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ABSTRACT

Current text-independent speaker verification systems are
usually based on modeling globally the probability density
function (PDF) of the speaker feature vectors. In this pa-
per, segmental approaches to text-independent speaker ver-
ification are discussed. Unlike the schemes based on Large
Vocabulary Continuous Speech Recognition (LVCSR) with
previously trained phone models, our systems are based
on units derived in unsupervised manner using the AL-
ISP (Automatic Language Independent Processing) tools.
Speaker modeling is then done independently for each class
of speech sounds. Among the techniques to merge the class-
dependent scores, linear combination was tested and logis-
tic regression and a method based on the Mixture of Ex-
perts technique are under investigation. The experimental
results were obtained on the data from the NIST-NSA’98
campaign.
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1. INTRODUCTION

Current text-independent speaker verification systems are
usually based on modeling globally the probability density
function (PDF) of the speaker feature vectors. In such sys-
tems, the temporal information of the speech sequence is
not taken into account and all the phonetic classes are rep-
resented using a unique model. It is however possible to di-
vide the speech sounds into categories and perform the mod-
eling independently for each of them. Ideally, this should
lead to more precise speaker modeling and to lower error-
rate of the system. The categories can be defined using two
approaches:

1. The first possibility is to use a Large Vocabulary
Continuous Speech Recognition (LVCSR) with pre-
viously trained phone models. This recognition pro-
vides the segmentation and classification of segments.
The drawback of this approach is a necessity of large
annotated database for training of the phone models.

2. The second possibility is to use Data-driven tech-
niques based on ALISP (Automatic Language Inde-
pendent Speech Processing) tools [3]. The segmen-
tation can be obtained automatically on raw data

without any transcriptions. The drawback of this ap-
proach is a need to ensure the coherence of classes
across speakers and to determine the verification
power of classes, not known a-priori.

This paper concentrates on the latter approach and dis-
cusses its advantages and drawbacks. It is organized as fol-
lows: section 2 deals with the unsupervised segmentation
and labelling of speech signals. A comparison with pho-
netic alignment is presented. The two following sections
deal with two different methods of modeling the speaker
PDF in classes: Multi-Layer Perceptrons (MLP) and Gaus-
sian Mixture Models (GMM). Both sections are completed
by the description of the experimental setup and results.
Section 5 deals in more detail with the combining of class-
dependent scores using mixture of experts techniques.

2. SEGMENTATION

For performing the segmentation, ALISP tools [3, 9] were
used. Unlike LVCSR, this approach requires neither pho-
netic nor orthographic transcription of the corpus, as it
is based on the speech data. The speech segmentation is
achieved using temporal decomposition (TD) [1, 2]. The
next step is unsupervised clustering. Among several avail-
able algorithms (Ergodic HMM, self-organizing map, etc.),
Vector Quantization (VQ) was chosen for its simplicity. The
VQ codebook is trained by K-means algorithm with binary
splitting [4]. TD and VQ provide a symbolic transcription
of the data in an unsupervised way. Each vector of the
acoustic sequence is declared as a member of a class C; de-
termined through the segmentation and the labelling. The
number of classes is fixed by the number of centroids in
the VQ codebook. In the experimental work, 8 classes have
been used.

2.1. Correspondence of phonetic and ALISP seg-
mentations

To study the correspondence of the automatic segmentation
and labelling, a comparison with phonetically aligned data
was done. 4.8 minutes of hand labelled SWITCHBOARD
data (used in the CLSP’96 and ’97 workshops) were used
for the comparison. The phonemes were grouped into 7
phonetic categories: vowels, stops, fricatives, affricatives,
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Figure 1: Confusion matrix of broad phonetic classes and
ALISP units. White color corresponds to zero correspon-
dence, black to maximal correspondence

nasals, semivowels+glides, and others (silence). The AL-
ISP units were derived using the procedure described in
previous paragraph. The correspondence was evaluated us-
ing relative overlaps of ALISP units (denoted HA... HH)
with the phonemes over the entire dataset.

