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ODD PERFECT NUMBERS, DIOPHANTINE EQUATIONS,

AND UPPER BOUNDS

PACE P. NIELSEN

Abstract. We obtain a new upper bound for odd multiperfect numbers. If
N is an odd perfect number with k distinct prime divisors and P is its largest

prime divisor, we find as a corollary that 1012P 2N < 24
k
. Using this new

bound, and extensive computations, we derive the inequality k ≥ 10.

Introduction

One of the oldest unsolved problems in mathematics is whether there exists an
odd perfect number N . There are many roadblocks to the existence of such a
number. For instance, from [14] we now know that N > 101500 and N has at
least 101 prime factors (counting multiplicity). If k is the number of distinct prime

factors, then as proved in [12, 13] we have k ≥ 9 and N < 24
k

. A list of other
restrictions can be found in [13].

While work with odd perfect numbers has been mostly computational, the bound

N < 24
k

is a purely theoretical result. Due to its doubly exponential growth it has
not been used seriously in calculations. In this paper we find a way to make this
upper bound an effective estimation tool. As an application, we are able to prove
that an odd perfect number must have at least 10 distinct prime factors.

The following is a brief outline of the paper. In §1 the focus is on generalizing

the upper bound N < 24
k

, and improving it in a small, but important, way. This
generalization works for odd multiperfect numbers, for the spoof odd perfect num-
bers, and in more abstract settings. In §2, by applying this new upper bound we
show that if p and q are distinct primes and paqb||N , then there are reasonably
sized bounds on a and b in terms of k, the number of distinct prime divisors. Due
to a massive computation, taking a few months, it follows that gcd(σ(pa), σ(qb))
has only moderately sized prime divisors. In §3 we describe improvements to the
methods in [13], taking advantage of the new information we have. This is followed
by another computer calculation, proving that any odd perfect number has at least
10 distinct prime factors. Finally, in §4 we describe one of many roadblocks which
prevents us from proving k > 10.

Starting in §2, readers should be familiar with basic facts about odd perfect num-
bers, including knowledge of congruence restrictions related to the special prime.
As this paper is an extension of the methods used in [13], starting in §3 the reader
should be familiar with the ideas in that paper.
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1. A better upper bound

Let N be a positive integer. Following the literature, N is said (in increasing
order of generality) to be perfect when σ(N)/N = 2, multiperfect when σ(N)/N ∈
Z, and n/d-perfect when σ(N)/N = n/d. For simplicity, we will always assume
n, d ∈ Z>0. Note that n/d does not need to be in lowest terms. Writing N =∏k

i=1 p
ei
i where p1 < . . . < pk are the prime divisors of N , the equation σ(N)/N =

n/d can be rewritten as

d
k∏

i=1

⎛
⎝ ei∑

j=0

pji

⎞
⎠ = n

k∏
i=1

peii .

This motivates us to look at the Diophantine equation

(1) d

k∏
i=1

⎛
⎝ ei∑

j=0

xj
i

⎞
⎠ = n

k∏
i=1

xei
i

in k variables x1, . . . , xk. It turns out that if we fix k and look for integer solutions
with the xi’s greater than 1 and odd, then there are finitely many solutions. In

fact, there is an explicit upper bound on
∏k

i=1 x
ei
i in terms of n, d, and k, but

independent of the ei. Many of the ideas for this result flow from proofs in [4,7,12].
As we will generalize and improve these results, and as some of the proofs are
scattered in the literature, we include all the needed pieces here.

Lemma 1.1. Let x1, x2, w ∈ R>0, and assume w < 1. We have

(2)

(
1− 1

x1

)(
1− 1

x2

)
≥

(
1− 1

wx1

)(
1− 1

w−1x2

)
if and only if w ≤ x2/x1. Furthermore, equality holds in (2) if and only if w =
x2/x1. In particular, if x1 ≤ x2, then strict inequality holds in (2).

Proof. This follows from basic algebraic manipulation. Note that we can charac-
terize equality and strict inequality in (2) under the much weaker assumption that
x1, x2, and w are nonzero. However, there is no need for this generality. �
Lemma 1.2. Let 1 < x1 ≤ x2 ≤ . . . ≤ xn and 1 < y1 ≤ y2 ≤ . . . ≤ yn be
nondecreasing sequences of real numbers satisfying

(3)
m∏
i=1

xi ≤
m∏
i=1

yi

for every m in the range 1 ≤ m ≤ n. Then we have

(4)
n∏

i=1

(
1− 1

xi

)
≤

n∏
i=1

(
1− 1

yi

)
,

where equality holds if and only if xi = yi for every i ≥ 1.

Proof. We follow Cook [4], but improve a little. We wish to minimize

(5)
n∏

i=1

(
1− 1

yi

)

subject to the constraints that the yi form a nondecreasing sequence and satisfy
(3) for each m. If we set N =

∏n
i=1 xi, then lowering each yi which is bigger than
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N down to N will only decrease (5). Thus, we see that any minimizing solution
belongs to the compact set inside the box [x1, N ]n subject to the constraints given
in (3) and the constraint that the yi are nondecreasing. (The inequality y1 > 1 is
an open condition, but the closed condition y1 ≥ x1 implies it.) Thus we may fix
the yi so that they in fact minimize (5).

Assume, by way of contradiction, that this minimizing solution does not agree
with the xi. We let r be the first index where xr �= yr, and so from (3) we have
xr < yr. As the yi minimize (5), we see that r < n. We let t be the largest index
where yt = yr+1.

Define the new sequence

zi =

⎧⎪⎨
⎪⎩
yi if i �= r, t,

wyr if i = r,

w−1yt if i = t,

for some real number w with 0 < w < 1 to be further specified shortly. Consider
what happens if we replace the yi’s with the zi’s. First, we choose w so that it
satisfies w > yr−1/yr (where yr−1 = 1 in case r = 1), and also w > yt/yt+1 (where
this condition is vacuously satisfied if t = n). With these assumptions on w, the
new sequence {zi} satisfies 1 < z1 ≤ z2 ≤ . . . ≤ zn. Second, the quantity (5)
decreases by Lemma 1.1. Third, (3) still holds when m < r or m ≥ t, since in those
cases

∏m
i=1 yi =

∏m
i=1 zi.

We can make (3) hold for an m in the interval r ≤ m < t, if we have a strict
inequality

∏m
i=1 xi <

∏m
i=1 yi (by assuming w >

∏m
i=1 xi/yi for each such m).

