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Abstract 

This paper describes a system aimed at detecting speech 

segments in FM broadcasts. To achieve high processing 

speeds, simple but fast algorithms are used. To output robust 

decisions, a combination of many different algorithms has 

been considered. The system is fully operational in the 

context of Open Source Intelligence, since 2007. 

Index Terms: speech detection, speech segmentation, fusion, 

intelligence. 

1. Introduction 

Open Source Intelligence (OSINT) consists of acquiring 

information from publicly available sources. Among those 

sources, FM broadcasts are monitored and relevant speech is 

analyzed. In such a context, the Royal Military Academy 

developed a convenient interface to help operators in 

localizing and auditioning spoken segments in FM recordings. 

Relying on the same algorithms, we designed an audio plug-in 

which automatically removes non-spoken segments from 

radio recordings without any human intervention. This plug-

in runs fast - about 100 times faster than real-time - and has 

been proven robust against various noise conditions and 

languages.  

This paper is organized as follows. Section 2 provides the 

reader with an overview of our system. Section 3 details the 

individual algorithms working with audio as an input, the so-

called Audio Experts (AEs). Section 4 describes how these 

AEs are optimally combined during a process referred as 

Fusion. Section 5 presents the application’s user interface and 

the performance achieved by the automatic plug-in. 

2. Overview and Terminology 

The goal of our system is to segment relevant speech from all 

other audio signals. What makes speech relevant depends on a 

particular OSINT context. Most of the time, relevance is 

associated to monologs, dialogs and interviews but excludes 

speech as found in advertisements. Relevant speech can 

sometimes be sung (preaches) or may be layered on a musical 

background. From now on, we will use the word Speech to 

designate relevant speech only, while Garbage will refer to 

anything else, mainly music in our case. What makes the 

classification tricky is the small difference which sometimes 

exists between those two classes. For example, spoken words 

uttered on the top of a musical background (Speech) and a 

singer’s a capella passage in a song (Garbage) do not belong 

to the same class. As long as an audible difference exists for a 

human listener, our system should be capable of 

discriminating the speech and garbage classes. 

FM recordings have been sampled at 22.05 kHz (half the 

audio CD standard) in 16-bit, uncompressed format. Often, 

lower sampling frequencies are considered, 8 kHz being a 

reference in the speech community. Working with a higher 

sampling frequency is important as significant differences 

between the Speech and Garbage classes can be found above 

4kHz. 

Decisions whether an audio signal belongs to Speech or 

Garbage are taken over regularly spaced, non-overlapping, 

time intervals referred to as Chunks. Chunk length has been 

fixed to 5 seconds. We found this setting a minimum to 

reliably detect rhythm in a song (see our AEs in next section). 

We did not consider longer intervals as not to misclassify 

short passages of relevant speech confined between garbage 

chunks. Since classification is performed at chunk level, the 

exact position where speech occurs is not detected. A 

Segment designates a number of contiguous chunks belonging 

to a same class. In order not to miss any word, speech 

segments delivered to the operator are extended by one 

garbage chunk in both directions. Our system thus detects 

speech with a precision of 5 seconds, a constraint which was 

not felt being a hassle for human operators. 

3. Audio Experts 

Conceptually, AEs represent the core of our system. With an 

audio chunk as an input, each AE outputs a scalar metric in 

relationship with the amount of speech present in the chunk. 

In practice though, a supplemental layer is inserted between 

the chunk and the AEs. This layer consists of chunk 

parameters shared among AEs. In such a perspective, AEs 

represent different derivations of the common set of chunk 

parameters. This section first describes the common chunk 

parameters, then how AEs are derived from them. 

3.1. Chunk Parameter Layer 

Let cl denote the chunk under analysis with l its length (in 

number of samples). As most of the analysis will be 

performed on a frame basis, let m denote the number of 

samples in a frame and n the number of frames in a chunk. 

We used the standard duration of 30 ms for a frame length. 