The resulting confusion matrix, with phonetic classes
as references, is shown in Fig. 1. It is obvious, that the
correspondence is far from one-to-one; the ALISP unit HC
represents for example well the noise and pause parts of sig-
nal, but especially vowels and semi-vowels are spread over
almost all ALISP classes. Therefore, the VQ with such a
low number of classes does seem to be comparable with
phonetic categories; in [10] we have shown, that a larger
number of classes maps more precisely to phonemes. How-
ever, in the speaker verification experiments, only 8 classes
were used.

3. MLP MODELING

One of the main reasons for using MLPs for modeling pur-
poses, is their discriminant capability [9]. In this approach,
each segmental MLP (one per class) is trained in a discrim-
inative manner, to distinguish between the client speaker
and a background world model, using only feature vectors
having the corresponding class label. For example, the MLP
associated with class C; provides the following segmental
LLR; score:

LLR; =log(S:i) — log(Swi), where (1)

Sei =[] P(Meile)/P(Mei), &)
zeC;

Sui =[] P(Muile)/P(M.u:) (3)
z€C;

The products involve vectors being previously labelled as
members of class C;. Subscripts ¢i and wi denote respec-
tively the client and the world MLP-outputs for the seg-
mental class C;.

3.1. MLP: Experiments and results

The segmental MLPs were tested on NIST-NSA’98 data
and the experimental setup and results were thoroughly
described in [9]. Each segmental MLP had 20 neurons in
the hidden layer and worked with the context of 5 acoustic
frames. The class-dependent scores were recombined with
equal weights. The results can be summarized as follows:
the segmental MLP system reached almost the same per-
formances as a global system with one MLP for the easy
training-test condition SN (data in training and in test files
come from the same telephone number) and outperformed
the global MLP in difficult training-test condition DT (dif-
ferent type — the test file was recorded using different hand-
set type).

4. GMM MODELING

In this approach, the client as well as the world PDF
are modeled by the mixture of Gaussian distributions:
L(zn|M) = Y wiN(zn;pj,%;). If N is the number of
classes, N GMMs must be trained for each client. In case
of the world, we can choose either a segmental approach
(IV world GMMs) or a global world model. The latter ap-
proach was tested in our experiments. In the testing phase,
two possibilities exist for scoring using the class-GMMs:

e each frame is first assigned to a class (using temporal
decomposition and VQ) and only the corresponding
GMM is used for the scoring. This approach can be
denoted “hard”.

e a “soft” appertaining function of each vector to all
classes is evaluated, the vector is scored by all GMMs
and their outputs are weighted by the appertaining
function.

We have used the latter approach with the following func-
tion quantizing the appertaining of vector = to class i:

wizexpl<1—£idi) ], (4)

where d; is the Euclidean distance of x from the centroid
of class ¢ and E d; is the sum of distances over all classes.
Weights w; are normalized to sum up to 1. The global LLR
of test file (L frames) is then computed as:

LLR=Y" [Z wi (L(xn|Mei) — £(xnle))] )

and finally normalized by the number of frames L. It is
obvious, that in this case, no weighting taking into account
discriminative powers of classes is performed.

4.1. GMM: Experiments and results

Segmental GMM approach was tested on the ELISA-1 [5]
subset of NIST-NSA’98 data: 50 client speakers, each with
2 minutes of training data (condition 2S) and about 240
test files per sex (duration 3 seconds). The parameteri-
zation was done using 16 LPCC coefficients with liftering.
Each segmental client GMM had 64 mixture components for
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Figure 2: Results of GMM systems for three training-test conditions: SN (same number), ST (same type) and DT (different
type). Left panel: one GMM per client. Right panel: 8 segmental GMMs per client.

basic parameters, 64 for ALPCC and 16 for Alog-energy.
The models were initialized by all the data from the given
speaker and then each of 8 segmental models was retrained
using only the data corresponding to ¢-th class. The world
model was non-segmental, gender dependent and of the
same configuration as segmental ones. It was trained us-
ing 50 electret and 50 carbon background speakers.

First, a global GMM system was developed, all the test
files were scored and normalized using impostor accesses
(50 electret and 50 carbon impostors) and znorm (handset-
independent normalization). Its results for the 3 conditions
can be seen in the left panel of Fig 2. Then, the scor-
ing was performed with above described segmental system,
with similar normalization (see the right panel of Fig 2 for
results).