Notice that this strict inequality does hold when m = r. However, if the strict
inequality held for all m in the interval r < m < t, then this would contradict our
assumption that the yi’s were a minimizing choice.

Thus, we must have an equality

(6)

s∏
i=1

xi =

s∏
i=1

yi

for some s satisfying r < s < t. By the definition of r we also have the equality∏r−1
i=1 xi =

∏r−1
i=1 yi, hence

(7)
s∏

i=r

xi =
s∏

i=r

yi.

Recall that xr < yr and that yr+1 = yr+2 = · · · = ys = · · · = yt. Thus (7) turns
into

∏s
i=r+1 xi >

∏s
i=r+1 yi = ys−r

s . As the xi are a nondecreasing sequence, we
have

xs+1 ≥ xs ≥
(

s∏
i=r+1

xi

)1/(s−r)

> ys = ys+1,

where the last equality holds since r + 1 ≤ s < t (using the definition of t). But

then (6) implies
∏s+1

i=1 xi >
∏s+1

i=1 yi, contradicting (3) when m = s+ 1.
As we reached a contradiction in every case, this proves that the only minimizing

solution is when xi = yi for every i ≥ 1. �

Before putting the previous lemma to good use, we need one more straightfor-
ward result.
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Lemma 1.3. Let r ∈ Z>0 and define Fr : R≥1 → R≥0 by the rule Fr(x) =

x2r − x2r−1

. The function Fr is monotonically increasing.

Proof. Indeed, the derivative F ′
r(x)=2rx2r−1−2r−1x2r−1−1=2r−1x2r−1−1(2x2r−1−1)

is positive when x ≥ 1. �

The following is just a slight strengthening of [12, Lemma 1], allowing equality
among the xi’s.

Lemma 1.4. Let r, a, b ∈ Z>0 and let x1, . . . , xr be integers with 1 < x1 ≤ . . . ≤ xr.
If

(8)
r∏

i=1

(
1− 1

xi

)
≤ a

b
<

r−1∏
i=1

(
1− 1

xi

)
,

then a
∏r

i=1 xi ≤ (a+ 1)2
r − (a+ 1)2

r−1

.

Proof. Work by induction on r ≥ 1. Notice that a < b in any case. When r = 1 we
have x1 ≤ b/(b − a) which is maximized when b = a + 1. Thus ax1 ≤ a(a + 1) =

(a+ 1)2
1 − (a+ 1)2

0

.
Now assume that r ≥ 2 and also assume that the lemma holds for all integers

smaller than r (and for any choices for a and b). Treating a as a fixed constant, we
can assume that b has been chosen, along with integers 1 < x1 ≤ x2 ≤ . . . ≤ xr,

so that
∏r

i=1 xi is maximal and (8) holds. Next, set ni = (a+ 1)2
i−1

+ 1 for i < r,

and set nr = (a+ 1)2
r−1

. We have 1 < n1 < n2 < . . . < nr and

r∏
i=1

(
1− 1

ni

)
=

a

a+ 1
<

r−1∏
i=1

(
1− 1

ni

)
.

Thus, from our maximality assumption,

(9)
r∏

i=1

ni ≤
r∏

i=1

xi.

If ax1 < an1 = (a+ 1)2 − 1, then after multiplying (8) by x1

x1−1 we have

r∏
i=2

(
1− 1

xi

)
≤ ax1

b(x1 − 1)
<

r−1∏
i=2

(
1− 1

xi

)
.

The induction hypothesis implies (ax1)
∏r

i=2 xi ≤ (ax1 + 1)2
r−1 − (ax1 + 1)2

r−2

<

(a+ 1)2
r − (a+ 1)2

r−1

. Thus we may as well assume n1 ≤ x1.
If ax1x2 < an1n2 = (a + 1)4 − 1, then multiplying (8) by x1x2

(x1−1)(x2−1) and

performing a similar computation yields the upper bound we seek. Thus we may
assume n1n2 ≤ x1x2. Repeating this argument, we have

∏m
i=1 ni ≤

∏m
i=1 xi for

1 ≤ m < r. But this also holds when m = r by (9).
Lemma 1.2 now applies, so we have

r∏
i=1

(
1− 1

xi

)
≥

r∏
i=1

(
1− 1

ni

)
=

a

a+ 1
;
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but as (8) holds for some b we must have b = a+1. Again, appealing to Lemma 1.2,
we have xi = ni for all i ≥ 1. In this case, we compute

a
r∏

i=1

ni = (a+ 1)2
r − (a+ 1)2

r−1

as desired. �

Remark. The bound given in the lemma is the best possible in case b = a + 1.
To simplify notation, throughout the paper we let Fr be defined as in Lemma 1.3.
Thus, (8) says

a

r∏
i=1

xi ≤ Fr(a+ 1).

We also define F0(x) := x− 1.

Notation. Let X be a finite set of integers. We write Π(X) for
∏

x∈X x, with the
empty product equaling 1. We will also write Π′(X) for

∏
x∈X(x− 1).

The following lemma is an improvement on the author’s work in [12], and also
improves on the recent paper [3]. While seemingly innocuous, the improved result
has far-reaching effects. (The main difference is the denominator of inequality (ii).)

Lemma 1.5 (cf. [12, Theorem 1], [7, Lemma 2]). Let k, n, d ∈ Z>0. Suppose (1)
holds for some choice of positive integer exponents {e1, . . . , ek}, and odd integers
X = {x1, . . . , xk} each greater than 1. Let S be a (possibly empty) subset of X.
There exist sets S′, S′′ ⊆ X satisfying S ∩ S′ = ∅, ∅ �= S′′ ⊆ S ∪ S′, and such
that if we let w = |S′|, v = |S′′|, T = (S ∪ S′) \ S′′, δ = d

∏
xi∈S′′

∑ei
j=0 x

j
i , and

ν = n
∏

xi∈S′′ x
ei
i , then:

(i) δ
∏

xi∈X\S′′

(∑ei
j=0 x

j
i

)
= ν

∏
xi∈X\S′′ x

ei
i .

(ii) δΠ(T ) < 1
Π(S′′)Π′(S′′)Fv+w(dΠ(S) + 1).

Proof. We are assuming that the elements in X are odd, and so the fraction n/d,
when written in lowest terms, has odd denominator. In particular,

(10)
∏
xi∈S

(
1− 1

xi

)
�= d

n
.

Thus, we have two cases to consider.

