NSE - Nuclear Science & Engineering at MIT

PEOPLE

Nuno F. Loureiro

Nuno F. G. Loureiro

Professor of Nuclear Science and Engineering and Professor of Physics
Director, Plasma Science and Fusion Center

nflour@mit.edu
617-253-9741
NW16-243

Department of Physics
Plasma Science and Fusion Center
Loureiro Group

Bio

Education

  • PhD, Physics, Imperial College, London, UK (2005)
  • MEng., Physics, Instituto Superior Técnico, Lisbon, Portugal (2000)

Research positions

  • Post-doctoral Research Associate, Center for Multiscale Plasma Dynamics, Princeton Plasma Physics Laboratory (2005–07)
  • Culham Fusion Research Fellow, Culham Centre for Fusion Energy, UKAEA (2007–09)
  • Researcher (2009–2012) and Head (2012–2015), Theory and Modeling Group, Institute for Plasma and Nuclear Fusion, IST Lisbon

Awards

  • Fellow of the American Physical Society, 2022
  • Ruth and Joel Spira Award for Excellence in Teaching, 2022
  • PAI Outstanding Professor award, 2017, 2020
  • Bose Fellow, 2018
  • NSF CAREER award, 2017
  • Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research (American Physical Society), 2015 [link]

Research

MAGNETIC RECONNECTION

Magnetic reconnection is a ubiquitous phenomenon in nature: solar flares, magnetospheric substorms and the sawtooth and tearing instabilities in tokamaks are just a few examples of fascinating events where reconnection plays a key role. One of my research interests is in understanding the instability of the reconnection site (the “current sheet”) to the formation of multiple magnetic islands (or plasmoids). A review-style discussion of this topic can be found here:

  • N.F. Loureiro and D. A. Uzdensky, Plasma Phys. Control. Fusion 58, 014021 (2016) [link]

Magnetic reconnection is fundamentally an energy conversion mechanism: energy stored in the magnetic field is channeled into particle acceleration and heating. Another ongoing research direction aims to clarify the mechanisms for energy conversion in weakly collisional plasmas, particularly the importance of linear and nonlinear phase-mixing as electron and ion heating mechanisms. These issues are discussed in the two publications below:

  • R. Numata and N.F. Loureiro, J. Plasma Phys. 81, 305810201 (2015) [link]
  • N. F. Loureiro, A. A. Schekochihin and A. Zocco, Phys. Rev. Lett., 111, 025002 (2013) [link]

CONFINEMENT AND TRANSPORT IN FUSION PLASMAS

The ability to keep a fusion-temperature plasma well confined is critical to the success of the fusion programme. This is often impaired by turbulence and/or macroscopic instabilities. My research addresses both of these topics.
A key tool in these investigations is the massively parallel code Viriato developed by myself and colleagues. Viriato solves the equations of a 4D physical model known as reduced-gyrokinetics, an asymptotically exact simplification of 5D gyrokinetics. The main aspects of the code and an extensive set of benchmarks can be found here:

  • N. F. Loureiro et al., Comp. Phys. Comm. 206, 45-63 (2016) [link]

A complementary aspect of my research is the confinement of very energetic, fusion-born, alpha particles, which are critical to keep the plasma hot and ensure that fusion can be self-sustained. Alphas can resonate with a particular set of plasma waves (Alfvén waves), leading to their destabilization and ensuing alpha transport away from the plasma core. This issue is of particular importance to ITER, which aims to hold the first-ever burning plasma. A recent publication detailing some aspect of this work is:

  • P. A. Rodrigues, A. Figueiredo, J. Ferreira, R. Coelho, F. Nabais, D. Borba, N. F. Loureiro, H.J.C. Oliver, and S. E. Sharapov, Nucl. Fusion 55, 083003 (2015) [link]

OTHERS

In addition to the above, I have an active interest in several fundamental aspects of magnetized plasma dynamics, such as magnetic field generation and amplification, and turbulence in strongly magnetized, weakly collisional plasmas (where again simulations with Viriato play a key role). My publications on these topics (and others) can be found in my google scholar webpage.

Publications

Selected Publications

  1. R. Jorge, P. Ricci and N. F. Loureiro, “A full-F Drift-Kinetic Analytical Model for SOL Plasma Dynamics at Arbitrary Collisionality”, J. Plasma Phys., 83, 9055830606 (2017)
  2. S. Boldyrev and N. F. Loureiro,“Magnetohydrodynamic Turbulence Mediated by Reconnection”, Astrophys. J., 844, 125 (2017)
  3. N. F. Loureiro and S. Boldyrev, “Role of magnetic reconnection in magnetohydrodynamic turbulence”, 2016, Phys. Rev. Lett., 118, 245101 (2017)
  4. J. D. Hare, L. Suttle, S. V. Lebedev, N. F. Loureiro, A. Ciardi, G. C. Burdiak, J. P. Chittenden, T. Clayson, C. Garcia, N. Niasse, T. Robinson, R. A. Smith, N. Stuart, F. Suzuki-Vidal, G. F. Swadling, J. Ma, J. Wu, Q. Yang, “Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment”, Phys. Rev. Lett., 118, 085001 (2017)
  5. D. A. Uzdensky and N. F. Loureiro, "Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability", Phys. Rev. Lett., 116, 105003(2016)
  6. K. M. Schoeffler, N. F. Loureiro, R. A. Fonseca and L. O. Silva, "Magnetic field generation and amplification in an expanding plasma", Phys. Rev. Lett., 112, 175001 (2014)
  7. N. F. Loureiro, A. A. Schekochihin and A. Zocco, "Fast collisionless reconnection and electron heating in strongly magnetised plasmas", Phys. Rev. Lett, 111, 025002 (2013)
  8. R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin and S. C. Cowley, “Formation of plasmoid chains in magnetic reconnection”, Phys. Rev. Lett., 103, 105004 (2009)
  9. N. F. Loureiro, A. A. Schekochihin and S. C. Cowley, “Instability of current sheets and formation of plasmoid chains”, Phys. Plasmas, 14, 100703 (2007)
  10. N. F. Loureiro, S. C. Cowley, W. D. Dorland, M. G. Haines and A. A. Schekochihin, “X-point collapse and saturation in the nonlinear tearing-mode reconnection”, Phys. Rev. Lett., 95, 235003 (2005)

Teaching

22.15 Essential Numerical Methods
22.615 MHD Theory of Fusion Systems
22.THT Undergraduate Thesis tutorial
22.S902 Advanced Plasma Physics

News

Recent News