It is obvious that the segmental GMM system reaches
lower performances than the global one for all three
training-test conditions. The most probable reason is a lim-
ited amount of training data available for the re-estimation
of segmental models. An adaptation strategy [7] is a good
candidate to bring better results. Also, similarly as for
MLPs, the merging of class-dependent scores was not com-
pletely resolved: the weights depend on proximity of vectors
to the centroids of classes, but do not reflect the efficiency
of classes in discriminating speakers.

5. COMBINING THE OUTPUTS OF THE
SEGMENTAL EXPERTS

5.1. Logistic regression

Instead of using equal weights for combining the outputs of
all segmental models (experts), these outputs can also be
combined using a data fusion method based on the logistic
regression model presented in [11, 12]. This method per-
forms a statistical analysis of the observed data (training
data) and the discrimination function it implements is the
logistic distribution function, which is formalized hereafter:

e9(s)

B(Y/s) =T(s) =

(6)

In this expression E(Y/s) is the conditional probability for
the (binary) output variable Y given the IN-dimensional
input vector s, with g(s) = Bo + Bi1s1 + - + Bnsny and
s = (s1, 82, -+, sn). This equation gives as a result for the
input pattern s, the probability II(s) of belonging to the
class of clients (Y = 1) and, in an indirect manner, the
probability [1 —TII(s)] of belonging to the class of impostors
(Y = 0). Since each §; with ¢ # 0 multiplies one of the
N experts, and if all experts output scores in the same
range, the value of f; is a measure of the importance of
the i-th expert in the fusion process. A large §; indicates
an important expert, a small 3; indicates an expert that
does not contribute very much. The idea is then that this
principle should lead to the weighting of the different classes
according to their discriminative powers.

5.2. Mixture of Experts

Instead of using the weights obtained by the appertaining
function defined by 4 for combining the outputs of all seg-
mental models (experts), these outputs can also be com-
bined using a data fusion method based on the Mixture of
Experts paradigm presented in [6]. To weight the likeli-
hood ratio outputs LLR; of each of the segmental experts,
we add a MLP, which will serve as gating network. This
gating network receives the same acoustic vectors as input
as the segmental experts and has eight output neurons with
softmaz activation functions. This softmax function assures
that the gating network its outputs sum to unity and are
non-negative, thus implementing the (soft) competition be-
tween the different segmental experts [8]. These N different
output values are noted W;, and they will be used to weight
the N outputs LLR; of the N segmental experts in the fol-
lowing manner:

N
Total LLR = Z WiLLR;

i=1

(7)

The gating network is trained using speech segments from
the claimed speaker. For these speech segments, the target



WI1xLLRL

LLR1 m
Expert 1 X -
S

Total LLR
—

2
6 .
3 :
° Ex al v\
= pert 8 & X
3 LLRS \_/
< W8 x LLR8
w1
Gating
Network
ws

Figure 3: Combining the outputs of the different segmental
experts

vector is 1 for the output neuron corresponding with the
largest LLR;, and 0 for the N — 1 other outputs. During
the test phase, the NV output neurons of the gating network
are going to vary with the presented input segment. This
means that if an input segment is lying close to k class seg-
mentation prototypes, this will be translated by the fact
that k different output neurons will tend to have signifi-
cant outputs. In this manner, & segmental experts will sig-
nificantly and proportionally contribute to the total LLR.
The structure of this data fusion paradigm is represented
in Fig. 3.

Experiments with the logistic regression and gating
network are being conducted on the ELISA-1 subset of
NIST’98 data.

6. CONCLUSIONS

Several methods of segmental, text-independent speaker
verification with automatically derived classes of speech
sounds were presented. We have confirmed, that speech
segments are not equal in characterising speakers. Never-
theless an optimal grouping of acoustic segments for speaker
verification has not been found so far. In comparison with
linear recombination of class-dependent scores, the “mix-
ture of experts” approach is elegant and needs to be further
investigated. It is likely that a system based on speaker
independent segmental HMMs (LVCSR) adapted to each
client is the next thing to try. In this framework, the need
for all class-dependent models scoring in parallel is unclear.
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