Case 1.
∏

xi∈S

(
1− 1

xi

)
> d

n .

In this case, set d′ = dΠ(S) and n′ = nΠ′(S). From
∏

xi∈S

(
1− 1

xi

)
> d

n we see

d′/n′ < 1. Further, we calculate

∏
xi∈X

(
1− 1

xi

)
<

∏
xi∈X

(
xi − 1

xi − 1
x
ei
i

)
=

∏
xi∈X

xei
i∑ei

j=0 x
j
i

=
d

n
.

Therefore

(11)
∏
xi /∈S

(
1− 1

xi

)
<

d′

n′ < 1.
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This implies that there is a subset S′ ⊆ X\S such that if we write S′ = {y1, . . . , yw}
with y1 ≤ . . . ≤ yw, then

w∏
i=1

(
1− 1

yi

)
≤ d′

n′ <
w−1∏
i=1

(
1− 1

yi

)

and so by Lemma 1.4 we have d′Π(S′) ≤ Fw(d
′ + 1). Using the definition of d′ we

rewrite this as

(12) dΠ(S)Π(S′) ≤ Fw(dΠ(S) + 1).

Notice that we also have

(13)
∏

xi∈S∪S′

(
1− 1

xi

)
<

d

n
.

This completes the construction of S′ in Case 1.

Case 2.
∏

xi∈S

(
1− 1

xi

)
< d

n .

We set S′ = ∅ (so w = 0). We note that inequalities (12) and (13) still hold in
this case.

The construction of the set S′′ is the same in both Case 1 and Case 2. We only
need to know that inequalities (12) and (13) hold in both cases, so we continue
with the general construction. Put d′′ = dΠ(S)Π(S′) and n′′ = nΠ′(S)Π′(S′).
Inequality (13) is equivalent to n′′/d′′ < 1, which we will use shortly. We calculate

∏
xi∈S∪S′

1− 1

x
ei+1

i

1− 1
xi

=
∏

xi∈S∪S′

∑ei
j=0 x

j
i

xei
i

≤
∏

xi∈X

∑ei
j=0 x

j
i

xei
i

=
n

d

and hence

(14)
∏

xi∈S∪S′

(
1− 1

xei+1
i

)
≤ n′′

d′′
< 1.

We pick a subset S′′ = {z1, . . . , zv} ⊆ S ∪ S′ such that z
e(z1)+1
1 ≤ . . . ≤ z

e(zv)+1
v

and

v∏
i=1

(
1− 1

z
e(zi)+1
i

)
≤ n′′

d′′
<

v−1∏
i=1

(
1− 1

z
e(zi)+1
i

)
.

(By e(zi) we mean the exponent corresponding to zi.) By Lemma 1.4, and the
inequality n′′ < d′′, we have

(15) n′′
∏

xi∈S′′

xei+1
i ≤ Fv(n

′′ + 1) ≤ Fv(d
′′) = Fv(dΠ(S)Π(S′)).

This completes the construction of S′′. We now only need to verify properties (i)
and (ii). Property (i) is obvious, coming from equation (1). For property (ii), we
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compute

δΠ(T ) = d
∏

xi∈S′′

(
xei+1
i − 1

xi − 1

)
Π(S)Π(S′)

Π(S′′)
by the definition of δ and T

=
1

Π(S′′)Π′(S′′)
d′′

∏
xi∈S′′

(xei+1
i − 1) by the definition of d′′

≤ 1

Π(S′′)Π′(S′′)
n′′

∏
xi∈S′′

xei+1
i by inequality (14)

≤ 1

Π(S′′)Π′(S′′)
Fv(dΠ(S)Π(S′)) by inequality (15)

≤ 1

Π(S′′)Π′(S′′)
Fv(Fw(dΠ(S) + 1)) by inequality (12)

<
1

Π(S′′)Π′(S′′)
Fv+w(dΠ(S) + 1).

Thus, we have established the needed inequality. �
We are now ready to put all of these lemmas together to prove an improved upper

bound on odd multiperfect numbers. The improvement from previous results is in
the denominator term.

Theorem 1.6. Let k, n, d ∈ Z>0, and suppose equation (1) holds for some choice
of positive integer exponents {e1, . . . , ek} and odd integers X = {x1, . . . , xk} each
greater than 1. In this case

k∏
i=1

xei
i <

F2k(d+ 1)

nΠ(X)Π′(X)
<

(d+ 1)2
2k

nΠ(X)Π′(X)
.

Proof. Let X0 = X, n0 = n, d0 = d, and S0 = ∅. Using Lemma 1.5, we can
construct S′

0, S
′′
0 , w0, v0, ν0, δ0, and T0 (using the same notation, just with the

extra subscript) satisfying properties (i) and (ii). Thus

(16) δ0
∏

xi∈X0\S′′
0

⎛
⎝ ei∑

j=0

xj
i

⎞
⎠ = ν0

∏
xi∈X0\S′′

0

xei
i .

Putting X1 = X0 \S′′
0 , S1 = T0, n1 = ν0, and d1 = δ0, we see from equation (16)

that we can again use Lemma 1.5. Hence, we can construct S′
1, S

′′
1 , T

′
1, and so

forth. We continue this process of repeatedly using Lemma 1.5, increasing the
indices at every step. Since S′′

i �= ∅, we see that X0 � X1 � . . ., and so this
process must terminate (in at least k steps), say Xr+1 = ∅. Further, we see that∑r

i=0 wi =
∑r

i=0 vi = k (since for each element x ∈ X there are unique indices
i ≤ j such that x is added into S′

i, and then put into S′′
j ).

Using property (ii), repeatedly, we have

dr+1Π(Sr+1) <
1

Π(S′′
r )Π′(S′′

r )
Fwr+vr (drΠ(Sr) + 1)

≤ 1

Π(S′′
r )Π′(S′′

r )
Fwr+vr

(
1

Π(S′′
r−1)Π

′(S′′
r−1)

Fwr−1+vr−1(dr−1Π(Sr−1) + 1) + 1

)

<
1

Π(S′′
r )Π′(S′′

r )
Fwr+vr

(
1

Π(S′′
r−1)Π

′(S′′
r−1)

(dr−1Π(Sr−1) + 1)2
wr−1+vr−1

+ 1

)
.
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Note that wr ≥ 1, and vi ≥ 1 for each i. Also observe that (dr−1Π(Sr−1)+1)2
wr−1 ≥

Π(S′′
r−1) by (12). Thus

Fwr+vr

(
1

Π(S′′
r−1)Π

′(S′′
r−1)

(dr−1Π(Sr−1) + 1)2
wr−1+vr−1

+ 1

)

≤ Fwr+vr

(
1

Π(S′′
r−1)

(dr−1Π(Sr−1) + 1)2
wr−1+vr−1

)

≤ 1

Π(S′′
r−1)

2
Fwr+vr

(
(dr−1Π(Sr−1) + 1)2

wr−1+vr−1
)

=
1

Π(S′′
r−1)

2
Fwr+vr+wr−1+vr−1

(dr−1Π(Sr−1) + 1).