By rounding m, n and l to convenient values, we ended up 

using (m;n;l)=(660;167;110220). The chunk parameter layer 

is build by computing various quantities inspired from 

[1][2][3] in the order described below: 

• Squared chunk sl=cl
2  

• Average energy Eavg=mean(sl) 

• Local energy el as a moving average of m consecutive sl 

samples 

• The variance of the local energy V=var(el) 

• The average lowest local energy Eavg_min obtained by 

computing the lowest energy every 0.5s (i.e. every tenth 

of a chunk) then averaging the results across the chunk 

• Percentage of local energy samples below half of the 

average energy P=%[el <(Eavg/2)] 
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• The 5 most energetic frames are isolated from cl by 

looking for maxima in el. These frames will be referred 

to as Top5 frames. By restricting subsequent processing 

to those frames, a factor 30 in speed increase is achieved. 

• Strength of the fundamental frequency f0 in the human 

range, denoted as Sf0. For every Top5 frame, we isolate 

the maximum value taken by the frame’s autocorrelation 

between 75 Hz and 350 Hz. Sf0 is obtained by averaging 

those 5 values. 

• Bass content below human range, B. The ratio between 

the energy below human voice frequency range (below 

100 Hz) and the energy found in the voice band 

(between 200Hz and 4000 Hz) is computed for each 

Top5 frame. B is obtained as an average over those 5 

frames. 

• Attack density, δ. By subtracting each chunk sample with 

its neighbor then taking the absolute value of those 

differences, we construct ∆(l-1) the delta chunk vector. 

The attack density is computed as the percentage of delta 

chunk samples greater than twice their average.  

• Rhythm strength, R. The computation of the rhythmic 

strength is in a way similar to the computation of Sf0 but 

performed in the much lower frequency domain and over 

a longer period of time. By introducing a delay of a 

chunk in the processing chain, the previous, the current 

and the next local energy vectors el are concatenated then 

down-sampled by a factor m. The resulting samples are 

differentiated to put emphasis on sound attacks where 

rhythm occurs. Given the median filter used to derive 

local energies, the best transient detection is achieved 

with a delta of 2 (each sample is subtracted from the 

sample next to its neighbor). Finally, the autocorrelation 

of the resulting signal is computed and R is given as its 

maximum found between 5 and 120 bpm (beats-per-

minute). 

3.2. Audio Experts 

From the previous measurements, eight AEs are derived. 

These have been categorized in three families: energy-based, 

frequency-based and time-based experts. 

3.2.1. Energy-based AEs 

• AE1= Eavg 

• AE2 = V 

• AE3 = P 

• AE4 = Eavg_min/Eavg 

 

Our first expert AE1 simply outputs the average energy over a 

chunk. The average energy is however hardly found as a 

discriminative criterion in the literature. The reason why is 

obvious. Speech can be loud or quiet, and so does garbage 

too. In such a context, loudness on its own - or the average 

chunk energy here - cannot offer any discriminative power. In 

the scope of our particular application however, loudness 

turned to be much more effective than expected, as will be 

explained now. Offering a “signature” sound is of importance 

for a radio station: not only to be identified from other 

broadcasters, but to tune in with its targeted audience.  This 

distinctive sound is achieved by using various audio 

processors at the end of the audio path and compressors in 

particular. By reducing the dynamic range, compressors help 

making loudness uniform across different programs, different 

songs or between a speaker’s voice and music. Initially 

compressors were mostly used as specialized automatic gain 

controllers (AGC). With the advent of multi-band 

compressors and the inclusion of sound parameters that go 

beyond simple AGC, present-day compressors literally 

“sculpt” the sound of a radio channel : making it perceptually 

louder than the next station and more aggressive, or  - at the 

opposite - relaxing and airy. The leveling carried out 

automatically and consistently by compressors, helps a lot to 

turn speech segments into a perceptually even ensemble, and 

music into another. This is the reason why an average energy 

can become a discriminative parameter. In general, garbage 

chunks exhibit a greater energy than speech. But sometimes, 

the opposite occurs as in the case of news-oriented stations, 

where one wants the voice of the speaker to call for attention 

and the musical interludes to sit in the background. Three 

important constraints have to be fulfilled when using AE1 as 

an expert. First, as average speech and garbage levels are 

radio-dependent, radio stations have to be individually 

trained. Second, training should be performed over a long 

period of time if one wants to achieve optimal results (a day 

minimum, one week best) : the difference induced by a given 

compressor on the speech and garbage classes can only be 

extracted from a large amount of varied voiced and music 

material. Last but not least, recording levels should be fixed 

once for all. Any small discrepancy in the recording levels 

between training and operation phases may severely bias the 

performance of AE1.  

