is a function of the a priori probabilities. These probabilities may be fed in
explicitly (e.g. the MAP rule) or may be learned from a training database (e.g. LR
model). The client/impostor frequencies of occurrence faced during a system’s op-
erational deployment should ideally be used, but is often unknown. The frequency
estimated from the training database will often be biased as impostor claims are
more numerous than client claims (for a p-person database, one usually deals with
p client tests and p(p — 1) impostor tests). Depending on the learning scheme, the
poorly represented class will only have a week contribution to the error function
at training time. This may seriously bias the system if the a priori probabilities
relative to the training set are very different from the operational ones.

This argument, is often used to criticize the Bayesian approach and to promote
other methods which do not require these probabilities. In our opinion, however,
the optimal decision does depend to a greater or lesser extent on the a priori prob-
ability. This may be illustrated by the following example. If a man has to classify
a person moving in the dark in his home using only visual information, he will
probably classify the person as his partner, although no detail is visible. The a
priori probability for a person moving in the house was high for the partner. If
the person was in reality a burglar, one could easily be misled. On the other hand,
that same man will have no difficulties using only visual information by daylight to
classify a person moving in the house as a burglar, even if the a priori probability for
the partner is higher. This hypothetical example shows that if the measurements
are sufficiently discriminative, we do not need to rely on a priori probabilities. On
the other hand, if the measurements are not discriminative enough, we do need
the a priori probabilities. This effect may be understood mathematically by ana-
lyzing equation (7). The discrimination power of the measures is represented by
>k Tk, whereas the a priori probabilities are represented by zo. It is only in the
case that the first term is significantly bigger than the second one that the a priori
probabilities have no effect on the global sum.

6. NIST’99 FUSION EXPERIMENTS

LR has been applied to the fusion of all NIST’99 1-Speaker submissions (12
experts in total, all conditions mixed). In order to ensure distinctive training and
testing sets, LR has been trained on the male subset of the expert test data (1311



client claims, 14617 impostor claims), while testing the logistic regression has been
performed on the female subset (1846 client claims, 19846 impostor claims). At
training time, optimal 3 coefficients (equation 14 and 15) are found by minimizing
the classification errors. This reverts to maximizing a log-likelihood function (1lk)
as the one described below

k=Y log(n(s))+ Y log(1—m(s)) (20)

clients impostors

where 7(s) is given by equation (12). Once the optimal 3 coefficients are found,
test samples are classified by comparing 7(s) — the a posteriori probability of being
a client — with a given threshold. By continuously varying this threshold, one
obtains a DET curve as represented in Figure 1. This figure provides all achievable
tradeoffs between the FAR and FRR for both individual experts (dashed lines) and
the LR system (continuous line), in test conditions. The operating points relative
to the theoretical 0.5 threshold are marked by a ”+” sign. These points are located
relatively low in FA and high in FR due to the nature of equation (20), which does
not compensate for the (one magnitude) higher number of impostors compared to
the clients. In other words, equation (20) implicitly optimizes the system taking into
account the nearly ten times higher impostor a priori probability. This effect may be
overcome by decreasing the decision threshold below 0.5. As seen in Figure 1, even
under these very unfavorable circumstances (12 vocal experts that are probably
highly correlated), LR improves the performance of the system by 30% around the
EER operating point compared to the performance achieved by the best expert
(EER=7% instead of EER=10% for the best expert).

Moreover, Figure 2 provides the DET curves obtained when fusing the three
most uncorrelated experts found among the twelve available (the correlation is
computed from the training data), while Figure 3 shows the performance achieved
by the three best experts (i.e. the experts which achieved the best performance
at training time). As one can see, fusing the three best experts performs better
than fusing the most uncorrelated ones. This can be explained by the fact that
the most uncorrelated experts are made from the very best contribution... and the
two worst ones! Although being uncorrelated, the worst contributions cannot add
much (pertinent) information to the best one. To some extent, this may be similar
to the combination of a good expert with random score generators. Although being
independent from each other, no fusion gain can be foreseen in such a case. In other
respects, no one will ever get a good system by fusing random score generators...

This leads to the following remark: although correlation between experts should
be as small as possible, it only makes sense when experts are characterized by the
same performance level. Then, the lower the correlation, the higher the fusion gain.
On the other hand, when dealing with highly heterogeneous experts, fusion results
will much more depend on the performance level achieved by the best expert, rather
than on correlation issues.

7. CONCLUSION

This paper showed how to derive the logistic regression model from the general
Bayesian theory and discussed the influence of the a priori class probabilities on
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FIG. 1. DET curve relative to the TEST condition (Individual experts in dashed lines,
fusion in solid, ”+” signs refer to the 0.5 decision threshold).
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FIG. 3. DET curve relative to the fusion of the 3 best experts (Test condition, Individual
experts in dashed lines, fusion in solid, ”+” signs refer to the 0.5 decision threshold).

the decision threshold. The logistic regression approach is based on an indepen-
dence hypothesis between experts, and has been successfully used in the past for
fusing several image and speech experts together [13]. Since the NIST submis-
sions used here are all speech related and thus strongly correlated, one could fear
that the suggested method would not fit this particular case. Nevertheless, logistic
regression showed a non-negligible improvement compared to the best individual
speech expert, despite the non-optimal working conditions. Thanks to a rather
straightforward implementation, logistic regression may be thus recommended as
an easy-to-implement and yet efficient method for fusing independent as well as
dependent experts.
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