Continuing our inequality from before, and repeating the ideas used in the compu-
tations above, we have

dr+1Π(Sr+1) <
1

Π(S′′
r )Π

′(S′′
r )Π(S′′

r−1)
2
Fwr−1+wr+vr−1+vr (dr−1Π(Sr−1) + 1)

<
1

Π(S′′
r ∪ S′′

r−1)Π
′(S′′

r ∪ S′′
r−1)

Fwr−1+wr+vr−1+vr (dr−1Π(Sr−1) + 1)

< . . . <
1

Π(
⋃r

i=0 S
′′
i )Π

′(
⋃r

i=0 S
′′
i )

F∑r
i=0(wi+vi)(d0Π(S0) + 1)

=
1

Π(X)Π′(X)
F2k(d0Π(S0) + 1).

Now, d0 = d, S0 = Sr+1 = ∅, and dr+1 = d
∏

xi∈X
x
ei+1

i −1

xi−1 = n
∏

xi∈X xei
i . Plug-

ging these values into the inequality above, we obtain the theorem. �

Remark. It is believed that there are an infinite number of even perfect numbers.
Such numbers necessarily have exactly two distinct prime factors. Thus, the previ-
ous theorem should (at least conjecturally) prove false if we do not stipulate that
the xi are odd, even if we force the xi to be prime. In any case, we do have the
infinite family of solutions to (1) when k = 2, x1 = 2, x2 = 2m − 1, for n = 2,
d = 1, e1 = m− 1, and e2 = 1, when we remove the hypothesis that the xi are odd.
There also exist more exotic infinite families like x1 = 3, x2 = 3, x3 = 3m − 1, for
n = 2, d = 1, e1 = 1, e2 = m− 1, and e3 = 1.

Remark. The hypotheses in the previous theorem are weak enough to capture the
so-called “spoof” odd perfect number constructed by Descartes; N = 3272112132

220211, where 22021 = 19261 is treated as a prime. According to the work of
Dittmer [5], there are no other spoofs of this sort with k ≤ 7. On the other hand,
our conditions are not weak enough to capture spoofs involving negative integers,
such as N = 2332(−5)1(−13)1 which is attributed to Greg Martin.

Using a clever idea from [3] (which was independently suggested to me by Mitsuo
Kobayashi), we can find a cleaner upper bound.

Corollary 1.7. Using the assumptions and notations of Theorem 1.6, and setting

N =
∏k

i=1 x
ei
i , the following chain of inequalities holds:

(17) N < d
F2k(d+ 1)

Fk+1(d+ 1)
< d(d+ 1)(2

k−1)2 .
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In particular, when N is an odd multiperfect number we achieve

(18) N < 2(2
k−1)2 .

Proof. By hypothesis, we have the equality

k∏
i=1

xei+1
i − 1

xei
i (xi − 1)

=
n

d

which we can rewrite in the form

k∏
i=1

(
1− 1

xei+1
i

)
=

nΠ′(X)

dΠ(X)
.

Applying Lemma 1.4 with a = nΠ′(X) and b = dΠ(X), we see that

nΠ′(X)

k∏
i=1

xei+1
i = nΠ′(X)Π(X)N ≤ Fk(nΠ

′(X) + 1).

After dividing both sides by nΠ′(X)Π(X), and using the fact that dΠ(X) ≥
nΠ′(X) + 1, we arrive at the inequality

(19) N ≤ d
(nΠ′(X) + 1)2

k − (nΠ′(X) + 1)2
k−1

(nΠ′(X) + 1)2 − (nΠ′(X) + 1)
.

If nΠ′(X) + 1 < (d+ 1)2
k

, then as the quantity on the right-hand side of (19) is
a strictly increasing function in terms of nΠ′(X) + 1, we obtain the first inequality

in (17). On the other hand, if nΠ′(X)+ 1 ≥ (d+1)2
k

, then using the bound found
in Theorem 1.6, we again achieve the first inequality in (17).

Now, we prove the second inequality in (17). As (yab − 1)/(ya − 1) = yab−a +
yab−2a + · · ·+ ya + 1 < yab−a+1 (for y ≥ 2), we calculate

d
(d+ 1)2

2k − (d+ 1)2
2k−1

(d+ 1)2k+1 − (d+ 1)2k
= d(d+ 1)2

2k−1−2k (d+ 1)2
2k−1 − 1

(d+ 1)2k − 1

< d(d+ 1)2
2k−1−2k+22k−1−2k+1 = d(d+ 1)(2

k−1)2 .

For the last statement, take d = 1. �

Those familiar with the bounds in [3, 12] will notice that these new bounds are
not significantly smaller. For the purposes of this paper, we want to concentrate
on the situation where N is divisible by a large prime. Hence, in what follows we
do not want to incorporate the Π(X) and Π′(X) terms into an upper bound for N .
This naturally leads to an inequality that seems much weaker, but will often suffice
for our purposes.

Corollary 1.8. Let N be an odd perfect number with k distinct prime factors. If

P is the largest prime factor of N , then 1012P 2N < 24
k

.

Proof. Since N is perfect we take n = 2 and d = 1. Clearly, 2(P − 1) > P . It is
known, due to work of Iannucci [8, 9] that the second largest prime factor of N is
bigger than 104, and the third largest prime factor is bigger than 102. The corollary
now follows by specializing the main result of Theorem 1.6 to this case. �
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In the past, these types of theoretical upper bounds on odd perfect numbers were
of little use in calculations due to their doubly exponential growth. However, in the
next section we find a way to exploit the existence of very large prime divisors of
N (when they occur), which then makes the upper bound a feasible computational
tool.