Our second expert AE2 refers to the variability of the local 

energy in a chunk. This variability differs from speech and 

garbage chunks and the amount of difference depends again 

on a station’s audio path settings. Therefore - for this criterion 

to offer a discriminative power - the same considerations as 

for AE1 apply (the individual trainings and the fixed recording 

levels). 

Our third expert AE3 is related to the amount of micro-gaps in 

the signal. Unlike our first two experts, this criterion is 

commonly found in speech segmentation literature and indeed 

works extremely well with clean recordings. Due to its 

intrinsic nature, speech contains a lot of breaks in the sound :  

one may intuitively think of the speaker breathing, but it 

actually relates to those imperceptible but measurable micro-

gaps intrinsically derived from speech articulation (think 

about producing a plosive without any break in sound right 

before). These gaps are typically 30ms long and do not exist 

in music material since as with the number of instruments 

playing, a musical signal tends to be represented by an 

uninterrupted flow. AE3 thus exhibits much higher values for 

speech than for garbage chunks. 

AE4 compares the average energy of the lowest energetic 

frames, with the average energy over a chunk. This 

information complements AE3 which only provides 

information about the number of low energetic frames in a 

chunk, not their actual level. 

3.2.2. Frequency-based AEs 

• AE5= Sf0 

• AE6 = B 

 

AE5 relates to the fundamental frequency strength in the 

human voice frequency range. This expert thus takes higher 

values for speech, but for music too when the bass plays in 

2236



the lower vocal frequency range. Still, AE5 is discriminative 

as when it gets a low value, speech can be excluded.  

AE6 compares the frequency content below human range with 

the energy found in the human voice band. Unlike phone-

quality material, music as broadcasted through FM exhibits a 

stronger low end as compared to voice.  

3.2.3. Time-based AEs 

• AE7= δ 

• AE8 = R 

 

Music is characterized by the presence of a rhythm, often 

accentuated by percussive instruments. AE7  relates to this 

percussiveness while AE8 measures the strength of the rhythm 

when present. AE8  is possibly the most interesting expert in 

our application, as it is the only one to catch the difference 

between a speaking and a singing voice : the singer sticks to a 

given musical tempo and note quantization, not a speaker. 

4. Fusion 

Each expert thus assigns a single metric to each chunk. Some 

experts will associate higher metrics to speech chunks, others 

will do the opposite. This discrepancy is not important, only 

consistency matters. Fusion refers to the process of 

aggregating these individual metrics into a robust score. To 

learn each expert’s behavior, performance and reliability, this 

fusion process has to undergo a training phase first. Only 

then, the algorithm will be able to optimally combine the 

different metrics in operational conditions. Linear 

Discriminant Analysis (LDA) [4] has been selected as a 

fusion algorithm. 

4.1. Linear Discriminant Analysis 

Let z = [z1 z2 ... zN] denote the metric vector obtained by 

concatenating all individual expert metrics zi given on a 

particular chunk, i=1..N with N being the total number of 

experts available. Let T(z|c) denote the metric distribution 

conditionally to the chunk class c={s(peech),g(arbage)}. To 

optimally determine whether a chunk is speech or garbage,  

we use the likelihood ratio:  
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The chunk will be classified as speech when this ratio gets 

higher than a given threshold. T(z|s) and T(z|g) are unknowns. 

A common hypothesis consists in approximating these 

distributions by Gaussians 
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By substituting equations (2) to (7) into equation (1), one 

obtains the linear discriminant function: 
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The value of this discriminant function is computed for every 

chunk belonging to the training set.  Then, one sets a 

threshold which best separates speech and garbage classes. 

The classification of a test segment is obtained by comparing 

DL(z) with the threshold found earlier and it will be associated 

with the speech class, when it falls above.  

4.2. Performance 

In such a binary classification problem, two kinds of errors 

may occur: rejecting speech chunks (i.e. classifying speech as 

garbage) and accepting garbage chunks inside speech 

segments. Those errors are commonly referred as False 

Rejection (FR) and False Acceptance (FA) respectively. The 

tradeoff between those two types of errors directly relates to 

the value of the acceptance threshold applied to equation (8). 