2. Using the GCD algorithm

In [13] it was proved that if N is an odd perfect number with k distinct prime
factors, p is a Fermat prime, and pa||N with a large, then the special prime factor
of N is large. In particular, we can use this fact in conjunction with Corollary 1.8
to obtain an upper bound on the size of the special prime, and hence on the size of
a. To do so, we first need to recall a few well-known results.

The next three lemmas state some limitations on the exponent a. In particular,
it cannot have too many prime divisors or be too large.

Lemma 2.1. Let p be a prime and let N be an odd perfect number with k distinct
prime divisors. If pa||N with a ∈ Z>0, then σ0(a+ 1) ≤ k.

Proof. Weaken [13, Lemma 4]. �

Lemma 2.2. Let p be a Fermat prime, let N be an odd perfect number, and let π
be the special prime factor. Let a,m ∈ Z>0. If pm|(π + 1) and pa||N with a < 3m,
then π � σ(pa).

Proof. This is a specialization of [1, Lemma 1]. �

Lemma 2.3. Let q be a Fermat prime, let N be an odd perfect number with k
distinct prime factors, let π be the special prime factor, and suppose qa|N for some
a ∈ Z>0. If a > (k − 1)(k − 2), then 2qa−(k−2)(k−3)−�(k−2)/2�|(π + 1).

Proof. This is a significant weakening of [13, Proposition 7]. (In the notation of
that proposition, we take b = 0 and assume q is the only known prime. Thus
k2 = k − 1 and k′1 = �′1 = 0.) Compare with [16, Proposition 3.1]. �

The following proposition takes these lemmas and in conjunction with the main
theorem of the previous section finds strong upper bounds on the exponent a.

Proposition 2.4. Let p and q be odd, distinct primes less than 180, and let T =
{3, 5, 17}. Let N be an odd perfect number with k ≤ 9 distinct prime divisors.
Suppose pa||N , qb||N , and 10100 < pa < qb for some a, b ∈ Z>0.

(i) If p, q ∈ T , then

a <
1

10

(
49 log(2) + 147 log(q)− 12 log(10)

log(p)
+ 147

)
.

(ii) If p ∈ T and q /∈ T , then

a <
1

6

(
49 log(2) + 12 log(q)− 12 log(10)

log(p)
+ 102

)
.

(iii) If p /∈ T and q ∈ T , then

a <
1

6

(
49 log(2) + 102 log(q)− 12 log(10)

log(p)
+ 12

)
.
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(iv) If p, q /∈ T , then

a <
1

4

(
49 log(2) + 12 log(q)− 12 log(10)

log(p)
+ 12

)
.

Proof. A quick computer search, restricting to odd primes p and q less than 180,
demonstrates that if qp−1 ≡ 1 (mod pn), then n ≤ 3 except for the pair (p, q) =
(3, 163). For those pairs (p, q) �= (3, 163), by Lemma 2.1 and [13, Lemma 2] we have
vp(σ(q

b)) ≤ k+3. This inequality also holds for the exceptional pair (p, q) = (3, 163)
since the multiplicative order of 163 modulo 3 is 1 and 163 cannot be the special
prime. Similarly, vq(σ(p

a)) ≤ k + 3. (We also note that there is only one pair
with qp−1 ≡ 1 (mod p3) for which similar reasoning does not allow us to use the
slightly better bound k + 2, namely, (p, q) = (3, 53). But such an improvement is
not significant, and we will not pursue it here.)

By Corollary 1.8 we find

24
9

> 10122N � 10122paqb
(

σ(paqb)

2pk+3qk+3

)
> 1012

p4a−12

q12
.

Note that the term inside the large parentheses consists of divisors of N relatively
prime to p and q (possibly with extra factors in the denominator), which is how we
obtain the second inequality. Solving for a yields the bound in part (iv).

Now suppose for a moment that p is a Fermat prime in T . Since k ≤ 9, we have
(k − 1)(k − 2) ≤ 56. But 1780 < 10100 so a > 80. Lemma 2.3 then yields

2pa−45|2pa−(k−2)(k−3)−�(k−2)/2�|(π + 1).

From a > 80 we obtain 3(a− 45) > a, so by Lemma 2.2 we conclude that π � σ(pa).
If q is a Fermat prime in T , then by the same analysis we obtain π � σ(qb) and
2qb−45|(π+1). In either case, we see that neither p nor q can be the special prime.

In case (iii), when q is a Fermat prime in T (and p is not), we compute

24
9

> 1012P 2N � 1012π2paqb
σ(paqb)

pk+3qk+3
> 1012q4b−102p2a−12 > 1012p6a−12q−102.

When p is a Fermat prime in T (but q is not) we similarly find

24
9

> 1012P 2N � 1012π2paqb
σ(paqb)

pk+3qk+3
> 1012p6a−102q−12.

Finally, in case (i) we know 2pa−45qb−45|(π + 1). So we have

24
9

> 1012P 2N � 1012π3paqb
σ(paqb)

pk+3qk+3
> 1012p10a−147q−147.

The extra π comes from N , since π � σ(paqb) in this case. Solving for a in the above
inequalities yields the stated bounds. �

The numbers in this proposition are not chosen to be the strongest possible,
but rather to be convenient for the case k = 9. If some of the hypotheses are
strengthened then the proposition will work (with modified bounds) for larger k
and larger primes. The real strength of the proposition is in the fraction out front.
We can use, with little loss in computational speed, the more uniform bound

1

ε

(
4k log(2)

log(p)
+ C(k, q)

)
,
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where C(k, q) is some constant depending only on k and q, and where ε is 4, 6, or
10 depending on the number of Fermat primes among {p, q}. Similar statements
apply to the following proposition.

Proposition 2.5. Let p and q be odd, distinct primes less than 180, and let T =
{3, 5, 17}. Let N be an odd perfect number with k ≤ 9 distinct prime divisors.
Suppose pa||N , qb||N , and 10100 < pa < qb for some a, b ∈ Z>0.

(i) If p, q ∈ T , then

b <
1

5

(
49 log(2)− (5a− 147) log(p)− 12 log(10)

log(q)
+ 147

)
.

(ii) If p ∈ T and q /∈ T , then

b <
1

2

(
49 log(2)− (4a− 102) log(p)− 12 log(10)

log(q)
+ 12

)
.

(iii) If p /∈ T and q ∈ T , then

b <
1

5

(
49 log(2)− (a− 12) log(p)− 12 log(10)

log(q)
+ 135

)
.

(iv) If p, q /∈ T , then

b <
1

2

(
49 log(2)− (2a− 12) log(p)− 12 log(10)

log(q)
+ 12

)
.

Proof. One does an analysis as in the previous proposition. The only difficulty is
deciding to use the lower bound 1012P 2N ≥ 1012π2paqbσ(paqb)/(pk+3qk+3) when
p ∈ T and q is not, and to use 1012P 2N ≥ 1012π3paqbσ(qb)/pk+3 when q ∈ T and
p is not. In case (i) we find

24
9

> 1012P 2N > 1012π3paqb
σ(paqb)

pk+3qk+3
> 1012p5a−147q5b−147.

Solving for b gives the needed bound. The other cases are similar and are left to
the reader. �

Remark. One also has the inequality b > a log(p)
log(q) in all cases, as pa < qb.

When searching through candidate odd perfect numbers N , one often can reduce
to the case when N is divisible by a prime power pa||N with a large. Using con-
gruence conditions, when a is large enough one can show that there exists a very
big prime factor Q1 of N . Historically, it was considerations such as this which led
to the proofs in [15] and then [2,6] that odd perfect numbers must have seven, and
then eight, distinct prime factors. In [13], the insight which improved the number
of distinct prime factors to nine was that not only do congruence conditions yield a
very large prime factor Q1, but there must also be another large prime Q′

1 > 1011

(which, in practice, is not quite as large as Q1) that divides σ(p
a). If one can show

the existence of a third large prime, further improvements can be made.
The propositions above are the key tool to finding a possible third large prime

divisor. First, reduce to the case where we have two different prime powers pa||N
and qb||N with a, b large. The sizes of a and b are bounded above. We know that
there should be a large prime divisor Q′

1 of σ(pa) and a large prime divisor Q′
2

for σ(qb). Our aim is to show that Q′
1 and Q′

2 are not equal. Thus, we compute
gcd(σ(pa), σ(qb)) (for a, b limited to the ranges given in the propositions above),
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and find that there are no common large primes. This computation was run in
Mathematica, on a single core, over the course of a few months. We summarize the
results of this computation as follows.

Theorem 2.6. Let p and q be odd, distinct primes, less than 105. Let N be an
odd perfect number with k ≤ 9 distinct prime divisors. Suppose pa||N , qb||N , and
10100 < pa < qb for some a, b ∈ Z>0. Then the largest prime which divides both
σ(pa) and σ(qb) is smaller than 1011.

The number 1011 was chosen to be compatible with the bounds developed in
[13], and it was fortunate that it was sufficiently large to preclude the existence of
counterexamples. While the existence of large common prime divisors is very scarce,
there are still some close calls, such as 27866489501 dividing gcd(σ(pa), σ(qb)) with
p = 59, a = 2874, q = 7, and b = 15394. Another close call occurred with the prime
17622719441, for inputs p = 103, a = 3598, q = 61, and b = 11833. Even so, if we
were to reduce 1011 to 1010 then we could still easily deal with those examples that
arise. (The two just mentioned are the only two larger than 1010.)

The assumption in Theorem 2.6 that N is an odd perfect number is used in two
ways. First, we can use the bounds given in the previous propositions. Second, we
may limit the exponents a and b even further (according to whether or not p or q
can be the special prime). The code for these (and other) computations is available
on the author’s website.

3. Improvements to lemmas in the literature

For the remainder of this paper we will assume that the reader is familiar with
the paper [13]. We will freely use the notations, definitions, and results given there.
Some of the lemmas in that paper are streamlined to work for odd perfect numbers
with k ≤ 8 distinct prime factors. Some further computation is needed to allow the
case k = 9. Below is a full list of the changes we make to the methods employed in
[13].

First, the precompiled table of factorizations of σ(pa), when p and a are small,
requires extension. When p < 30 the factorization of σ(pa) is entered into the table
as long as pa < 10200. If 30 < p < 105, then we list factorizations when pa < 10150.
For the primes 105 < p < 10000, we use the upper bound pa < 1050. Finally, for
primes p > 104, factorizations are not put in a table, but rather we compute them
as needed, and only compute them when pa < 1030. The cutoffs 10200, 10150, 1050,
and 1030 are used to decide when a prime power becomes infinite (in the sense of
[13]). For the primes p < 30, this bound is getting close to the best upper bound
possible using current factoring algorithms.

Second, we improve Lemma 9 from that paper as follows:

Lemma 3.1. Let p be an odd prime and let q ∈ {3, 5, 17}. If qp−1 ≡ 1 (mod p2),
then either (q, p) = (3, 11), (q, p) = (17, 3), or qop(q)− 1 has a prime divisor greater
than 1014.

Proof. If p > 1014, then p is the needed prime divisor. If p < 1014, then there are
only twelve pairs (p, q) with qp−1 ≡ 1 (mod p2), due to a computation reported
in Mossinghoff’s paper [11]. Two cases are exceptional, and they appear in the
statement of this lemma. For each of the other cases we compute all the prime
divisors of qop(q) − 1 less than 1014, and see that the remaining cofactor is not
1. �
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Our third change is that Proposition 10 in [13] can be improved as follows.

Proposition 3.2. Let N be an odd perfect number with k, k1, and k2 having their
usual meanings. Suppose q ∈ {3, 5, 17} is a known prime divisor of N , qn||N ,
q �= π, and π � σ(qn). Suppose p1, . . . , pk1−1 are the other known prime factors of
N , besides q. For each i = 1, 2, . . . , k1 − 1 define

εi =

⎧⎪⎨
⎪⎩
0 if o′pi

(q) = 0,

max(s+ t− 1, 1) if o′pi
(q) �= 0, where s = vpi

(σ(qopi (q)−1))

and t ∈ Z+ is minimal so that pti > 100.

Set V =
∏k1−1

i=1 pεii . Suppose π is among the k2 unknown prime factors. Finally,
assume that all unknown prime factors are greater than 100.

If
min

(
σ(qn)/V ), σ(q100/V )

)
> 1,

then k2 > 1. In that case, if

min

(
1014,

(
σ(qn)

V

) 1
k2−1

,

(
σ(q100)

V

) 1
k2−1

)
> 1,

then σ(qn) has a prime divisor among the unknown primes at least as big as this
minimum.

Proof. There are two differences between this proposition and the original result.
The easier change is that we replaced both 1011 and 1013 by 1014, which follows
by citing Lemma 3.1 above. The other change is that instead of merely assuming
k2 > 1, we claim it is a consequence of the inequality min

(
σ(qn)/V ), σ(q100/V )

)
>

1. This new implication follows immediately from the ideas present in the original
proof. �

The fourth change is that after a short computation Lemma 12 in [13] now holds
within the range q < 104 and p≥min(qn−2, 101000). The exact statement of the
improved result is the following.