By continuously varying this threshold, one generates a curve 

in FA/FR space which represents the overall performance of 

the system in terms of possible FA/FR tradeoffs. The Equal 

Error Rate (EER) refers to the operating point where FA=FR 

(=EER).  

 

To rate our algorithm performance, we used a major 

commercial radio station, recorded from six o’ clock in the 

morning till midnight, for two consecutive weekdays (2x18h, 

22.05kHz, 16-bit, monaural). Day one was used as a training 

set, day two as a test set. These two sets have been manually 

cleaned from all audio segments which couldn’t be clearly 

labeled either as speech or garbage: think of spoken 

advertisements which may be considered as speech sound-

wise, but garbage if one considers their contents and our 

application in mind. After the cleaning up, we came up with 

the speech and garbage durations listed in Table 1. As 

training and test files have been acquired across the same 

period of time, on the same channel, they roughly contain the 

same proportion of speech and garbage (60% of speech for 

40% of music approximately). The training file thus preserves 

the station’s average a priori speech probability. Feeding 

representative a priori probabilities to the fusion algorithm is 

important and ensures that the operating point selected along 

the performance curve at training time translates properly 

during test time or when the system is operational. 
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Table 1 : Training and Test contents 

 Speech Garbage Total 

Train 7h44m03s 5h42m34s 13h26m37s 

Test 8h10m56s 5h29m21s 13h40m17s 

 

 

Speech segments contain some challenging segments as music 

often appears in the background, sometimes imprinted with a 

strong rhythmic pattern. There is also a long coverage of a 

soccer game - live from the stadium, with a lot of background 

noise (crowd) - found in the test set but absent from the 

training set. 

 

Feeding the training files to our fusion algorithm achieved an 

outstanding equal error rate of 0.62%. Under test, this 

operating point shifted to {FA;FR}test={0.91%;0.96%} which 

is still remarkable. When the acceptance threshold is set such 

as to reject no speech at training time (FRtrain=0), 95.53% of 

the garbage chunks are properly filtered out (FAtrain=4.47%). 

During the test, this rate decreased to 92.73% (FAtest=7.27% 

with FRtest still null). Figure 1 provides a continuous 

performance curve and a few possible {FA;FR} tradeoffs one 

can achieve around the EER. 

 

 

Figure 1 : Performance achieved at Training (dotted) 

and Test (solid) times and 3 possible operating points 

(the equal error rate as a circle). A logarithmic scale 

has been used as to best separate the performance 

curves from the axes’ origin. 

It is of importance to remember that this level of performance 

is achieved when classifying each 5s chunk independently 

from each other. In practice, garbage and speech segments 

extend much over the duration of a chunk. Isolated chunks are 

not likely to happen unless misclassified. Therefore, by 

filtering out isolated chunks, one further improves the overall 

performance of the system beyond the FA and FR rates 

mentioned earlier. 

 

Let us stress again that this outstanding level of performance 

can be only achieved when radio stations are trained 

individually, as some experts depend heavily on the nature of 

the audio post-procsessing a radio station applies to shape its 

sound. 

 

Automatic classification is only achieved when our 

segmentation system runs as an audio plug-in without any 

human supervision. Relying on the same algorithms, we also 

developped a grapical tool which represents the  audio as a 

coloured bar. Colours are selected to intuitively represent the 

valures of DL(z), with lower values in red (garbage), higher in 

green (speech) and all intermediate colors in between. The 

operator easily locates speech segments by picking up the 

green colored areas and previews or saves them by simply 

clicking those areas. Such a bar representation is illustrated in 

Figure 2. 

 

 

Figure 2 : A color-coded audio bargraph, as a 

compact representation of broadcasted contents. 

Speech areas are represented in green (or white in 

this B&W print), garbage areas in red (black). Blue 

areas (grey) are equally associated with 

advertisements or vocal solos in music segments. 

5. Conclusions 

This paper described an operational system to segment speech 

from FM broadcasts, with an intelligence application in mind.  

A high performance has been achieved when training radio 

stations individually. The system is fully operational since 

2007. Future work focuses on detecting particular sounds to 

trigger subsequent recordings (a news jingle to force the 

recording of the upcoming news) or - on the opposite - 

remove part of the recording (a  spoken advertisement, which 

too often gets segmented as useful speech while not being 

pertinent). 
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