Lemma 3.3. Let q < 104 be an odd prime. If pq−1 ≡ 1 (mod qn) for some n ∈ Z+

and some odd prime p, then p ≥ min(qn−2, 101000) except when

(p, q) = (40663372766570611389846294355914421, 7).

Note that the special case of this lemma causes no problems when k = 9 since
oq(p) = 6 and σ(p5) gives rise to twelve additional distinct prime factors of N .

Fifth, we improve Proposition 14 in [13] by replacing 1050 with 101000. (This
change merely involves a quick computation.) For completeness we include the full
statement here.

Proposition 3.4. Let N be an odd perfect number, and let q < 1000 be a prime
divisor of N with qn||N . Suppose b, k, k1, k2, �1, �2, k

′
1, and �′1, have the same

meanings as in [13, Proposition 7]. Suppose further that the exceptional case of
the previous lemma doesn’t hold. Let T be the set of known primes with unknown
component, different from q, and �≡ 1 (mod q). Let

τ = n− b−
∑

p∈T, o′q(p) �=0

(
vq(p

oq(p) − 1) +

⌊
k′1 + k2
σ0(oq(p))

⌋)

− (k′1 − �′1 + k2)(k
′
1 + k2 − 1).
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If τ > 0, then one of the unknown primes is not congruent to 1 (mod q). Further,

in this case, one of the unknown primes is at least as large as min(qτ
′−2, 101000)

where

τ ′ = min
1�m�k2

⌈(
n− b−

∑
p∈T, o′q(p) �=0

(
vq(p

oq(p) − 1) +

⌊
k′1 + k2 −m

σ0(oq(p))

⌋)

−(k′1 − �′1 + k2 −m)(k′1 + k2 −m− 1)−m

⌊
k′1 + k2 −m

2

⌋)
/m

⌉
.

Sixth, we can replace Lemma 15 in [13] with the following version (with the same
proof, mutatis mutandis).

Lemma 3.5. Let q be a prime with 7 ≤ q < 1000. Suppose aq−1 ≡ 1 (mod qn) for
some n ∈ Z>0 and some positive integer a with (q−1)|a. Then a≥min(qn−4, 101000).

At this point, all of the changes we have made have consisted mainly of minor
improvements in a few constants. These are achieved by performing computations
which take a day or two on a single core. The seventh change is a significant
improvement to Lemma 16 in [13], which takes a great deal of machine power. I
wish to thank William Lipp for helping distribute the needed factoring over the
internet, and also thank those who helped in that effort. The improved lemma
reads as follows:

Lemma 3.6. Let p and q be primes with 102 < p < 1011 and 7 ≤ q < 180. If
qp−1 ≡ 1 (mod p2), then σ(qop(q)−1) is divisible by two primes greater than 1011.

Proof. The paper [10] lists all 61 pairs (p, q) satisfying the conditions of the lemma.
It should be mentioned that Richard Fischer has recently improved the range of
these computations, and the interested reader is directed to his website: http://

www.fermatquotient.com/FermatQuotienten/

For 56 of those pairs, we have two explicit prime factors of A = σ(qop(q)−1), each
greater than 1011. For another 3 pairs, we have one such prime factor P for which
P 2 � A. Further, after computing all prime factors of A/P less than 1011 we find
that the cofactor is not 1, so there must exist some other prime factor greater than
1011. The explicit factors are listed on Lipp’s website http://home.earthlink.

net/~oddperfect/FermatQuotients.html and are also available on the author’s
personal website.

The remaining two pairs are (p, q) = (1025273, 41) and (q, p) = (122327, 157).
In the first case op(q) = 23 · 128159. Exhaustively removing all of the prime factors
of 41128159 − 1 less than 1011, we find a non-trivial cofactor. Similarly, 41128159 +1
also has a prime divisor larger than 1011. Both of these primes divide A. This deals
with the first case. The second case is dealt with similarly, as op(q) = 2 · 1973. �

It should be mentioned that this lemma can be improved further. Indeed, if p
and q are odd primes in the (larger) ranges q < 1000 and p < 1011, still satisfying
qp−1 ≡ 1(mod p2), then once again all possible pairs (p, q) are known. In many
cases we can again find two explicit prime factors greater than 1011, or find one
explicit factor and prove the existence of a second such prime. However, there are
29 cases, such as (p, q) = (101, 181), for which one, and only one, prime factor larger
than 1011 exists. There are also 166 cases, such as (p, q) = (3, 19), for which no
large prime factors exist. (In those cases usually p is very small, which is why in the

http://www.fermatquotient.com/FermatQuotienten/
http://www.fermatquotient.com/FermatQuotienten/
http://home.earthlink.net/~oddperfect/FermatQuotients.html
http://home.earthlink.net/~oddperfect/FermatQuotients.html
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lemma above we restricted to the range p > 100.) Finally, there are 4 cases, such
as (p, q) = (3443059, 281), where it is likely that there exist two large prime factors,
but we didn’t explicitly prove it because there was no need. (However, one can use

a variant of the upper bound P 2N < 24
k

to easily deal with these remaining cases,
at least when k = 9.)

The eighth change is that the statement of Proposition 17 in [13] can be mod-
ified a great deal, with the only significant change to the proof that we now cite
Lemma 3.6. Here is the precise improved result.

Proposition 3.7. Let N be an odd perfect number and let 7 ≤ q < 180 be a known
prime divisor of N , with qn||N . Let τ, τ ′ be as in Proposition 3.4, suppose all the
hypotheses of that proposition are met, and let p be the guaranteed unknown prime.
Let p1, . . . , pk1−1 be the known primes different from q. Let εi be defined as before,

and put V =
∏k1−1

i=1 pεii . Finally, assume that all unknown prime factors are greater
than 100.

If min
(
σ(qτ

′−4)/V ), σ(q96/V )
)
> 1, then k2 > 1. In that case, if

min

⎛
⎝1011,

(
q96

(q − 1)V

) 1
k2−1

,

(
qτ

′−4

(q − 1)V

) 1
k2−1

⎞
⎠ > 1,

then σ(qn) has a prime divisor, different from p, among the unknown primes, at
least as big as the above minimum.

Proof. The range of the prime q has been improved from q ∈ {7, 11, 13} to the range

7 ≤ q < 180, which we can do by Lemma 3.6. However, the quantity qτ
′−2 from

the original result has been replaced by the slightly worse qτ
′−4 (essentially, to deal

with q = 7). The constant 1050 has been superseded by q96 (noting q96 < 101000).
Similar to Proposition 3.2, the assumption “k2 > 1” has been replaced with the
statement “if min(σ(qτ

′−4)/V ), σ(q96/V )) > 1, then k2 > 1” which is proved in an
analogous manner. �

Note that if min(σ(qτ
′−4)/V ), σ(q96/V )) > 1 holds but k2 = 1, then we reach a

contradiction. So we add this contradiction to the list found in [13, Section 7]. (A
similar statement holds for Proposition 3.2.)

The final change in our implementation of the algorithm in [13] is that when
applying Lemma 20 to find upper bounds on the next unknown prime, we use
Theorem 2.6 above to contribute more large primes. However, Theorem 2.6 does
not automatically prove the existence of a third large prime. In practice, we have
one prime Q1 coming from congruence conditions relative to p, and another prime
Q′

1 > 1011 dividing σ(pa) with Q′
1 �= Q1. Similarly, we have one prime Q2 from

congruence conditions relative to q, and another prime Q′
2 > 1011 dividing σ(qb)

with Q′
2 �= Q2. Theorem 2.6 asserts Q′

1 �= Q′
2, but it could still be the case that

Q2 = Q′
1 and Q1 = Q′

2.
When computing the bounds coming from Lemma 20 in [13] we are thus led

to consider two situations, which we describe now. Suppose our algorithm has
reached a point where we have a list {qa1

1 , qa2
2 , . . . , qan

n } of infinite prime powers in
a suspected odd perfect number. Let Qi be the large prime coming from qi from
the congruence conditions in [13, Proposition 7] or Proposition 3.4 (according to
whether qi ∈ {3, 5, 17}, or not). Similarly, let Q′

i be the second large prime coming
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from qi, using Proposition 3.2 or 3.7. We drop from our list any qi for which
Q′

i < 1011, so that Theorem 2.6 will apply.
There are now two main cases. We apply Lemma 20 in both cases, and then use

the lesser of the two bounds achieved. One option is that Q1 = Q2 = · · · = Qn.
In this case, as each Q′

i �= Qi = Q1 and Q′
i �= Q′

j by Theorem 2.6, we can apply

Theorem 20 with the bounds {P1 = Q1, P2 = 1011, P3 = 1011, . . . , Pn+1 = 1011}.
The second option is that the Qi are not all equal. Let Q1 be the largest element
in {Q1, Q2, . . . , Qn}, and let Qn be the smallest. The worst possible case would be
that among the distinct primes {Q′

1, Q
′
2, . . . , Q

′
n} the two largest primes are equal

to Q1 and Qn, and the rest are close to 1011. Thus, we apply Theorem 20 with the
list of bounds {P1 = Q1, P2 = Qn, P3 = 1011, . . . , Pn = 1011}.

With all of these changes in place, we rerun the algorithm described in [13]. The
computation takes just over one day on a single core, covering a little over thirty
million cases, and we achieve:

Theorem 3.8. There are no odd perfect numbers with less than 10 distinct prime
factors.

There are a few problem cases requiring special treatment, which we describe
now. These cases also illustrate some of the benefits and limitations in the changes
we made above.

Initially, the plan had been to make the primes p = 101, 103 become infinite
when pa > 1050. However, with this choice the prime power 103∞ never satisfies
the bounds in Proposition 3.4. This left cases such as 3∞5∞19∞103∞1399∞p∞

(where 13689227 ≤ p ≤ 13691033). Here we needed another large prime, since the
bounds on the next unknown prime were already bigger than 1011. This problem
was solved by expanding the factorization table for p = 101, 103 up to the level
pa ≤ 10150.

This still leaves five problem cases:

• 3411∞5173∞2633∞1157609∞.
• 3411∞5173∞2633∞1157621∞.
• 3411∞5173∞2633∞1157627∞.
• 3411∞5197∞263∞575513∞.
• 3411∞51103∞227∞349667∞.

We will only discuss the first case, as the other four are dealt with similarly. In
that case, the next unknown prime p is given inside an interval 249075961044 <
p < 498151922091. This interval contains more than nine billion primes, which is
too many to check one at a time. The reason for the extremely large interval is
that the upper (and lower) bound on the interval is larger than 1011, and thus falls
outside the scope of the bounds in Proposition 3.7. When this project was begun,
the number 1011 was the bound initially chosen when proving Lemma 3.6, and thus
subsequently used in many other lemmas and propositions.

There are at least two ways to deal with this case. First, one could redo the
computation of Theorem 2.6 to include the pairs

(p, q) ∈ {(11, 2633), (73, 2633), (2633, 11), (2633, 73)},

and then modify Lemma 3.6, and all subsequent results, to include the new prime
2633. A second option is to again modify Lemma 3.6, and all subsequent results, but
this time just for the primes 11 and 73, by replacing the bound 1011 with 1012. The
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second option is straightforward and easy, except for extending the computations
in [10]. Fortunately, as we already mentioned, such an extension has already been
performed by Richard Fischer (up to the even better bound 8.2×1012). This finishes
the first special cases. The other four are dealt with similarly.

4. Can we prove k > 10?

The simple answer to the question in the title of this section is no. We will give
an illustrative example, demonstrating one of the many difficulties one would face
in trying to extend the computations further. Consider the case 3213261∞5∞163∞

121309∞4328041097∞. The next unknown prime lies in the interval 1.2 × 1019 <
p < 2.6×1019. It would be quite difficult (if not impossible with current computing
resources) to improve Lemma 3.1 for the prime q = 5 to achieve a bound 2.6×1019,
much less also improve Lemma 3.6 similarly to 2.6×1019 for the primes q = 61, 163.
We would need to do this for at least two of these three primes, to use the previous
methods to decrease the size of the interval.

A related problem is whether these techniques can be used to show that when
3 � N , the bound k ≥ 12 can be improved. This may be possible, but it would
require an improvement to Theorem 2.6 from k ≤ 9 to k ≤ 12, which roughly
translates into a sixty-four fold increase in computation time. As the original
calculation to prove Theorem 2.6 took several months, this improvement would
only be feasible using a massive effort distributed over many computers.
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